메뉴 건너뛰기




Volumn 13, Issue , 2012, Pages 2465-2501

On the convergence rate of lp-norm multiple kernel learning

Author keywords

Generalization bounds; Learning kernels; Local Rademacher complexity; Multiple kernel learning

Indexed keywords

CONVERGENCE RATES; DECAY RATE; EIGEN-VALUE; EXCESS LOSS; FAST CONVERGENCE RATE; FEATURE MAPPING; GENERALIZATION BOUND; LEARNING KERNELS; LOCAL APPROACHES; LOWER BOUNDS; MULTIPLE KERNEL LEARNING; RADEMACHER COMPLEXITY; UPPER BOUND;

EID: 84869166429     PISSN: 15324435     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (33)

References (49)
  • 2
    • 46249088758 scopus 로고    scopus 로고
    • Consistency of the group lasso and multiple kernel learning
    • F. R. Bach. Consistency of the group lasso and multiple kernel learning. J. Mach. Learn. Res., 9: 1179-1225, 2008.
    • (2008) J. Mach. Learn. Res. , vol.9 , pp. 1179-1225
    • Bach, F.R.1
  • 3
  • 4
    • 0038453192 scopus 로고    scopus 로고
    • Rademacher and gaussian complexities: Risk bounds and structural results
    • Nov
    • P. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 3:463-482, Nov. 2002.
    • (2002) Journal of Machine Learning Research , vol.3 , pp. 463-482
    • Bartlett, P.1    Mendelson, S.2
  • 5
    • 26444592981 scopus 로고    scopus 로고
    • Local rademacher complexities
    • DOI 10.1214/009053605000000282
    • P. L. Bartlett, O. Bousquet, and S.Mendelson. Local Rademacher complexities. Annals of Statistics, 33(4):1497-1537, 2005. (Pubitemid 41423979)
    • (2005) Annals of Statistics , vol.33 , Issue.4 , pp. 1497-1537
    • Bartlett, P.L.1    Bousquet, O.2    Mendelson, S.3
  • 6
    • 33645505792 scopus 로고    scopus 로고
    • Convexity, classification, and risk bounds
    • DOI 10.1198/016214505000000907
    • P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101(473):138-156, 2006. (Was Department of Statistics, U.C. Berkeley Technical Report number 638, 2003). (Pubitemid 43500031)
    • (2006) Journal of the American Statistical Association , vol.101 , Issue.473 , pp. 138-156
    • Bartlett, P.L.1    Jordan, M.I.2    McAuliffe, J.D.3
  • 7
    • 48849115978 scopus 로고    scopus 로고
    • Statistical performance of support vector machines
    • G. Blanchard, O. Bousquet, and P. Massart. Statistical performance of support vector machines. Annals of Statistics, 36(2):489-531, 2008.
    • (2008) Annals of Statistics , vol.36 , Issue.2 , pp. 489-531
    • Blanchard, G.1    Bousquet, O.2    Massart, P.3
  • 9
    • 0038368335 scopus 로고    scopus 로고
    • Stability and Generalization
    • DOI 10.1162/153244302760200704
    • O. Bousquet and A. Elisseeff. Stability and generalization. J. Mach. Learn. Res., 2:499-526, March 2002. ISSN 1532-4435. (Pubitemid 135712570)
    • (2002) Journal of Machine Learning Research , vol.2 , Issue.3 , pp. 499-526
    • Bousquet, O.1    Elisseeff, A.2
  • 17
    • 0012979836 scopus 로고    scopus 로고
    • The best constant in the Rosenthal inequality for nonnegative random variables
    • DOI 10.1016/S0167-7152(01)00134-1, PII S0167715201001341
    • R. Ibragimov and S. Sharakhmetov. The best constant in the rosenthal inequality for nonnegative random variables. Statistics & Probability Letters, 55(4):367 376, 2001. ISSN 0167-7152. (Pubitemid 33619150)
    • (2001) Statistics and Probability Letters , vol.55 , Issue.4 , pp. 367-376
    • Ibragimov, R.1    Sharakhmetov, Sh.2
  • 19
    • 84870431573 scopus 로고    scopus 로고
    • PhD thesis, Berlin Institute of Technology, Oct. URL
    • M. Kloft. ℓp-Norm Multiple Kernel Learning. PhD thesis, Berlin Institute of Technology, Oct 2011. URL http://opus.kobv.de/tuberlin/volltexte/ 2011/3239/.
    • (2011) P-Norm Multiple Kernel Learning
    • Kloft, M.1
  • 21
    • 84858738634 scopus 로고    scopus 로고
    • Efficient and accurate lp-norm multiple kernel learning
    • In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, MIT Press
    • M. Kloft, U. Brefeld, S. Sonnenburg, P. Laskov, K.-R. Müller, and A. Zien. Efficient and accurate lp-norm multiple kernel learning. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 997-1005. MIT Press, 2009.
    • (2009) Advances in Neural Information Processing Systems , vol.22 , pp. 997-1005
    • Kloft, M.1    Brefeld, U.2    Sonnenburg, S.3    Laskov, P.4    Müller, K.-R.5    Zien, A.6
  • 23
    • 0035397715 scopus 로고    scopus 로고
    • Rademacher penalties and structural risk minimization
    • DOI 10.1109/18.930926, PII S0018944801044297
    • V. Koltchinskii. Rademacher penalties and structural risk minimization. IEEE Transactions on Information Theory, 47(5):1902-1914, 2001. (Pubitemid 32644704)
    • (2001) IEEE Transactions on Information Theory , vol.47 , Issue.5 , pp. 1902-1914
    • Koltchinskii, V.1
  • 24
    • 33746194045 scopus 로고    scopus 로고
    • Local rademacher complexities and oracle inequalities in risk minimization
    • V. Koltchinskii. Local Rademacher complexities and oracle inequalities in risk minimization. Annals of Statistics, 34(6):2593-2656, 2006.
    • (2006) Annals of Statistics , vol.34 , Issue.6 , pp. 2593-2656
    • Koltchinskii, V.1
  • 26
    • 78650166948 scopus 로고    scopus 로고
    • Sparsity in multiple kernel learning
    • V. Koltchinskii and M. Yuan. Sparsity in multiple kernel learning. Annals of Statistics, 38(6): 3660-3695, 2010.
    • (2010) Annals of Statistics , vol.38 , Issue.6 , pp. 3660-3695
    • Koltchinskii, V.1    Yuan, M.2
  • 29
    • 36148997227 scopus 로고    scopus 로고
    • Sparse estimators and the oracle property, or the return of Hodges' estimator
    • DOI 10.1016/j.jeconom.2007.05.017, PII S0304407607001273
    • H. Leeb and B. M. Pötscher. Sparse estimators and the oracle property, or the return of Hodges' estimator. Journal of Econometrics, 142:201-211, 2008. (Pubitemid 350117135)
    • (2008) Journal of Econometrics , vol.142 , Issue.1 , pp. 201-211
    • Leeb, H.1    Potscher, B.M.2
  • 30
    • 0001035413 scopus 로고
    • On the method of bounded differences
    • (Norwich, 1989), 141 of London Math. Soc. Lecture Note Ser., pages 148-188. Cambridge Univ. Press, Cambridge
    • C.McDiarmid. On the method of bounded differences. In Surveys in combinatorics, 1989 (Norwich, 1989), volume 141 of London Math. Soc. Lecture Note Ser., pages 148-188. Cambridge Univ. Press, Cambridge, 1989.
    • (1989) Surveys in combinatorics , pp. 1989
    • McDiarmid, C.1
  • 31
    • 3142722249 scopus 로고    scopus 로고
    • On the performance of kernel classes
    • December
    • S. Mendelson. On the performance of kernel classes. J. Mach. Learn. Res., 4:759-771, December 2003.
    • (2003) J. Mach. Learn. Res. , vol.4 , pp. 759-771
    • Mendelson, S.1
  • 35
    • 51249187914 scopus 로고
    • On the subspaces of lp (p > 2) spanned by sequences of independent random variables
    • H. Rosenthal. On the subspaces of Lp (p > 2) spanned by sequences of independent random variables. Israel J. Math., 8:273-303, 1970.
    • (1970) Israel J. Math. , vol.8 , pp. 273-303
    • Rosenthal, H.1
  • 36
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear Component Analysis as a Kernel Eigenvalue Problem
    • B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299-1319, 1998. (Pubitemid 128463674)
    • (1998) Neural Computation , vol.10 , Issue.5 , pp. 1299-1319
    • Scholkopf, B.1    Smola, A.2    Muller, K.-R.3
  • 37
    • 0019199513 scopus 로고
    • Minds brains, and programs
    • doi: 10.1017/S0140525X00005756. URL
    • J. R. Searle. Minds, brains, and programs. Behavioral and Brain Sciences, 3(03):417424, 1980. doi: 10.1017/S0140525X00005756. URL http://dx.doi.org/10. 1017/S0140525X00005756.
    • (1980) Behavioral and Brain Sciences , vol.3 , Issue.3 , pp. 417-424
    • Searle, J.R.1
  • 42
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictors (with discussion)
    • M. Stone. Cross-validatory choice and assessment of statistical predictors (with discussion). Journal of the Royal Statistical Society, B36:111-147, 1974.
    • (1974) Journal of the Royal Statistical Society , vol.B36 , pp. 111-147
    • Stone, M.1
  • 43
    • 85162544517 scopus 로고    scopus 로고
    • Unifying framework for fast learning rate of non-sparse multiple kernel learning
    • In J. Shawe-Taylor, R. Zemel, P. L. Bartlett, F. Pereira, and K. Weinberger, editors, To appear
    • T. Suzuki. Unifying framework for fast learning rate of non-sparse multiple kernel learning. In J. Shawe-Taylor, R. Zemel, P. L. Bartlett, F. Pereira, and K. Weinberger, editors, Advances in Neural Information Processing Systems 24. 2011. To appear.
    • (2011) Advances in Neural Information Processing Systems , vol.24
    • Suzuki, T.1
  • 44
    • 51249165477 scopus 로고
    • Concentration of measure and isoperimetric inequalities in product spaces
    • M. Talagrand. Concentration of measure and isoperimetric inequalities in product spaces. Publications Mathmatiques de L'IHS, 81:73-205, 1995.
    • (1995) Publications Mathmatiques de L'IHS , vol.81 , pp. 73-205
    • Talagrand, M.1
  • 45
    • 9444226947 scopus 로고    scopus 로고
    • Optimal Rates of Aggregation
    • Learning Theory and Kernel Machines
    • A. Tsybakov. Optimal rates of aggregation. In B. Schölkopf and M. Warmuth, editors, Computational Learning Theory and Kernel Machines (COLT-2003), volume 2777 of Lecture Notes in Artificial Intelligence, pages 303-313. Springer, 2003. (Pubitemid 37053212)
    • (2003) Lecture Notes in Computer Science , Issue.2777 , pp. 303-313
    • Tsybakov, A.B.1
  • 47
    • 0035441827 scopus 로고    scopus 로고
    • Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators
    • DOI 10.1109/18.945262, PII S0018944801028358
    • R. C. Williamson, A. J. Smola, and B. Schölkopf. Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators. IEEE Transactions on Information Theory, 47(6):2516-2532, 2001. (Pubitemid 32949899)
    • (2001) IEEE Transactions on Information Theory , vol.47 , Issue.6 , pp. 2516-2532
    • Williamson, R.C.1    Smola, A.J.2    Scholkopf, B.3
  • 49
    • 77956500822 scopus 로고    scopus 로고
    • Generalization bounds for learning the kernel problem
    • Y. Ying and C. Campbell. Generalization bounds for learning the kernel problem. In COLT, 2009.
    • (2009) COLT
    • Ying, Y.1    Campbell, C.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.