메뉴 건너뛰기




Volumn 38, Issue 2, 2010, Pages 894-942

Nearly unbiased variable selection under minimax concave penalty

Author keywords

Correct selection; Degrees of freedom; Least squares; Mean squared error; Minimax; Model selection; Nonconvex minimization; Penalized estimation; Risk estimation; Selection consistency; Sign consistency; Unbiasedness; Variable selection

Indexed keywords


EID: 77649284492     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/09-AOS729     Document Type: Article
Times cited : (3304)

References (54)
  • 1
    • 0000501656 scopus 로고
    • Information theory and an extension of the maximum likelihood principle
    • (V. Petrov and F. Csáki, eds.) . Akadmiai Kiadó, Budapest
    • AKAIKE, H. (1973). Information theory and an extension of the maximum likelihood principle. In Proc. 2nd International Symposium on Information Theory (V. Petrov and F. Csáki, eds.) 267-281. Akadmiai Kiadó, Budapest.
    • (1973) Proc. 2nd International Symposium on Information Theory , pp. 267-281
    • Akaike, H.1
  • 2
    • 0442312210 scopus 로고    scopus 로고
    • Regularized wavelet approximations (with discussion)
    • ANTONIADIS, A. and FAN, J. (2001). Regularized wavelet approximations (with discussion). J. Amer. Statist. Assoc. 96 939-967.
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 939-967
    • Antoniadis, A.1    Fan, J.2
  • 4
    • 50849114939 scopus 로고    scopus 로고
    • Sparsity oracle inequalities for the lasso
    • electronic
    • BUNEA, F., TSYBAKOV, A. and WEGKAMP, M. (2007). Sparsity oracle inequalities for the lasso. Electron. J. Stat. 1 169-194 (electronic).
    • (2007) Electron. J. Stat. , vol.1 , pp. 169-194
    • Bunea, F.1    Tsybakov, A.2    Wegkamp, M.3
  • 5
    • 29144439194 scopus 로고    scopus 로고
    • Decoding by linear programming
    • CANDÉS, E. and TAO, T. (2005). Decoding by linear programming. IEEE Trans. Inform. Theory 51 4203-4215.
    • (2005) IEEE Trans. Inform. Theory , vol.51 , pp. 4203-4215
    • Candés, E.1    Tao, T.2
  • 6
    • 34548275795 scopus 로고    scopus 로고
    • The dantzig selector: Statistical estimation when p is much larger than n (with discussion)
    • CANDÉS, E. and TAO, T. (2007). The Dantzig selector: Statistical estimation when p is much larger than n (with discussion). Ann. Statist. 35 2313-2404.
    • (2007) Ann. Statist. , vol.35 , pp. 2313-2404
    • Candés, E.1    Tao, T.2
  • 7
    • 0003958737 scopus 로고
    • On basis pursuit
    • Dept. Statistics, Stanford Univ.
    • CHEN, S. and DONOHO, D.L. (1994). On basis pursuit. Technical report, Dept. Statistics, Stanford Univ.
    • (1994) Technical Report
    • Chen, S.1    Donoho, D.L.2
  • 8
    • 0012070851 scopus 로고    scopus 로고
    • Local operator theory, random matrices and Banach spaces
    • (W. B. Johnson and J. Lindenstrauss, eds.), North-Holland, Amsterdam
    • DAVIDSON, K. and SZAREK, S. (2001). Local operator theory, random matrices and Banach spaces. In Handbook on the Geometry of Banach Spaces (W. B. Johnson and J. Lindenstrauss, eds.) I 317-366. North-Holland, Amsterdam.
    • (2001) Handbook on the Geometry of Banach Spaces , vol.1 , pp. 317-366
    • Davidson, K.1    Szarek, S.2
  • 10
    • 0041958932 scopus 로고
    • Ideal spatial adaptation by wavelet shrinkage
    • DONOHO, D. L. and JOHNSTONE, I. M. (1994b). Ideal spatial adaptation by wavelet shrinkage. Biometrika 81 425-455.
    • (1994) Biometrika , vol.81 , pp. 425-455
    • Donoho, D.L.1    Johnstone, I.M.2
  • 12
    • 80053264999 scopus 로고
    • How biased is the apparent error of a prediction rule?
    • EFRON, B. (1986). How biased is the apparent error of a prediction rule? J. Amer. Statist. Assoc. 81 461-470.
    • (1986) J. Amer. Statist. Assoc. , vol.81 , pp. 461-470
    • Efron, B.1
  • 14
    • 50849131900 scopus 로고    scopus 로고
    • Discussion: The Dantzig selector: Statistical estimation when p is much larger than n.
    • EFRON, B., HASTIE, T. and TIBSHIRANI, R. (2007). Discussion: The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Statist. 35 2358-2364.
    • (2007) Ann. Statist. , vol.35 , pp. 2358-2364
    • Efron, B.1    Hastie, T.2    Tibshirani, R.3
  • 15
    • 0009935552 scopus 로고    scopus 로고
    • Comments on "wavelets in statistics: A review"
    • by A. Antoniadis
    • FAN, J. (1997). Comments on "Wavelets in statistics: A review" by A. Antoniadis. J. Italian Statist. Assoc. 6 131-138.
    • (1997) J. Italian Statist. Assoc. , vol.6 , pp. 131-138
    • Fan, J.1
  • 16
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • FAN, J. and LI, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Amer. Statist. Assoc. 96 1348-1360.
    • (2001) J. Amer. Statist. Assoc. , vol.96 , pp. 1348-1360
    • Fan, J.1    Li, R.2
  • 17
    • 53849086824 scopus 로고    scopus 로고
    • Sure independence screening for ultrahigh-dimensional feature space
    • FAN, J. and LV, JINCHI. (2008). Sure independence screening for ultrahigh-dimensional feature space. J. Roy. Statist. Soc. Ser. B 70 849-911.
    • (2008) J. Roy. Statist. Soc. Ser. , vol.B 70 , pp. 849-911
    • Fan, J.1    Jinchi, L.V.2
  • 18
    • 24344502730 scopus 로고    scopus 로고
    • On nonconcave penalized likelihood with diverging number of parameters
    • FAN, J. and PENG, H. (2004). On nonconcave penalized likelihood with diverging number of parameters. Ann. Statist. 32 928-961.
    • (2004) Ann. Statist. , vol.32 , pp. 928-961
    • Fan, J.1    Peng, H.2
  • 19
    • 21844523862 scopus 로고
    • The risk inflation criterion for multiple regression
    • FOSTER, D. P. and GEORGE, E. I. (1994). The risk inflation criterion for multiple regression. Ann. Statist. 22 1947-1975. MR1329177
    • (1994) Ann. Statist. , vol.22 , pp. 1947-1975
    • Foster, D.P.1    George, E.I.2
  • 21
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: A statistical view of boosting (with discussion)
    • FRIEDMAN, J., HASTIE, T. and TIBSHIRANI, R. (2000). Additive logistic regression: A statistical view of boosting (with discussion). Ann. Statist. 28 337-1307.
    • (2000) Ann. Statist. , vol.28 , pp. 337-1307
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3
  • 22
    • 0031312521 scopus 로고    scopus 로고
    • Waveshrink with firm shrinkage
    • GAO, H.-Y. and BRUCE, A. G. (1997). Waveshrink with firm shrinkage. Statist. Sinica 7 855-874.
    • (1997) Statist. Sinica , vol.7 , pp. 855-874
    • Gao, H.-Y.1    Bruce, A.G.2
  • 23
    • 8744251722 scopus 로고    scopus 로고
    • Large-scale Bayesian logistic regression for text categorization
    • Rutgers Univ.
    • GENKIN, A. LEWIS, D. D. andMADIGAN, D. (2004). Large-scale Bayesian logistic regression for text categorization. Technical report, DIMACS, Rutgers Univ.
    • (2004) Technical Report, DIMACS
    • Genkin, A.1    Lewis, D.D.2    Madigan, D.3
  • 24
    • 31344454903 scopus 로고    scopus 로고
    • Persistence in high-dimensional linear predictor selection and the virtue of overparametrization
    • GREENSHTEIN E. and RITOV Y. (2004). Persistence in high-dimensional linear predictor selection and the virtue of overparametrization. Bernoulli 10 971-988.
    • (2004) Bernoulli , vol.10 , pp. 971-988
    • Greenshtein, E.1    Ritov, Y.2
  • 25
    • 51049096710 scopus 로고    scopus 로고
    • Adaptive Lasso for sparse high-dimensional regression models
    • HUANG, J.,MA, S. and ZHANG, C.-H. (2008). Adaptive Lasso for sparse high-dimensional regression models. Statist. Sinica 18 1603-1618.
    • (2008) Statist. Sinica , vol.18 , pp. 1603-1618
    • Huang, J.1    Ma, S.2    Zhang, C.-H.3
  • 26
    • 26444617168 scopus 로고    scopus 로고
    • Variable selection using MM algorithms
    • HUNTER, D. R. and LI, R. (2005). Variable selection using MM algorithms. Ann. Statist. 33 1617-1642.
    • (2005) Ann. Statist. , vol.33 , pp. 1617-1642
    • Hunter, D.R.1    Li, R.2
  • 27
    • 84915425007 scopus 로고
    • Some comments on Cp.
    • MALLOWS, C. L. (1973). Some comments on Cp. Technometrics 12 661-675.
    • (1973) Technometrics , vol.12 , pp. 661-675
    • Mallows, C.L.1
  • 29
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the lasso
    • MEINSHAUSEN, N. and BUHLMANN, P. (2006). High-dimensional graphs and variable selection with the Lasso. Ann. Statist. 34 1436-1462.
    • (2006) Ann. Statist. , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 30
    • 50849120401 scopus 로고    scopus 로고
    • Discussion: The dantzig selector: Statistical estimation when p is much larger than
    • MEINSHAUSEN, N., ROCHA, G. and YU, B. (2007). Discussion: The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Statist. 35 2373-2384.
    • (2007) N. Ann. Statist. , vol.35 , pp. 2373-2384
    • Meinshausen, N.1    Rocha, G.2    Yu, B.3
  • 31
    • 65349193793 scopus 로고    scopus 로고
    • Lasso-type recovery of sparse representations for highdimensional data
    • MEINSHAUSEN, N. and YU, B. (2009). Lasso-type recovery of sparse representations for highdimensional data. Ann. Statist. 37 2246-2270.
    • (2009) Ann. Statist. , vol.37 , pp. 2246-2270
    • Meinshausen, N.1    Yu, B.2
  • 32
    • 0034237944 scopus 로고    scopus 로고
    • On the degrees of freedom in shape-restricted regression
    • MEYER, M. andWOODROOFE, M. (2000). On the degrees of freedom in shape-restricted regression. Ann. Statist. 28 1083-1104.
    • (2000) Ann. Statist. , Issue.28 , pp. 1083-1104
    • Meyer, M.1    Woodroofe, M.2
  • 33
    • 0034215549 scopus 로고    scopus 로고
    • A new approach to variable selection in least squares problems
    • OSBORNE, M., PRESNELL, B. and TURLACH, B. (2000a). A new approach to variable selection in least squares problems. IMA J. Numer. Anal. 20 389-404.
    • (2000) IMA J. Numer. Anal. , vol.20 , pp. 389-404
    • Osborne, M.1    Presnell, B.2    Turlach, B.3
  • 35
    • 34547849507 scopus 로고    scopus 로고
    • An L1 regularization-path algorithm for generalized linear models
    • PARK, M. Y. and HASTIE, T. (2007). An L1 regularization-path algorithm for generalized linear models. J. R. Stat. Soc. Ser. B Stat. Methodol. 69 659-677.
    • (2007) J. R. Stat. Soc. Ser. B Stat. Methodol. , vol.69 , pp. 659-677
    • Park, M.Y.1    Hastie, T.2
  • 36
    • 34548452938 scopus 로고    scopus 로고
    • Piecewise linear regularized solution paths
    • ROSSET, S. and ZHU, J. (2007). Piecewise linear regularized solution paths. Ann. Statist. 35 1012-1030.
    • (2007) Ann. Statist. , vol.35 , pp. 1012-1030
    • Rosset, S.1    Zhu, J.2
  • 37
    • 0025448521 scopus 로고
    • The strength of weak learnability
    • SCHAPIRE, R. E. (1990). The strength of weak learnability. Machine Learning 5 197-227.
    • (1990) Machine Learning , vol.5 , pp. 197-227
    • Schapire, R.E.1
  • 38
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • SCHWARZ, G. (1978). Estimating the dimension of a model. Ann. Statist. 6 461-464.
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 39
    • 0000169918 scopus 로고
    • Estimation of the mean of a multivariate normal distribution
    • STEIN, C. (1981). Estimation of the mean of a multivariate normal distribution. Ann. Statist. 9 1135-1151. MR0630098
    • (1981) Ann. Statist. , vol.9 , pp. 1135-1151
    • Stein, C.1
  • 40
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the Lasso
    • TIBSHIRANI, R. (1996). Regression shrinkage and selection via the Lasso. J. Roy. Statist. Soc. Ser. B 58 267-288. MR1379242
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 41
    • 33645712308 scopus 로고    scopus 로고
    • Just relax: Convex programming methods for identifying sparse signals in noise]
    • TROPP, J. A. (2006). Just relax: Convex programming methods for identifying sparse signals in noise. IEEE Trans. Inform. Theory 52 1030-1051.
    • (2006) IEEE Trans. Inform. Theory , vol.52 , pp. 1030-1051
    • Tropp, J.A.1
  • 42
    • 51049121146 scopus 로고    scopus 로고
    • High-dimensional generalized linear models and the Lasso
    • VAN DE GEER, S. (2008). High-dimensional generalized linear models and the Lasso. Ann. Statist. 36 614-645.
    • (2008) Ann. Statist. , vol.36 , pp. 614-645
    • Van De Geer, S.1
  • 43
    • 41949129774 scopus 로고    scopus 로고
    • Sharp thresholds for high-dimensional and noisy recovery of sparsity
    • Dept. Statistics, Univ. California, Berkeley.
    • WAINWRIGHT, M. (2006). Sharp thresholds for high-dimensional and noisy recovery of sparsity. Technical Report 708, Dept. Statistics, Univ. California, Berkeley.
    • (2006) Technical Report 708
    • Wainwright, M.1
  • 44
    • 77649278149 scopus 로고    scopus 로고
    • Rate minimaxity of the lasso and dantzig estimators
    • Dept. Statistics, Rutgers Univ.
    • YE, F. and ZHANG, C.-H. (2009). Rate Minimaxity of the Lasso and Dantzig Estimators. Technical Report No. 2009-3001 Dept. Statistics, Rutgers Univ.
    • (2009) Technical Report No. 2009-3001
    • Ye, F.1    Zhang, C.-H.2
  • 46
    • 38049113238 scopus 로고    scopus 로고
    • Continuous generalized gradient descent
    • ZHANG, C.-H. (2007a). Continuous generalized gradient descent. J. Comput. Graph. Statist. 16 761-781.
    • (2007) J. Comput. Graph. Statist. , vol.16 , pp. 761-781
    • Zhang, C.-H.1
  • 47
    • 51049092645 scopus 로고    scopus 로고
    • Penalized linear unbiased selection
    • Dept. Statistics, Rutgers Univ.
    • ZHANG, C.-H. (2007b). Penalized linear unbiased selection. Technical Report 2007-3003 Dept. Statistics, Rutgers Univ.
    • (2007) Technical Report 2007-3003
    • Zhang, C.-H.1
  • 48
    • 77649330357 scopus 로고    scopus 로고
    • Information-theoretic optimality of variable selection with concave penalty
    • Dept. Statistics, Rutgers Univ.
    • ZHANG, C.-H. (2007c). Information-theoretic optimality of variable selection with concave penalty. Technical Report No. 2007-2008 Dept. Statistics, Rutgers Univ.
    • (2007) Technical Report No. 2007-2008
    • Zhang, C.-H.1
  • 49
    • 51049101956 scopus 로고    scopus 로고
    • Discussion: One-step sparse estimates in nonconcave penalized likelihood models
    • ZHANG, C.-H. (2008). Discussion: One-step sparse estimates in nonconcave penalized likelihood models. Ann. Statist. 36 1553-1560.
    • (2008) Ann. Statist. , vol.36 , pp. 1553-1560
    • Zhang, C.-H.1
  • 50
    • 50949096321 scopus 로고    scopus 로고
    • The sparsity and bias of the LASSO selection in highdimensional regression
    • ZHANG, C.-H. and HUANG, J. (2008). The sparsity and bias of the LASSO selection in highdimensional regression. Ann. Statist. 36 1567-1594.
    • (2008) Ann. Statist. , vol.36 , pp. 1567-1594
    • Zhang, C.-H.1    Huang, J.2
  • 51
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of LASSO
    • ZHAO, P. and YU, B. (2006). On model selection consistency of LASSO. J. Mach. Learn. Res. 7 2541-2567.
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2541-2567
    • Zhao, P.1    Yu, B.2
  • 52
    • 37749006178 scopus 로고    scopus 로고
    • Stagewise lasso
    • ZHAO, P. and YU, B. (2007). Stagewise Lasso. J.Mach. Learn. Res. 8 2701-2726.
    • (2007) J.Mach. Learn. Res. , vol.8 , pp. 2701-2726
    • Zhao, P.1    Yu, B.2
  • 53
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive Lasso and its oracle properties
    • ZOU, H. (2006). The adaptive Lasso and its oracle properties. J. Amer. Statist. Assoc. 101 1418-1429.
    • (2006) J. Amer. Statist. Assoc. , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 54
    • 51049104549 scopus 로고    scopus 로고
    • One-step sparse estimates in nonconcave penalized likelihood models (with discussion)
    • ZOU, H. and LI, R. (2008). One-step sparse estimates in nonconcave penalized likelihood models (with discussion). Ann. Statist. 36 1509-1533.
    • (2008) Ann. Statist. , vol.36 , pp. 1509-1533
    • Zou, H.1    Li, R.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.