메뉴 건너뛰기




Volumn 3, Issue , 2003, Pages 1357-1370

Variable selection using SVM-based criteria

Author keywords

Kernels; Sensitivity; Support vector machines; Variable selection

Indexed keywords

GENERALIZATION ERROR BOUNDS; KERNELS; REAL-WORLD DATASETS; RELEVANCE CRITERIA; SENSITIVITY; VARIABLE SELECTION; WEIGHT VECTOR;

EID: 84890447445     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (581)

References (15)
  • 1
    • 0034241361 scopus 로고    scopus 로고
    • Gradient-based optimization of hyperparameters
    • Y. Bengio. Gradient-based optimization of hyperparameters. Neural Computation, 12:1889-1900, 2000.
    • (2000) Neural Computation , vol.12 , pp. 1889-1900
    • Bengio, Y.1
  • 2
    • 0026966646 scopus 로고
    • A training algorithm for optimal margin classifiers
    • D. Haussler, editor, Pittsburgh, PA, ACM Press
    • B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers. In D. Haussler, editor, 5th Annual ACM Workshop on COLT, pages 144-152, Pittsburgh, PA, 1992. ACM Press.
    • (1992) 5th Annual ACM Workshop on COLT , pp. 144-152
    • Boser, B.E.1    Guyon, I.M.2    Vapnik, V.N.3
  • 4
    • 0034342180 scopus 로고    scopus 로고
    • On the optimality of the backward greedy algorithm for the subset selection problem
    • C. Couvreur and Y. Bresler. On the optimality of the backward greedy algorithm for the subset selection problem. SIAM Journal on Matrix Analysis and Applications, 21(3):797-808, 2000.
    • (2000) SIAM Journal on Matrix Analysis and Applications , vol.21 , Issue.3 , pp. 797-808
    • Couvreur, C.1    Bresler, Y.2
  • 6
    • 84890528332 scopus 로고    scopus 로고
    • Evaluation of simple performance measures for tuning svm hyperparameters
    • To appear
    • K. Duan, S.S. Keerthi, and A.N. Poo. Evaluation of simple performance measures for tuning svm hyperparameters. Neurocomputing, To appear, 2002.
    • (2002) Neurocomputing
    • Duan, K.1    Keerthi, S.S.2    Poo, A.N.3
  • 7
    • 1542292950 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • I. Guyon, J. Weston, S. Barnhill, and V. Vapnik. Gene selection for cancer classification using support vector machines. Machine Learning, 2000.
    • (2000) Machine Learning
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 8
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. John. Wrappers for feature subset selection. Artificial Intelligence, (97):273- 324, 1997.
    • (1997) Artificial Intelligence , Issue.97 , pp. 273-324
    • Kohavi, R.1    John, G.2
  • 9
    • 0013125561 scopus 로고    scopus 로고
    • Feature selection with neural networks
    • P. Leray and P. Gallinari. Feature selection with neural networks. Behaviormetrika, 26(1):145- 166, 1999.
    • (1999) Behaviormetrika , vol.26 , Issue.1 , pp. 145-166
    • Leray, P.1    Gallinari, P.2
  • 10
    • 84890539727 scopus 로고    scopus 로고
    • Technical Report 02-004, Insa de Rouen Perception Système Informations
    • A. Rakotomamonjy. Variable selection using svm based criteria. Technical Report 02-004, Insa de Rouen Perception Système Informations, http://asi.insa-rouen.fr/~arakotom, 2002.
    • (2002) Variable Selection Using Svm Based Criteria
    • Rakotomamonjy, A.1
  • 13
    • 0034264380 scopus 로고    scopus 로고
    • Bounds on error expectation for support vector machines
    • V. Vapnik and O. Chapelle. Bounds on error expectation for support vector machines. Neural Computation, 12(9), 2000.
    • (2000) Neural Computation , vol.12 , pp. 9
    • Vapnik, V.1    Chapelle, O.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.