-
2
-
-
77951965500
-
-
Stochastic gradient descent examples
-
Leon Bottou. Stochastic gradient descent examples, 2007. http://leon.bottou.org/projects/ sgd.
-
(2007)
-
-
Bottou, L.1
-
4
-
-
34249753618
-
Support-vector network
-
Corina Cortes and Vladimir Vapnik. Support-vector network. Machine Learning, 20:273-297, 1995.
-
(1995)
Machine Learning
, vol.20
, pp. 273-297
-
-
Cortes, C.1
Vapnik, V.2
-
5
-
-
50949133669
-
LIBLINEAR: A library for large linear classification
-
Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. LIBLINEAR: A library for large linear classification. Journal of Machine Learning Research, 9:1871-1874, 2008. URL http://www.csie.ntu.edu.tw/-cjlin/ papers/liblinear.pdf.
-
(2008)
Journal of Machine Learning Research
, vol.9
, pp. 1871-1874
-
-
Fan, R.-E.1
Chang, K.-W.2
Hsieh, C.-J.3
Wang, X.-R.4
Lin, C.-J.5
-
6
-
-
0041657519
-
Interior-point methods for massive support vector machines
-
DOI 10.1137/S1052623400374379, PII S1052623400374379
-
Michael Ferris and Todd Munson. Interior point methods for massive support vector machines. SIAM Journal on Optimization, 13(3):783-804, 2003. (Pubitemid 36971112)
-
(2003)
SIAM Journal on Optimization
, vol.13
, Issue.3
, pp. 783-804
-
-
Ferris, M.C.1
Munson, T.S.2
-
9
-
-
56449086680
-
A dual coordinate descent method for large-scale linear SVM
-
Cho-Jui Hsieh, Kai-Wei Chang, Chih-Jen Lin, S. Sathiya Keerthi, and Sellamanickam Sundararajan. A dual coordinate descent method for large-scale linear SVM. In Proceedings of the Twenty Fifth International Conference on Machine Learning (ICML), 2008. URL http : //www. csie. ntu. edu.tw/~cjlin/ papers/cddual.pdf.
-
(2008)
Proceedings of the Twenty Fifth International Conference on Machine Learning (ICML)
-
-
Hsieh, C.-J.1
Chang, K.-W.2
Lin, C.-J.3
Sathiya Keerthi, S.4
Sundararajan, S.5
-
10
-
-
0036505670
-
A comparison of methods for multi-class support vector machines
-
Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multi-class support vector machines. IEEE Transactions on Neural Networks, 13(2):415-425, 2002.
-
(2002)
IEEE Transactions on Neural Networks
, vol.13
, Issue.2
, pp. 415-425
-
-
Hsu, C.-W.1
Lin, C.-J.2
-
12
-
-
1642296635
-
Efficient support vector classifiers for named entity recognition
-
Hideki Isozaki and Hideto Kazawa. Efficient support vector classifiers for named entity recognition. In Proceedings of COLING, pages 390-396, 2002.
-
(2002)
Proceedings of Coling
, pp. 390-396
-
-
Isozaki, H.1
Kazawa, H.2
-
14
-
-
0002714543
-
Making large-scale SVM learning practical
-
In Bernhard Schölkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Cambridge, MA, MIT Press.
-
Thorsten Joachims. Making large-scale SVM learning practical. In Bernhard Schölkopf, Christopher J. C. Burges, and Alexander J. Smola, editors, Advances in Kernel Methods - Support Vector Learning, Cambridge, MA, 1998. MIT Press.
-
(1998)
Advances in Kernel Methods - Support Vector Learning
-
-
Joachims, T.1
-
16
-
-
0037822222
-
Asymptotic behaviors of support vector machines with Gaussian kernel
-
S. Sathiya Keerthi and Chih-Jen Lin. Asymptotic behaviors of support vector machines with Gaussian kernel. Neural Computation, 15(7): 1667-1689, 2003.
-
(2003)
Neural Computation
, vol.15
, Issue.7
, pp. 1667-1689
-
-
Sathiya Keerthi, S.1
Lin, C.-J.2
-
17
-
-
0000545946
-
Improvements to platt's SMO algorithm for SVM classifier design
-
S. Sathiya Keerthi, Shirish Krishnaj Shevade, Chiranjib Bhattacharyya, and Karuturi Radha Krishna Murthy. Improvements to Platt's SMO algorithm for SVM classifier design. Neural Computation, 13:637-649, 2001.
-
(2001)
Neural Computation
, vol.13
, pp. 637-649
-
-
Sathiya Keerthi, S.1
Shevade, S.K.2
Bhattacharyya, C.3
Murthy, K.R.K.4
-
18
-
-
33745789043
-
Building support vector machines with reduced classifier complexity
-
S. Sathiya Keerthi, Olivier Chapelle, and Dennis DeCoste. Building support vector machines with reduced classifier complexity. Journal of Machine Learning Research, 7:1493-1515, 2006. (Pubitemid 44024591)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1493-1515
-
-
Keerthi, S.S.1
Chapelle, O.2
Decoste, D.3
-
24
-
-
0032594961
-
Musicant. Successive overrelaxation for support vector machines
-
Olvi L. Mangasarian and David R. Musicant. Successive overrelaxation for support vector machines. IEEE Transactions on Neural Networks, 10(5): 1032-1037, 1999.
-
(1999)
IEEE Transactions on Neural Networks
, vol.10
, Issue.5
, pp. 1032-1037
-
-
Mangasarian, O.L.1
David, R.2
-
30
-
-
84862271629
-
Labeled pseudoprojective dependency parsing with support vector machines
-
Joakim Nivre, Johan Hall, Jens Nilsson, Gülşen Eryiǧit, and Svetoslav Marinov. Labeled pseudoprojective dependency parsing with support vector machines. In Proceedings of the Tenth Conference on Computational Natural Language Learning (CoNLL), pages 221-225, 2006.
-
(2006)
Proceedings of the Tenth Conference on Computational Natural Language Learning (CoNLL)
, pp. 221-225
-
-
Nivre, J.1
Hall, J.2
Nilsson, J.3
Eryiǧit, G.4
Marinov, S.5
-
31
-
-
34447620889
-
MaltParser: A language-independent system for data-driven dependency parsing
-
Joakim Nivre, Johan Hall, Jens Nilsson, Atanas Chanev, Gulsen Eryigit, Sandra Kubler, Svetoslav Marinov, and Erwin Marsi. MaltParser: A language-independent system for data-driven dependency parsing. Natural Language Engineering, 13(2):95-135, 2007.
-
(2007)
Natural Language Engineering
, vol.13
, Issue.2
, pp. 95-135
-
-
Nivre, J.1
Hall, J.2
Nilsson, J.3
Chanev, A.4
Eryigit, G.5
Kubler, S.6
Marinov, S.7
Marsi, E.8
-
33
-
-
73549107233
-
Hash kernels for structured data
-
Qinfeng Shi, James Petterson, Gideon Dror, John Langford, Alex Smola, and S.V.N. Vishwanathan. Hash kernels for structured data. Journal of Machine Learning Research, 10:2615-2637, 2009.
-
(2009)
Journal of Machine Learning Research
, vol.10
, pp. 2615-2637
-
-
Shi, Q.1
Petterson, J.2
Dror, G.3
Langford, J.4
Smola, A.5
Vishwanathan, S.V.N.6
-
34
-
-
71149087699
-
Feature hashing for large scale multitask learning
-
Kilian Weinberger, Anirban Dasgupta, John Langford, Alex Smola, and Josh Attenberg. Feature hashing for large scale multitask learning. In Proceedings of the Twenty Sixth International Conference on Machine Learning (ICML), pages 1113-1120, 2009.
-
(2009)
Proceedings of the Twenty Sixth International Conference on Machine Learning (ICML)
, pp. 1113-1120
-
-
Weinberger, K.1
Dasgupta, A.2
Langford, J.3
Smola, A.4
Attenberg, J.5
-
36
-
-
77951950180
-
A comparison of optimization methods and software for large-scale 11-regularized linear classification
-
Guo-Xun Yuan, Kai-Wei Chang, Cho-Jui Hsieh, and Chih-Jen Lin. A comparison of optimization methods and software for large-scale 11-regularized linear classification. 2009. URL http: //www.csie.ntu.edu.tw/~cjlin/papers/11. pdf. Under revision for Journal of Machine Learning Research.
-
(2009)
Journal of Machine Learning Research.
-
-
Yuan, G.-X.1
Chang, K.-W.2
Hsieh, C.-J.3
Lin, C.-J.4
|