메뉴 건너뛰기




Volumn 10, Issue , 2009, Pages 777-801

Sparse Online Learning via Truncated Gradient

Author keywords

[No Author keywords available]

Indexed keywords

DATA SETS; GENERAL METHODS; LOSS FUNCTIONS; ON-LINE LEARNING; PARAMETER CONTROLS; REGULARIZATION METHODS; SPARSIFICATION; STOCHASTIC GRADIENT DESCENTS;

EID: 64149115569     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (346)

References (19)
  • 1
    • 36948999941 scopus 로고    scopus 로고
    • University of California, Irvine, School of Information and Computer Sciences
    • Arthur Asuncion and David J. Newman. UCI machine learning repository, 2007. University of California, Irvine, School of Information and Computer Sciences, http://www.ics.uci.edu/~mlearn/MLRepository.html.
    • (2007) UCI machine learning repository
    • Asuncion, A.1    Newman, D.J.2
  • 2
    • 41549108812 scopus 로고    scopus 로고
    • Algorithms for sparse linear classifiers in the massive data setting
    • Suhrid Balakrishnan and David Madigan. Algorithms for sparse linear classifiers in the massive data setting. Journal of Machine Learning Research, 9:313-337, 2008.
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 313-337
    • Balakrishnan, S.1    Madigan, D.2
  • 3
    • 64149111796 scopus 로고    scopus 로고
    • Lazy sparse stochastic gradient descent for regularized multinomial logistic regression
    • Technical report, April
    • Bob Carpenter. Lazy sparse stochastic gradient descent for regularized multinomial logistic regression. Technical report, April 2008.
    • (2008)
    • Carpenter, B.1
  • 4
    • 0030145382 scopus 로고    scopus 로고
    • Worst-case quadratic loss bounds for prediction using linear functions and gradient descent
    • Nicolò Cesa-Bianchi, Philip M. Long, and Manfred Warmuth. Worst-case quadratic loss bounds for prediction using linear functions and gradient descent. IEEE Transactions on Neural Networks, 7(3):604-619, 1996.
    • (1996) IEEE Transactions on Neural Networks , vol.7 , Issue.3 , pp. 604-619
    • Cesa-Bianchi, N.1    Long, P.M.2    Warmuth, M.3
  • 7
    • 64149101037 scopus 로고    scopus 로고
    • Online and batch learning using forward looking subgradients
    • Unpublished manuscript, September
    • John Duchi and Yoram Singer. Online and batch learning using forward looking subgradients. Unpublished manuscript, September 2008.
    • (2008)
    • Duchi, J.1    Singer, Y.2
  • 9
    • 0008815681 scopus 로고    scopus 로고
    • Exponentiated gradient versus gradient descent for linear predictors
    • Jyrki Kivinen and Manfred K. Warmuth. Exponentiated gradient versus gradient descent for linear predictors. Information and Computation, 132(1): 1-63, 1997.
    • (1997) Information and Computation , vol.132 , Issue.1 , pp. 1-63
    • Kivinen, J.1    Warmuth, M.K.2
  • 12
    • 84876811202 scopus 로고    scopus 로고
    • RCV1: A new benchmark collection for text categorization research
    • David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. RCV1: A new benchmark collection for text categorization research. Journal of Machine Learning Research, 5:361-397, 2004.
    • (2004) Journal of Machine Learning Research , vol.5 , pp. 361-397
    • Lewis, D.D.1    Yang, Y.2    Rose, T.G.3    Li, F.4
  • 13
    • 34250091945 scopus 로고
    • Learning quickly when irrelevant attributes abound: A new linear-threshold algorithms
    • Nick Littlestone. Learning quickly when irrelevant attributes abound: A new linear-threshold algorithms. Machine Learning, 2(4):285-318, 1988.
    • (1988) Machine Learning , vol.2 , Issue.4 , pp. 285-318
    • Littlestone, N.1
  • 16
    • 64149133123 scopus 로고    scopus 로고
    • Karl Sjöstrand. Matlab implementation of LASSO, LARS, the elastic net and SPCA, June 2005. Version 2.0
    • Karl Sjöstrand. Matlab implementation of LASSO, LARS, the elastic net and SPCA, June 2005. Version 2.0, http://www2.imm.dtu.dk/pubdb/p.php?3897.
  • 17
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society, B., 58(1):267-288, 1996.
    • (1996) Journal of the Royal Statistical Society, B , vol.58 , Issue.1 , pp. 267-288
    • Tibshirani, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.