-
1
-
-
79952749920
-
Variable sparsity kernel learning algorithms and applications
-
Feb
-
J. Aflalo, A. Ben-Tal, C. Bhattacharyya, J. S. Nath, and S. Raman. Variable sparsity kernel learning algorithms and applications. Journal of Machine Learning Research, 12:565-592, Feb 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 565-592
-
-
Aflalo, J.1
Ben-Tal, A.2
Bhattacharyya, C.3
Nath, J.S.4
Raman, S.5
-
2
-
-
46249088758
-
Consistency of the group lasso and multiple kernel learning
-
F. R. Bach. Consistency of the group lasso and multiple kernel learning. J. Mach. Learn. Res., 9: 1179-1225, 2008.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 1179-1225
-
-
Bach, F.R.1
-
3
-
-
14344252374
-
Jordan. Multiple kernel learning, conic duality, and the smo algorithm
-
F. R. Bach, G. R. G. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality, and the SMO algorithm. In Proc. 21st ICML. ACM, 2004.
-
(2004)
Proc. 21st ICML. ACM
-
-
Bach, F.R.1
Lanckriet, G.R.G.2
Jordan, M.I.3
-
4
-
-
0038453192
-
Rademacher and gaussian complexities: Risk bounds and structural results
-
Nov
-
P. Bartlett and S. Mendelson. Rademacher and gaussian complexities: Risk bounds and structural results. Journal of Machine Learning Research, 3:463-482, Nov. 2002.
-
(2002)
Journal of Machine Learning Research
, vol.3
, pp. 463-482
-
-
Bartlett, P.1
Mendelson, S.2
-
5
-
-
26444592981
-
Local rademacher complexities
-
DOI 10.1214/009053605000000282
-
P. L. Bartlett, O. Bousquet, and S.Mendelson. Local Rademacher complexities. Annals of Statistics, 33(4):1497-1537, 2005. (Pubitemid 41423979)
-
(2005)
Annals of Statistics
, vol.33
, Issue.4
, pp. 1497-1537
-
-
Bartlett, P.L.1
Bousquet, O.2
Mendelson, S.3
-
6
-
-
33645505792
-
Convexity, classification, and risk bounds
-
DOI 10.1198/016214505000000907
-
P. L. Bartlett, M. I. Jordan, and J. D. McAuliffe. Convexity, classification, and risk bounds. Journal of the American Statistical Association, 101(473):138-156, 2006. (Was Department of Statistics, U.C. Berkeley Technical Report number 638, 2003). (Pubitemid 43500031)
-
(2006)
Journal of the American Statistical Association
, vol.101
, Issue.473
, pp. 138-156
-
-
Bartlett, P.L.1
Jordan, M.I.2
McAuliffe, J.D.3
-
7
-
-
48849115978
-
Statistical performance of support vector machines
-
G. Blanchard, O. Bousquet, and P. Massart. Statistical performance of support vector machines. Annals of Statistics, 36(2):489-531, 2008.
-
(2008)
Annals of Statistics
, vol.36
, Issue.2
, pp. 489-531
-
-
Blanchard, G.1
Bousquet, O.2
Massart, P.3
-
8
-
-
78649394789
-
Weka experiences with a java open-source project
-
R. R. Bouckaert, E. Frank, M. A. Hall, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten. WEKA experiences with a java open-source project. Journal of Machine Learning Research, 11:2533-2541, 2010.
-
(2010)
Journal of Machine Learning Research
, vol.11
, pp. 2533-2541
-
-
Bouckaert, R.R.1
Frank, E.2
Hall, M.A.3
Holmes, G.4
Pfahringer, B.5
Reutemann, P.6
Witten, I.H.7
-
9
-
-
0038368335
-
Stability and Generalization
-
DOI 10.1162/153244302760200704
-
O. Bousquet and A. Elisseeff. Stability and generalization. J. Mach. Learn. Res., 2:499-526, March 2002. ISSN 1532-4435. (Pubitemid 135712570)
-
(2002)
Journal of Machine Learning Research
, vol.2
, Issue.3
, pp. 499-526
-
-
Bousquet, O.1
Elisseeff, A.2
-
10
-
-
33846313242
-
Introduction to Statistical Learning Theory
-
O. Bousquet, S. Boucheron, and G. Lugosi. Introduction to statistical learning theory. In O. Bousquet, U. von Luxburg, and G. Rätsch, editors, Advanced Lectures on Machine Learning, volume 3176 of Lecture Notes in Computer Science, pages 169-207. Springer Berlin /Heidelberg, 2004. (Pubitemid 39741632)
-
(2004)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.3176
, pp. 169-207
-
-
Bousquet, O.1
Boucheron, S.2
Lugosi, G.3
-
11
-
-
77956548520
-
Invited talk: Can learning kernels help performance?
-
New York, NY, USA, ACM. ISBN 978-1-60558-516-1
-
C. Cortes. Invited talk: Can learning kernels help performance? In Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09, pages 1:1-1:1, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-516-1.
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning, ICML '09
, pp. 1111
-
-
Cortes, C.1
-
12
-
-
84870419394
-
-
URL
-
C. Cortes, A. Gretton, G. Lanckriet, M. Mohri, and A. Rostamizadeh. Proceedings of the NIPS Workshop on Kernel Learning: Automatic Selection of Optimal Kernels, 2008. URL http: //www.cs.nyu.edu/learning-kernels.
-
(2008)
Proceedings of the NIPS Workshop on Kernel Learning: Automatic Selection of Optimal Kernels
-
-
Cortes, C.1
Gretton, A.2
Lanckriet, G.3
Mohri, M.4
Rostamizadeh, A.5
-
17
-
-
0012979836
-
The best constant in the Rosenthal inequality for nonnegative random variables
-
DOI 10.1016/S0167-7152(01)00134-1, PII S0167715201001341
-
R. Ibragimov and S. Sharakhmetov. The best constant in the rosenthal inequality for nonnegative random variables. Statistics & Probability Letters, 55(4):367 376, 2001. ISSN 0167-7152. (Pubitemid 33619150)
-
(2001)
Statistics and Probability Letters
, vol.55
, Issue.4
, pp. 367-376
-
-
Ibragimov, R.1
Sharakhmetov, Sh.2
-
19
-
-
84870431573
-
-
PhD thesis, Berlin Institute of Technology, Oct. URL
-
M. Kloft. ℓp-Norm Multiple Kernel Learning. PhD thesis, Berlin Institute of Technology, Oct 2011. URL http://opus.kobv.de/tuberlin/volltexte/ 2011/3239/.
-
(2011)
P-Norm Multiple Kernel Learning
-
-
Kloft, M.1
-
21
-
-
84858738634
-
Efficient and accurate lp-norm multiple kernel learning
-
In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, MIT Press
-
M. Kloft, U. Brefeld, S. Sonnenburg, P. Laskov, K.-R. Müller, and A. Zien. Efficient and accurate lp-norm multiple kernel learning. In Y. Bengio, D. Schuurmans, J. Lafferty, C. K. I. Williams, and A. Culotta, editors, Advances in Neural Information Processing Systems 22, pages 997-1005. MIT Press, 2009.
-
(2009)
Advances in Neural Information Processing Systems
, vol.22
, pp. 997-1005
-
-
Kloft, M.1
Brefeld, U.2
Sonnenburg, S.3
Laskov, P.4
Müller, K.-R.5
Zien, A.6
-
22
-
-
79955848223
-
P-norm multiple kernel learning
-
Mar
-
M. Kloft, U. Brefeld, S. Sonnenburg, and A. Zien. ℓp-norm multiple kernel learning. Journal of Machine Learning Research, 12:953-997, Mar 2011.
-
(2011)
Journal of Machine Learning Research
, vol.12
, pp. 953-997
-
-
Kloft, M.1
Brefeld, U.2
Sonnenburg, S.3
Zien, A.4
-
23
-
-
0035397715
-
Rademacher penalties and structural risk minimization
-
DOI 10.1109/18.930926, PII S0018944801044297
-
V. Koltchinskii. Rademacher penalties and structural risk minimization. IEEE Transactions on Information Theory, 47(5):1902-1914, 2001. (Pubitemid 32644704)
-
(2001)
IEEE Transactions on Information Theory
, vol.47
, Issue.5
, pp. 1902-1914
-
-
Koltchinskii, V.1
-
24
-
-
33746194045
-
Local rademacher complexities and oracle inequalities in risk minimization
-
V. Koltchinskii. Local Rademacher complexities and oracle inequalities in risk minimization. Annals of Statistics, 34(6):2593-2656, 2006.
-
(2006)
Annals of Statistics
, vol.34
, Issue.6
, pp. 2593-2656
-
-
Koltchinskii, V.1
-
26
-
-
78650166948
-
Sparsity in multiple kernel learning
-
V. Koltchinskii and M. Yuan. Sparsity in multiple kernel learning. Annals of Statistics, 38(6): 3660-3695, 2010.
-
(2010)
Annals of Statistics
, vol.38
, Issue.6
, pp. 3660-3695
-
-
Koltchinskii, V.1
Yuan, M.2
-
28
-
-
8844278523
-
Learning the kernel matrix with semi-definite programming
-
G. Lanckriet, N. Cristianini, L. E. Ghaoui, P. Bartlett, and M. I. Jordan. Learning the kernel matrix with semi-definite programming. JMLR, 5:27-72, 2004.
-
(2004)
JMLR
, vol.5
, pp. 27-72
-
-
Lanckriet, G.1
Cristianini, N.2
Ghaoui, L.E.3
Bartlett, P.4
Jordan, M.I.5
-
29
-
-
36148997227
-
Sparse estimators and the oracle property, or the return of Hodges' estimator
-
DOI 10.1016/j.jeconom.2007.05.017, PII S0304407607001273
-
H. Leeb and B. M. Pötscher. Sparse estimators and the oracle property, or the return of Hodges' estimator. Journal of Econometrics, 142:201-211, 2008. (Pubitemid 350117135)
-
(2008)
Journal of Econometrics
, vol.142
, Issue.1
, pp. 201-211
-
-
Leeb, H.1
Potscher, B.M.2
-
30
-
-
0001035413
-
On the method of bounded differences
-
(Norwich, 1989), 141 of London Math. Soc. Lecture Note Ser., pages 148-188. Cambridge Univ. Press, Cambridge
-
C.McDiarmid. On the method of bounded differences. In Surveys in combinatorics, 1989 (Norwich, 1989), volume 141 of London Math. Soc. Lecture Note Ser., pages 148-188. Cambridge Univ. Press, Cambridge, 1989.
-
(1989)
Surveys in combinatorics
, pp. 1989
-
-
McDiarmid, C.1
-
31
-
-
3142722249
-
On the performance of kernel classes
-
December
-
S. Mendelson. On the performance of kernel classes. J. Mach. Learn. Res., 4:759-771, December 2003.
-
(2003)
J. Mach. Learn. Res.
, vol.4
, pp. 759-771
-
-
Mendelson, S.1
-
33
-
-
0035272287
-
An introduction to kernel-based learning algorithms
-
DOI 10.1109/72.914517, PII S1045922701037146
-
K.-R. Müller, S. Mika, G. Rätsch, K. Tsuda, and B. Schölkopf. An introduction to kernel-based learning algorithms. IEEE Neural Networks, 12(2):181-201, May 2001. (Pubitemid 32371478)
-
(2001)
IEEE Transactions on Neural Networks
, vol.12
, Issue.2
, pp. 181-201
-
-
Muller, K.-R.1
Mika, S.2
Ratsch, G.3
Tsuda, K.4
Scholkopf, B.5
-
35
-
-
51249187914
-
On the subspaces of lp (p > 2) spanned by sequences of independent random variables
-
H. Rosenthal. On the subspaces of Lp (p > 2) spanned by sequences of independent random variables. Israel J. Math., 8:273-303, 1970.
-
(1970)
Israel J. Math.
, vol.8
, pp. 273-303
-
-
Rosenthal, H.1
-
36
-
-
0347243182
-
Nonlinear Component Analysis as a Kernel Eigenvalue Problem
-
B. Schölkopf, A. Smola, and K.-R. Müller. Nonlinear component analysis as a kernel eigenvalue problem. Neural Computation, 10:1299-1319, 1998. (Pubitemid 128463674)
-
(1998)
Neural Computation
, vol.10
, Issue.5
, pp. 1299-1319
-
-
Scholkopf, B.1
Smola, A.2
Muller, K.-R.3
-
37
-
-
0019199513
-
Minds brains, and programs
-
doi: 10.1017/S0140525X00005756. URL
-
J. R. Searle. Minds, brains, and programs. Behavioral and Brain Sciences, 3(03):417424, 1980. doi: 10.1017/S0140525X00005756. URL http://dx.doi.org/10. 1017/S0140525X00005756.
-
(1980)
Behavioral and Brain Sciences
, vol.3
, Issue.3
, pp. 417-424
-
-
Searle, J.R.1
-
38
-
-
33745776113
-
Large scale multiple kernel learning
-
S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large scale multiple kernel learning. Journal of Machine Learning Research, 7:1531-1565, July 2006. (Pubitemid 44373694)
-
(2006)
Journal of Machine Learning Research
, vol.7
, pp. 1531-1565
-
-
Sonnenburg, S.1
Ratsch, G.2
Schafer, C.3
Scholkopf, B.4
-
39
-
-
33746031418
-
Learning bounds for support vector machines with learned kernels
-
Learning Theory - 19th Annual Conference on Learning Theory, COLT 2006, Proceedings
-
N. Srebro and S. Ben-David. Learning bounds for support vector machines with learned kernels. In G. Lugosi and H.-U. Simon, editors, COLT, volume 4005 of Lecture Notes in Computer Science, pages 169-183. Springer, 2006. (Pubitemid 44072193)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.4005 LNAI
, pp. 169-183
-
-
Srebro, N.1
Ben-David, S.2
-
42
-
-
0000629975
-
Cross-validatory choice and assessment of statistical predictors (with discussion)
-
M. Stone. Cross-validatory choice and assessment of statistical predictors (with discussion). Journal of the Royal Statistical Society, B36:111-147, 1974.
-
(1974)
Journal of the Royal Statistical Society
, vol.B36
, pp. 111-147
-
-
Stone, M.1
-
43
-
-
85162544517
-
Unifying framework for fast learning rate of non-sparse multiple kernel learning
-
In J. Shawe-Taylor, R. Zemel, P. L. Bartlett, F. Pereira, and K. Weinberger, editors, To appear
-
T. Suzuki. Unifying framework for fast learning rate of non-sparse multiple kernel learning. In J. Shawe-Taylor, R. Zemel, P. L. Bartlett, F. Pereira, and K. Weinberger, editors, Advances in Neural Information Processing Systems 24. 2011. To appear.
-
(2011)
Advances in Neural Information Processing Systems
, vol.24
-
-
Suzuki, T.1
-
44
-
-
51249165477
-
Concentration of measure and isoperimetric inequalities in product spaces
-
M. Talagrand. Concentration of measure and isoperimetric inequalities in product spaces. Publications Mathmatiques de L'IHS, 81:73-205, 1995.
-
(1995)
Publications Mathmatiques de L'IHS
, vol.81
, pp. 73-205
-
-
Talagrand, M.1
-
45
-
-
9444226947
-
Optimal Rates of Aggregation
-
Learning Theory and Kernel Machines
-
A. Tsybakov. Optimal rates of aggregation. In B. Schölkopf and M. Warmuth, editors, Computational Learning Theory and Kernel Machines (COLT-2003), volume 2777 of Lecture Notes in Artificial Intelligence, pages 303-313. Springer, 2003. (Pubitemid 37053212)
-
(2003)
Lecture Notes in Computer Science
, Issue.2777
, pp. 303-313
-
-
Tsybakov, A.B.1
-
47
-
-
0035441827
-
Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators
-
DOI 10.1109/18.945262, PII S0018944801028358
-
R. C. Williamson, A. J. Smola, and B. Schölkopf. Generalization performance of regularization networks and support vector machines via entropy numbers of compact operators. IEEE Transactions on Information Theory, 47(6):2516-2532, 2001. (Pubitemid 32949899)
-
(2001)
IEEE Transactions on Information Theory
, vol.47
, Issue.6
, pp. 2516-2532
-
-
Williamson, R.C.1
Smola, A.J.2
Scholkopf, B.3
-
48
-
-
64549115955
-
Sparse algorithms are not stable: A no-free-lunch theorem
-
H. Xu, S. Mannor, and C. Caramanis. Sparse algorithms are not stable: A no-free-lunch theorem. In Proceedings of the 46th Annual Allerton Conference on Communication, Control, and Computing, pages 1299 -1303, 2008.
-
(2008)
Proceedings of the 46th Annual Allerton Conference on Communication, Control, and Computing
, pp. 1299-1303
-
-
Xu, H.1
Mannor, S.2
Caramanis, C.3
-
49
-
-
77956500822
-
Generalization bounds for learning the kernel problem
-
Y. Ying and C. Campbell. Generalization bounds for learning the kernel problem. In COLT, 2009.
-
(2009)
COLT
-
-
Ying, Y.1
Campbell, C.2
|