-
1
-
-
0034241361
-
Gradient-based optimization of hyperparameters
-
Y. Bengio. Gradient-based optimization of hyperparameters. Neural Computation, 12:1889-1900, 2000.
-
(2000)
Neural Computation
, vol.12
, pp. 1889-1900
-
-
Bengio, Y.1
-
2
-
-
0026966646
-
A training algorithm for optimal margin classifiers
-
D. Haussler, editor, Pittsburgh, PA, ACM Press
-
B. E. Boser, I. M. Guyon, and V. N. Vapnik. A training algorithm for optimal margin classifiers. In D. Haussler, editor, 5th Annual ACM Workshop on COLT, pages 144-152, Pittsburgh, PA, 1992. ACM Press.
-
(1992)
5th Annual ACM Workshop on COLT
, pp. 144-152
-
-
Boser, B.E.1
Guyon, I.M.2
Vapnik, V.N.3
-
3
-
-
0036161011
-
Choosing multiple parameters for svm
-
O. Chapelle, V. Vapnik, O. Bousquet, and S. Mukerjhee. Choosing multiple parameters for svm. Machine Learning, 46(1-3):131-159, 2002.
-
(2002)
Machine Learning
, vol.46
, Issue.1-3
, pp. 131-159
-
-
Chapelle, O.1
Vapnik, V.2
Bousquet, O.3
Mukerjhee, S.4
-
4
-
-
0034342180
-
On the optimality of the backward greedy algorithm for the subset selection problem
-
C. Couvreur and Y. Bresler. On the optimality of the backward greedy algorithm for the subset selection problem. SIAM Journal on Matrix Analysis and Applications, 21(3):797-808, 2000.
-
(2000)
SIAM Journal on Matrix Analysis and Applications
, vol.21
, Issue.3
, pp. 797-808
-
-
Couvreur, C.1
Bresler, Y.2
-
6
-
-
84890528332
-
Evaluation of simple performance measures for tuning svm hyperparameters
-
To appear
-
K. Duan, S.S. Keerthi, and A.N. Poo. Evaluation of simple performance measures for tuning svm hyperparameters. Neurocomputing, To appear, 2002.
-
(2002)
Neurocomputing
-
-
Duan, K.1
Keerthi, S.S.2
Poo, A.N.3
-
8
-
-
0031381525
-
Wrappers for feature subset selection
-
R. Kohavi and G. John. Wrappers for feature subset selection. Artificial Intelligence, (97):273- 324, 1997.
-
(1997)
Artificial Intelligence
, Issue.97
, pp. 273-324
-
-
Kohavi, R.1
John, G.2
-
9
-
-
0013125561
-
Feature selection with neural networks
-
P. Leray and P. Gallinari. Feature selection with neural networks. Behaviormetrika, 26(1):145- 166, 1999.
-
(1999)
Behaviormetrika
, vol.26
, Issue.1
, pp. 145-166
-
-
Leray, P.1
Gallinari, P.2
-
10
-
-
84890539727
-
-
Technical Report 02-004, Insa de Rouen Perception Système Informations
-
A. Rakotomamonjy. Variable selection using svm based criteria. Technical Report 02-004, Insa de Rouen Perception Système Informations, http://asi.insa-rouen.fr/~arakotom, 2002.
-
(2002)
Variable Selection Using Svm Based Criteria
-
-
Rakotomamonjy, A.1
-
11
-
-
0342502195
-
Soft margins for AdaBoost
-
G. Rätsch, T. Onoda, and K-R Müller. Soft margins for AdaBoost. Machine Learning, 42(3): 287-320, 2001.
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 287-320
-
-
Rätsch, G.1
Onoda, T.2
Müller, K.-R.3
-
13
-
-
0034264380
-
Bounds on error expectation for support vector machines
-
V. Vapnik and O. Chapelle. Bounds on error expectation for support vector machines. Neural Computation, 12(9), 2000.
-
(2000)
Neural Computation
, vol.12
, pp. 9
-
-
Vapnik, V.1
Chapelle, O.2
-
15
-
-
84898948710
-
Feature selection for svms
-
J. Weston, S. Mukherjee, O. Chapelle, M. Pontil, T. Poggio, and V. Vapnik. Feature selection for svms. In Advances in Neural Information Processing Systems 13, 2001b.
-
(2001)
Advances in Neural Information Processing Systems
, vol.13
-
-
Weston, J.1
Mukherjee, S.2
Chapelle, O.3
Pontil, M.4
Poggio, T.5
Vapnik, V.6
|