-
1
-
-
77953229115
-
The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway
-
Lieber M.R. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu. Rev. Biochem. 2010, 79:181-211.
-
(2010)
Annu. Rev. Biochem.
, vol.79
, pp. 181-211
-
-
Lieber, M.R.1
-
2
-
-
25444475799
-
Repair of double-strand DNA breaks by the human nonhomologous DNA end joining pathway: the iterative processing model
-
Ma Y., Lu H., Schwarz K., Lieber M.R. Repair of double-strand DNA breaks by the human nonhomologous DNA end joining pathway: the iterative processing model. Cell Cycle 2005, 4:1193-1200.
-
(2005)
Cell Cycle
, vol.4
, pp. 1193-1200
-
-
Ma, Y.1
Lu, H.2
Schwarz, K.3
Lieber, M.R.4
-
3
-
-
0034162828
-
A new gene involved in DNA double-strand break repair and V(D)J recombination is located on human chromosome 10p
-
Moshous D., Li L., Chasseval R., Philippe N., Jabado N., Cowan M.J., Fischer A.J.P., Villartay d. A new gene involved in DNA double-strand break repair and V(D)J recombination is located on human chromosome 10p. Hum. Mol. Gen. 2000, 9:583-588.
-
(2000)
Hum. Mol. Gen.
, vol.9
, pp. 583-588
-
-
Moshous, D.1
Li, L.2
Chasseval, R.3
Philippe, N.4
Jabado, N.5
Cowan, M.J.6
Fischer, A.J.P.7
Villartay, D.8
-
4
-
-
0037097787
-
A founder mutation in Artemis, an SNM1-like protein, causes SCID in Athabascan-speaking Native Americans
-
Li L., Moshous D., Zhou Y., Wang J., Xie G., Salido E., Hu D.J.P., Villartay d., Cowan M.J. A founder mutation in Artemis, an SNM1-like protein, causes SCID in Athabascan-speaking Native Americans. J. Immunol. 2002, 168:6323-6329.
-
(2002)
J. Immunol.
, vol.168
, pp. 6323-6329
-
-
Li, L.1
Moshous, D.2
Zhou, Y.3
Wang, J.4
Xie, G.5
Salido, E.6
Hu, D.J.P.7
Villartay, D.8
Cowan, M.J.9
-
5
-
-
0037416138
-
Defective DNA repair and increased genomic instability in Artemis-deficient murine cells
-
Rooney S., Alt F.W., Lombard D., Whitlow S., Eckersdorff M., Fleming J., Fugmann S., Ferguson D.O., Schatz D.G., Sekiguchi J. Defective DNA repair and increased genomic instability in Artemis-deficient murine cells. J. Exp. Med. 2003, 197:553-565.
-
(2003)
J. Exp. Med.
, vol.197
, pp. 553-565
-
-
Rooney, S.1
Alt, F.W.2
Lombard, D.3
Whitlow, S.4
Eckersdorff, M.5
Fleming, J.6
Fugmann, S.7
Ferguson, D.O.8
Schatz, D.G.9
Sekiguchi, J.10
-
6
-
-
0036932453
-
Leaky Scid phenotype associated with defective V(D)J coding end processing in Artemis-deficient mice
-
Rooney S., Sekiguchi J., Zhu C., Cheng H.-L., Manis J., Whitlow S., DeVido J., Foy D., Chaudhuri J., Lombard D., Alt F.W. Leaky Scid phenotype associated with defective V(D)J coding end processing in Artemis-deficient mice. Mol. Cell 2002, 10:65-74.
-
(2002)
Mol. Cell
, vol.10
, pp. 65-74
-
-
Rooney, S.1
Sekiguchi, J.2
Zhu, C.3
Cheng, H.-L.4
Manis, J.5
Whitlow, S.6
DeVido, J.7
Foy, D.8
Chaudhuri, J.9
Lombard, D.10
Alt, F.W.11
-
7
-
-
58149183672
-
A non-leaky Artemis-deficient mouse that accurately models the human severe combined immune deficiency phenotype, including resistance to hematopoietic stem cell transplantation
-
Xiao Z., Dunn E., Singh K., Khan I.S., Yannone S.M., Cowan M.J. A non-leaky Artemis-deficient mouse that accurately models the human severe combined immune deficiency phenotype, including resistance to hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 2009, 15:1-11.
-
(2009)
Biol. Blood Marrow Transplant.
, vol.15
, pp. 1-11
-
-
Xiao, Z.1
Dunn, E.2
Singh, K.3
Khan, I.S.4
Yannone, S.M.5
Cowan, M.J.6
-
8
-
-
16244401671
-
Artemis deficiency confers a DNA double-strand break repair defect and Artemis phosphorylation status is altered by DNA damage and cell cycle progression
-
Wang J., Pluth J., Cooper P., Cowan M., Chen D., Yannone S.M. Artemis deficiency confers a DNA double-strand break repair defect and Artemis phosphorylation status is altered by DNA damage and cell cycle progression. DNA Repair 2005, 4:556-570.
-
(2005)
DNA Repair
, vol.4
, pp. 556-570
-
-
Wang, J.1
Pluth, J.2
Cooper, P.3
Cowan, M.4
Chen, D.5
Yannone, S.M.6
-
9
-
-
78650756134
-
PARP-3 APLF function together to accelerate nonhomologous end-joining
-
Rulten S.L., Fisher A.E., Robert I., Zuma M.C., Rouleau M., Ju L., Poirier G., Reina-San-Martin B., Caldecott K.W., PARP-3 APLF function together to accelerate nonhomologous end-joining. Mol. Cell 2011, 41:33-45.
-
(2011)
Mol. Cell
, vol.41
, pp. 33-45
-
-
Rulten, S.L.1
Fisher, A.E.2
Robert, I.3
Zuma, M.C.4
Rouleau, M.5
Ju, L.6
Poirier, G.7
Reina-San-Martin, B.8
Caldecott, K.W.9
-
10
-
-
34247245102
-
A novel human AP endonuclease with conserved zinc-finger-like motifs involved in DNA strand break responses
-
Kanno S., Kuzuoka H., Sasao S., Hong Z., Lan L., Nakajima S., Yasui A. A novel human AP endonuclease with conserved zinc-finger-like motifs involved in DNA strand break responses. EMBO J. 2007, 26:2094-2103.
-
(2007)
EMBO J.
, vol.26
, pp. 2094-2103
-
-
Kanno, S.1
Kuzuoka, H.2
Sasao, S.3
Hong, Z.4
Lan, L.5
Nakajima, S.6
Yasui, A.7
-
11
-
-
80054683238
-
Polynucleotide kinase and aprataxin-like forkhead-associated protein (PALF) acts as both a single-stranded DNA endonuclease and a single-stranded DNA 3' exonuclease and can participate in DNA end joining in a biochemical system
-
Li S., Kanno S., Watanabe R., Ogiwara H., Kohno T., Watanabe G., Yasui A., Lieber M.R. Polynucleotide kinase and aprataxin-like forkhead-associated protein (PALF) acts as both a single-stranded DNA endonuclease and a single-stranded DNA 3' exonuclease and can participate in DNA end joining in a biochemical system. J. Biol. Chem. 2011, 286:36368-36377.
-
(2011)
J. Biol. Chem.
, vol.286
, pp. 36368-36377
-
-
Li, S.1
Kanno, S.2
Watanabe, R.3
Ogiwara, H.4
Kohno, T.5
Watanabe, G.6
Yasui, A.7
Lieber, M.R.8
-
12
-
-
9744220428
-
A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci
-
Riballo E., Kuhne M., Rief N., Doherty A., Smith G.C.M., Recio M.-J., Reis C., Dahm K., Fricke A., Kempler A., Parker A.R., Jackson S.P., Gennery A., Jeggo P.A., Lobrich M. A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol. Cell 2004, 16:715-724.
-
(2004)
Mol. Cell
, vol.16
, pp. 715-724
-
-
Riballo, E.1
Kuhne, M.2
Rief, N.3
Doherty, A.4
Smith, G.C.M.5
Recio, M.-J.6
Reis, C.7
Dahm, K.8
Fricke, A.9
Kempler, A.10
Parker, A.R.11
Jackson, S.P.12
Gennery, A.13
Jeggo, P.A.14
Lobrich, M.15
-
13
-
-
70350763838
-
Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2
-
Beucher A., Birraux J., Tchouandong L., Barton O., Shibata A., Conrad S., Goodarzi A.A., Krempler A., Jeggo P.A., Lobrich M.A.T.M. Artemis promote homologous recombination of radiation-induced DNA double-strand breaks in G2. EMBO J. 2009, 28:3413-3427.
-
(2009)
EMBO J.
, vol.28
, pp. 3413-3427
-
-
Beucher, A.1
Birraux, J.2
Tchouandong, L.3
Barton, O.4
Shibata, A.5
Conrad, S.6
Goodarzi, A.A.7
Krempler, A.8
Jeggo, P.A.9
Lobrich, M.A.T.M.10
-
14
-
-
38349146485
-
The requirement of Artemis in double-strand break repair depends on the type of DNA damage
-
Kurosawa A., Koyama H., Takayama S., Miki K., Ayusawa D., Fujii M., Iiizumi S., Adachi N. The requirement of Artemis in double-strand break repair depends on the type of DNA damage. DNA Cell Biol. 2008, 27:55-61.
-
(2008)
DNA Cell Biol.
, vol.27
, pp. 55-61
-
-
Kurosawa, A.1
Koyama, H.2
Takayama, S.3
Miki, K.4
Ayusawa, D.5
Fujii, M.6
Iiizumi, S.7
Adachi, N.8
-
15
-
-
84881499062
-
DNA ligase IV and Artemis act cooperatively to suppress homologous recombination in human cells: implications for DNA double-strand break repair
-
Kurosawa A., Saito S., So S., Hashimoto M., Iwabuchi K., Watabe H., Adachi N. DNA ligase IV and Artemis act cooperatively to suppress homologous recombination in human cells: implications for DNA double-strand break repair. PLoS One 2013, 8:e72253.
-
(2013)
PLoS One
, vol.8
-
-
Kurosawa, A.1
Saito, S.2
So, S.3
Hashimoto, M.4
Iwabuchi, K.5
Watabe, H.6
Adachi, N.7
-
16
-
-
0037155703
-
Hairpin opening and overhang processing by an Artemis:DNA-PKcs complex in V(D)J recombination and in nonhomologous end joining
-
Ma Y., Pannicke U., Schwarz K., Lieber M.R. Hairpin opening and overhang processing by an Artemis:DNA-PKcs complex in V(D)J recombination and in nonhomologous end joining. Cell 2002, 108:781-794.
-
(2002)
Cell
, vol.108
, pp. 781-794
-
-
Ma, Y.1
Pannicke, U.2
Schwarz, K.3
Lieber, M.R.4
-
17
-
-
20644463916
-
The Artemis:DNA-PKcs endonuclease can cleave gaps, flaps, and loops
-
Ma Y., Schwarz K., Lieber M.R. The Artemis:DNA-PKcs endonuclease can cleave gaps, flaps, and loops. DNA Repair 2005, 4:845-851.
-
(2005)
DNA Repair
, vol.4
, pp. 845-851
-
-
Ma, Y.1
Schwarz, K.2
Lieber, M.R.3
-
18
-
-
9744241712
-
A biochemically defined system for mammalian nonhomologous DNA end joining
-
Ma Y., Lu H., Tippin B., Goodman M.F., Shimazaki N., Koiwai O., Hsieh C.-L., Schwarz K., Lieber M.R. A biochemically defined system for mammalian nonhomologous DNA end joining. Mol. Cell 2004, 16:701-713.
-
(2004)
Mol. Cell
, vol.16
, pp. 701-713
-
-
Ma, Y.1
Lu, H.2
Tippin, B.3
Goodman, M.F.4
Shimazaki, N.5
Koiwai, O.6
Hsieh, C.-L.7
Schwarz, K.8
Lieber, M.R.9
-
19
-
-
34248157719
-
A.P.L.F. (C2orf13) is a novel human protein involved in the cellular response to chromosomal DNA strand breaks
-
Iles N., Rulten S., El-Khamisy S.F., Caldecott K.W. A.P.L.F. (C2orf13) is a novel human protein involved in the cellular response to chromosomal DNA strand breaks. Mol. Cell Biol. 2007, 27:3793-3803.
-
(2007)
Mol. Cell Biol.
, vol.27
, pp. 3793-3803
-
-
Iles, N.1
Rulten, S.2
El-Khamisy, S.F.3
Caldecott, K.W.4
-
20
-
-
47049104588
-
APLF (C2orf13) is a novel component of poly(ADP-ribose) signaling in mammalian cells
-
Rulten S.L., Cortes-Ledesma F., Guo L., Iles N.J., Caldecott K.W. APLF (C2orf13) is a novel component of poly(ADP-ribose) signaling in mammalian cells. Mol. Cell Biol. 2008, 28:4620-4628.
-
(2008)
Mol. Cell Biol.
, vol.28
, pp. 4620-4628
-
-
Rulten, S.L.1
Cortes-Ledesma, F.2
Guo, L.3
Iles, N.J.4
Caldecott, K.W.5
-
21
-
-
37549023517
-
APLF (C2orf13) facilitates nonhomologous end-joining and undergoes ATM-dependent hyperphosphorylation following ionizing radiation
-
Macrae C.J., McCulloch R.D., Ylanko J., Durocher D., Koch C.A. APLF (C2orf13) facilitates nonhomologous end-joining and undergoes ATM-dependent hyperphosphorylation following ionizing radiation. DNA Repair (Amst.) 2008, 7:292-302.
-
(2008)
DNA Repair (Amst.)
, vol.7
, pp. 292-302
-
-
Macrae, C.J.1
McCulloch, R.D.2
Ylanko, J.3
Durocher, D.4
Koch, C.A.5
-
22
-
-
84876528414
-
The PARP3-ATM-dependent phosphorylation of APLF facilitates DNA double-strand break repair
-
Fenton A.L., Shirodkar P., Macrae C.J., Meng L., Koch C.A. The PARP3-ATM-dependent phosphorylation of APLF facilitates DNA double-strand break repair. Nucleic Acids Res. 2013, 41:4080-4092.
-
(2013)
Nucleic Acids Res.
, vol.41
, pp. 4080-4092
-
-
Fenton, A.L.1
Shirodkar, P.2
Macrae, C.J.3
Meng, L.4
Koch, C.A.5
-
23
-
-
84880049843
-
Identification and functional characterization of a Ku-binding motif in aprataxin polynucleotide kinase/phosphatase-like factor (APLF)
-
Shirodkar P., Fenton A.L., Meng L., Koch C.A. Identification and functional characterization of a Ku-binding motif in aprataxin polynucleotide kinase/phosphatase-like factor (APLF). J. Biol. Chem. 2013, 288:19604-19613.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 19604-19613
-
-
Shirodkar, P.1
Fenton, A.L.2
Meng, L.3
Koch, C.A.4
-
24
-
-
78650745979
-
DNA repair factor APLF is a histone chaperone
-
Mehrotra P.V., Ahel D., Ryan D.P., Weston R., Wiechens N., Kraehenbuehl R., Owen-Hughes T., Ahel I. DNA repair factor APLF is a histone chaperone. Mol. Cell 2011, 41:46-55.
-
(2011)
Mol. Cell
, vol.41
, pp. 46-55
-
-
Mehrotra, P.V.1
Ahel, D.2
Ryan, D.P.3
Weston, R.4
Wiechens, N.5
Kraehenbuehl, R.6
Owen-Hughes, T.7
Ahel, I.8
-
25
-
-
84872853376
-
APLF promotes the assembly and activity of non-homologous end joining protein complexes
-
Grundy G.J., Rulten S.L., Zeng Z., Arribas-Bosacoma R., Iles N., Manley K., Oliver A., Caldecott K.W. APLF promotes the assembly and activity of non-homologous end joining protein complexes. EMBO J. 2013, 32:112-125.
-
(2013)
EMBO J.
, vol.32
, pp. 112-125
-
-
Grundy, G.J.1
Rulten, S.L.2
Zeng, Z.3
Arribas-Bosacoma, R.4
Iles, N.5
Manley, K.6
Oliver, A.7
Caldecott, K.W.8
-
26
-
-
0035818985
-
NEJ1 controls non-homologous end joining in Saccharomyces cerevisiae
-
Valencia M., Bentele M., Vaze M.B., Herrmann G., Kraus E., Lee S.E., Schar P., Haber J.E. NEJ1 controls non-homologous end joining in Saccharomyces cerevisiae. Nature 2001, 414:666-669.
-
(2001)
Nature
, vol.414
, pp. 666-669
-
-
Valencia, M.1
Bentele, M.2
Vaze, M.B.3
Herrmann, G.4
Kraus, E.5
Lee, S.E.6
Schar, P.7
Haber, J.E.8
-
27
-
-
34548567192
-
Modes of interaction among yeast Nej1, Lif1 and Dnl4 proteins and comparison to human XLF, XRCC4 and Lig4
-
Deshpande R.A., Wilson T.E. Modes of interaction among yeast Nej1, Lif1 and Dnl4 proteins and comparison to human XLF, XRCC4 and Lig4. DNA Repair (Amst.) 2007, 6:1507-1516.
-
(2007)
DNA Repair (Amst.)
, vol.6
, pp. 1507-1516
-
-
Deshpande, R.A.1
Wilson, T.E.2
-
28
-
-
0036276388
-
The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling
-
D'Amours D., Jackson S.P. The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat. Rev. Mol. Cell Biol. 2002, 3:317-327.
-
(2002)
Nat. Rev. Mol. Cell Biol.
, vol.3
, pp. 317-327
-
-
D'Amours, D.1
Jackson, S.P.2
-
29
-
-
61849109768
-
Recruitment of Saccharomyces cerevisiae Dnl4-Lif1 complex to a double-strand break requires interactions with Yku80 and the Xrs2 FHA domain
-
Palmbos P.L., Wu D., Daley J.M., Wilson T.E. Recruitment of Saccharomyces cerevisiae Dnl4-Lif1 complex to a double-strand break requires interactions with Yku80 and the Xrs2 FHA domain. Genetics 2008, 180:1809-1819.
-
(2008)
Genetics
, vol.180
, pp. 1809-1819
-
-
Palmbos, P.L.1
Wu, D.2
Daley, J.M.3
Wilson, T.E.4
-
30
-
-
0029791694
-
Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways
-
Boulton S.J., Jackson S.P. Saccharomyces cerevisiae Ku70 potentiates illegitimate DNA double-strand break repair and serves as a barrier to error-prone DNA repair pathways. EMBO J. 1996, 15:5093-5103.
-
(1996)
EMBO J.
, vol.15
, pp. 5093-5103
-
-
Boulton, S.J.1
Jackson, S.P.2
-
31
-
-
0030811523
-
Yeast DNA ligase IV mediates non-homologous DNA end joining
-
Wilson T.E., Grawunder U., Lieber M.R. Yeast DNA ligase IV mediates non-homologous DNA end joining. Nature 1997, 388:495-498.
-
(1997)
Nature
, vol.388
, pp. 495-498
-
-
Wilson, T.E.1
Grawunder, U.2
Lieber, M.R.3
-
32
-
-
0037413373
-
The beta-lactamase motif in Snm1 is required for repair of DNA double-strand breaks caused by interstrand crosslinks in S. cerevisiae
-
Li X., Moses R.E. The beta-lactamase motif in Snm1 is required for repair of DNA double-strand breaks caused by interstrand crosslinks in S. cerevisiae. DNA Repair (Amst.) 2003, 2:121-129.
-
(2003)
DNA Repair (Amst.)
, vol.2
, pp. 121-129
-
-
Li, X.1
Moses, R.E.2
-
33
-
-
7244220162
-
D.N.A. end resection, homologous recombination and DNA damage checkpoint activation require CDK1
-
Ira G., Pellicioli A., Balijja A., Wang X., Fiorani S., Carotenuto W., Liberi G., Bressan D., Wan L., Hollingsworth N.M., Haber J.E., Foiani M. D.N.A. end resection, homologous recombination and DNA damage checkpoint activation require CDK1. Nature 2004, 431:1011-1017.
-
(2004)
Nature
, vol.431
, pp. 1011-1017
-
-
Ira, G.1
Pellicioli, A.2
Balijja, A.3
Wang, X.4
Fiorani, S.5
Carotenuto, W.6
Liberi, G.7
Bressan, D.8
Wan, L.9
Hollingsworth, N.M.10
Haber, J.E.11
Foiani, M.12
-
34
-
-
11244269445
-
The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle
-
Aylon Y., Liefshitz B., Kupiec M. The CDK regulates repair of double-strand breaks by homologous recombination during the cell cycle. EMBO J. 2004, 23:4868-4875.
-
(2004)
EMBO J.
, vol.23
, pp. 4868-4875
-
-
Aylon, Y.1
Liefshitz, B.2
Kupiec, M.3
-
35
-
-
51549095956
-
Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends
-
Zhu Z., Chung W.H., Shim E.Y., Lee S.E., Ira G. Sgs1 helicase and two nucleases Dna2 and Exo1 resect DNA double-strand break ends. Cell 2008, 134:981-994.
-
(2008)
Cell
, vol.134
, pp. 981-994
-
-
Zhu, Z.1
Chung, W.H.2
Shim, E.Y.3
Lee, S.E.4
Ira, G.5
-
36
-
-
53649104599
-
Sae2 Exo1 Sgs1 collaborate in DNA double-strand break processing
-
Mimitou E.P., Symington L.S. Sae2 Exo1 Sgs1 collaborate in DNA double-strand break processing. Nature 2008, 455:770-774.
-
(2008)
Nature
, vol.455
, pp. 770-774
-
-
Mimitou, E.P.1
Symington, L.S.2
-
37
-
-
36248942617
-
Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex
-
Lengsfeld B.M., Rattray A.J., Bhaskara V., Ghirlando R., Paull T.T. Sae2 is an endonuclease that processes hairpin DNA cooperatively with the Mre11/Rad50/Xrs2 complex. Mol. Cell 2007, 28:638-651.
-
(2007)
Mol. Cell
, vol.28
, pp. 638-651
-
-
Lengsfeld, B.M.1
Rattray, A.J.2
Bhaskara, V.3
Ghirlando, R.4
Paull, T.T.5
-
38
-
-
0033551662
-
Efficient processing of DNA ends during yeast nonhomologous end joining. Evidence for a DNA polymerase beta (Pol4)-dependent pathway
-
Wilson T.E., Lieber M.R. Efficient processing of DNA ends during yeast nonhomologous end joining. Evidence for a DNA polymerase beta (Pol4)-dependent pathway. J. Biol. Chem. 1999, 274:23599-23609.
-
(1999)
J. Biol. Chem.
, vol.274
, pp. 23599-23609
-
-
Wilson, T.E.1
Lieber, M.R.2
-
39
-
-
48149104385
-
Pol3 is involved in nonhomologous end-joining in Saccharomyces cerevisiae
-
Chan C.Y., Galli A., Schiestl R.H. Pol3 is involved in nonhomologous end-joining in Saccharomyces cerevisiae. DNA Repair (Amst.) 2008, 7:1531-1541.
-
(2008)
DNA Repair (Amst.)
, vol.7
, pp. 1531-1541
-
-
Chan, C.Y.1
Galli, A.2
Schiestl, R.H.3
-
40
-
-
0029655319
-
Mechanistic constraints on diversity in human V(D)J recombination
-
Gauss G.H., Lieber M.R. Mechanistic constraints on diversity in human V(D)J recombination. Mol. Cell. Biol. 1996, 16:258-269.
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 258-269
-
-
Gauss, G.H.1
Lieber, M.R.2
-
41
-
-
58149308524
-
Altered kinetics of nonhomologous end joining and class switch recombination in ligase IV-deficient B cells
-
Han L., Yu K. Altered kinetics of nonhomologous end joining and class switch recombination in ligase IV-deficient B cells. J. Exp. Med. 2008, 205:2745-2753.
-
(2008)
J. Exp. Med.
, vol.205
, pp. 2745-2753
-
-
Han, L.1
Yu, K.2
-
42
-
-
77955331318
-
SnapShot: Nonhomologous DNA end joining (NHEJ)
-
e491
-
Lieber M.R., Wilson T.E. SnapShot: Nonhomologous DNA end joining (NHEJ). Cell 2010, 142:496. e491.
-
(2010)
Cell
, vol.142
, pp. 496
-
-
Lieber, M.R.1
Wilson, T.E.2
-
43
-
-
0032167446
-
A targeted DNA-PKcs-null mutation reveals DNA-PK independent functions for Ku in V(D)J recombination
-
Gao Y., Chaudhurri J., Zhu C., Davidson L., Weaver D.T., Alt F.W. A targeted DNA-PKcs-null mutation reveals DNA-PK independent functions for Ku in V(D)J recombination. Immunity 1998, 9:367-376.
-
(1998)
Immunity
, vol.9
, pp. 367-376
-
-
Gao, Y.1
Chaudhurri, J.2
Zhu, C.3
Davidson, L.4
Weaver, D.T.5
Alt, F.W.6
-
44
-
-
0023801238
-
The defect in murine severe combined immune deficiency: joining of signal sequences but not coding segments in V(D)J recombination
-
Lieber M.R., Hesse J.E., Lewis S., Bosma G.C., Rosenberg N., Mizuuchi K., Bosma M.J., Gellert M. The defect in murine severe combined immune deficiency: joining of signal sequences but not coding segments in V(D)J recombination. Cell 1988, 55:7-16.
-
(1988)
Cell
, vol.55
, pp. 7-16
-
-
Lieber, M.R.1
Hesse, J.E.2
Lewis, S.3
Bosma, G.C.4
Rosenberg, N.5
Mizuuchi, K.6
Bosma, M.J.7
Gellert, M.8
-
45
-
-
2442504893
-
Genetic evidence for involvement of two distinct nonhomologous end-joining pathways in repair of topoisomerase II-mediated DNA damage
-
Adachi N., Iiizumi S., So S., Koyama H. Genetic evidence for involvement of two distinct nonhomologous end-joining pathways in repair of topoisomerase II-mediated DNA damage. Biochem. Biophys. Res. Comm. 2004, 318:856-861.
-
(2004)
Biochem. Biophys. Res. Comm.
, vol.318
, pp. 856-861
-
-
Adachi, N.1
Iiizumi, S.2
So, S.3
Koyama, H.4
-
46
-
-
0343953047
-
Follicular lymphomas BCL-2/IgH junctions contain templated nucleotide insertions: novel insights into the mechanism of t(14;18) translocation
-
Jaeger U., Bocskor S., Le T., Mitterbauer G., Bolz I., Chott A., Kneba A., Mannhalter C., Nadel B. Follicular lymphomas BCL-2/IgH junctions contain templated nucleotide insertions: novel insights into the mechanism of t(14;18) translocation. Blood 2000, 95:3520-3529.
-
(2000)
Blood
, vol.95
, pp. 3520-3529
-
-
Jaeger, U.1
Bocskor, S.2
Le, T.3
Mitterbauer, G.4
Bolz, I.5
Chott, A.6
Kneba, A.7
Mannhalter, C.8
Nadel, B.9
-
47
-
-
0035866359
-
Templated nucleotide addition and immunoglobulin JH-gene utilization in t(11;14) junctions: implications for the mechanism of translocation and the origin of mantle cell lymphoma
-
Welzel N.T.L.T., Marculescu R., Mitterbauer G., Chott A., Pott C., Kneba M., Du M.Q., Kusec R., Drach J., Raderer M., Mannhalter C., Lechner K., Nadel B., Jaeger U. Templated nucleotide addition and immunoglobulin JH-gene utilization in t(11;14) junctions: implications for the mechanism of translocation and the origin of mantle cell lymphoma. Cancer Res. 2001, 61:1629-1636.
-
(2001)
Cancer Res.
, vol.61
, pp. 1629-1636
-
-
Welzel, N.T.L.T.1
Marculescu, R.2
Mitterbauer, G.3
Chott, A.4
Pott, C.5
Kneba, M.6
Du, M.Q.7
Kusec, R.8
Drach, J.9
Raderer, M.10
Mannhalter, C.11
Lechner, K.12
Nadel, B.13
Jaeger, U.14
-
48
-
-
84867283407
-
IgH partner breakpoint sequences provide evidence that AID Initiates t(11;14) and t(8;14) chromosomal breaks in mantle cell and Burkitt lymphomas
-
Greisman H.A., Lu Z., Tsai A.G., Greiner T.C., Yi H.S., Lieber M.R. IgH partner breakpoint sequences provide evidence that AID Initiates t(11;14) and t(8;14) chromosomal breaks in mantle cell and Burkitt lymphomas. Blood 2012, 120:2864-2867.
-
(2012)
Blood
, vol.120
, pp. 2864-2867
-
-
Greisman, H.A.1
Lu, Z.2
Tsai, A.G.3
Greiner, T.C.4
Yi, H.S.5
Lieber, M.R.6
-
49
-
-
84862777955
-
Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration
-
S391
-
Chiang C., Jacobsen J.C., Ernst C., Hanscom C., Heilbut A., Blumenthal I., Mills R.E., Kirby A., Lindgren A.M., Rudiger S.R., McLaughlan C.J., Bawden C.S., Reid S.J., Faull R.L., Snell R.G., Hall I.M., Shen Y., Ohsumi T.K., Borowsky M.L., Daly M.J., Lee C., Morton C.C., MacDonald M.E., Gusella J.F., Talkowski M.E. Complex reorganization and predominant non-homologous repair following chromosomal breakage in karyotypically balanced germline rearrangements and transgenic integration. Nat. Genet. 2012, 44:390-397. S391.
-
(2012)
Nat. Genet.
, vol.44
, pp. 390-397
-
-
Chiang, C.1
Jacobsen, J.C.2
Ernst, C.3
Hanscom, C.4
Heilbut, A.5
Blumenthal, I.6
Mills, R.E.7
Kirby, A.8
Lindgren, A.M.9
Rudiger, S.R.10
McLaughlan, C.J.11
Bawden, C.S.12
Reid, S.J.13
Faull, R.L.14
Snell, R.G.15
Hall, I.M.16
Shen, Y.17
Ohsumi, T.K.18
Borowsky, M.L.19
Daly, M.J.20
Lee, C.21
Morton, C.C.22
MacDonald, M.E.23
Gusella, J.F.24
Talkowski, M.E.25
more..
-
50
-
-
84877722178
-
Diverse mechanisms of somatic structural variations in human cancer genomes
-
Yang L., Luquette L.J., Gehlenborg N., Xi R., Haseley P.S., Hsieh C.H., Zhang C., Ren X., Protopopov A., Chin L., Kucherlapati R., Lee C., Park P.J. Diverse mechanisms of somatic structural variations in human cancer genomes. Cell 2013, 153:919-929.
-
(2013)
Cell
, vol.153
, pp. 919-929
-
-
Yang, L.1
Luquette, L.J.2
Gehlenborg, N.3
Xi, R.4
Haseley, P.S.5
Hsieh, C.H.6
Zhang, C.7
Ren, X.8
Protopopov, A.9
Chin, L.10
Kucherlapati, R.11
Lee, C.12
Park, P.J.13
-
51
-
-
84888626405
-
Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage
-
Deriano L., Roth D.B. Modernizing the nonhomologous end-joining repertoire: alternative and classical NHEJ share the stage. Annu. Rev. Genet. 2013, 47:433-455.
-
(2013)
Annu. Rev. Genet.
, vol.47
, pp. 433-455
-
-
Deriano, L.1
Roth, D.B.2
-
52
-
-
78650995499
-
An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway
-
Zhang Y., Jasin M. An essential role for CtIP in chromosomal translocation formation through an alternative end-joining pathway. Nat. Struct. Mol. Biol. 2011, 18:80-84.
-
(2011)
Nat. Struct. Mol. Biol.
, vol.18
, pp. 80-84
-
-
Zhang, Y.1
Jasin, M.2
-
53
-
-
79959814259
-
DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation
-
Simsek D., Brunet E., Wong S.Y., Katyal S., Gao Y., McKinnon P.J., Lou J., Zhang L., Li J., Rebar E.J., Gregory P.D., Holmes M.C., Jasin M. DNA ligase III promotes alternative nonhomologous end-joining during chromosomal translocation formation. PLoS Genet. 2011, 7:e1002080.
-
(2011)
PLoS Genet.
, vol.7
-
-
Simsek, D.1
Brunet, E.2
Wong, S.Y.3
Katyal, S.4
Gao, Y.5
McKinnon, P.J.6
Lou, J.7
Zhang, L.8
Li, J.9
Rebar, E.J.10
Gregory, P.D.11
Holmes, M.C.12
Jasin, M.13
-
54
-
-
84863116082
-
Robust chromosomal DNA repair via alternative end-joining in the absence of X-ray repair cross-complementing protein 1 (XRCC1)
-
Boboila C., Oksenych V., Gostissa M., Wang J.H., Zha S., Zhang Y., Chai H., Lee C.S., Jankovic M., Saez L.M., Nussenzweig M.C., McKinnon P.J., Alt F.W., Schwer B. Robust chromosomal DNA repair via alternative end-joining in the absence of X-ray repair cross-complementing protein 1 (XRCC1). P. Natl. Acad. Sci. USA 2012, 109:2473-2478.
-
(2012)
P. Natl. Acad. Sci. USA
, vol.109
, pp. 2473-2478
-
-
Boboila, C.1
Oksenych, V.2
Gostissa, M.3
Wang, J.H.4
Zha, S.5
Zhang, Y.6
Chai, H.7
Lee, C.S.8
Jankovic, M.9
Saez, L.M.10
Nussenzweig, M.C.11
McKinnon, P.J.12
Alt, F.W.13
Schwer, B.14
-
55
-
-
0028013486
-
Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events
-
Kramer K.M., Brock J.A., Bloom K., Moore J.K., Haber J.E. Two different types of double-strand breaks in Saccharomyces cerevisiae are repaired by similar RAD52-independent, nonhomologous recombination events. Mol. Cell. Biol. 1994, 14:1293-1301.
-
(1994)
Mol. Cell. Biol.
, vol.14
, pp. 1293-1301
-
-
Kramer, K.M.1
Brock, J.A.2
Bloom, K.3
Moore, J.K.4
Haber, J.E.5
-
56
-
-
0029976325
-
Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae
-
Moore J.K., Haber J.E. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell. Biol. 1996, 16:2164-2173.
-
(1996)
Mol. Cell. Biol.
, vol.16
, pp. 2164-2173
-
-
Moore, J.K.1
Haber, J.E.2
-
57
-
-
0242468933
-
Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences
-
Ma J.L., Kim E.M., Haber J.E., Lee S.E., Yeast Mre11 Rad1 proteins define a Ku-independent mechanism to repair double-strand breaks lacking overlapping end sequences. Mol. Cell. Biol. 2003, 23:8820-8828.
-
(2003)
Mol. Cell. Biol.
, vol.23
, pp. 8820-8828
-
-
Ma, J.L.1
Kim, E.M.2
Haber, J.E.3
Lee, S.E.4
Yeast Mre115
-
58
-
-
23844464546
-
DNA joint dependence of pol X family polymerase action in nonhomologous end joining
-
Daley J.M., Laan R.L., Suresh A., Wilson T.E. DNA joint dependence of pol X family polymerase action in nonhomologous end joining. J. Biol. Chem. 2005, 280:29030-29037.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 29030-29037
-
-
Daley, J.M.1
Laan, R.L.2
Suresh, A.3
Wilson, T.E.4
-
59
-
-
58149308524
-
Altered kinetics of nonhomologous end joining and class switch recombination in ligase IV-deficient B cells
-
Han L., Yu K. Altered kinetics of nonhomologous end joining and class switch recombination in ligase IV-deficient B cells. J. Exp. Med. 2008, 205:2745-2753.
-
(2008)
J. Exp. Med.
, vol.205
, pp. 2745-2753
-
-
Han, L.1
Yu, K.2
-
60
-
-
34748863465
-
IgH class switching and translocations use a robust non-classical end-joining pathway
-
Yan C.T., Boboila C., Souza E.K., Franco S., Hickernell T.R., Murphy M., Gumaste S., Geyer M., Zarrin A.A., Manis J.P., Rajewsky K., Alt F.W. IgH class switching and translocations use a robust non-classical end-joining pathway. Nature 2007, 449:478-482.
-
(2007)
Nature
, vol.449
, pp. 478-482
-
-
Yan, C.T.1
Boboila, C.2
Souza, E.K.3
Franco, S.4
Hickernell, T.R.5
Murphy, M.6
Gumaste, S.7
Geyer, M.8
Zarrin, A.A.9
Manis, J.P.10
Rajewsky, K.11
Alt, F.W.12
-
61
-
-
34447288912
-
Role for DNA repair factor XRCC4 in immunoglobulin class switch recombination
-
Soulas-Sprauel P., Le Guyader G., Rivera-Munoz P., Abramowski V., Olivier-Martin C., Goujet-Zalc C., Charneau P., de Villartay J.P. Role for DNA repair factor XRCC4 in immunoglobulin class switch recombination. J. Exp. Med. 2007, 204:1717-1727.
-
(2007)
J. Exp. Med.
, vol.204
, pp. 1717-1727
-
-
Soulas-Sprauel, P.1
Le Guyader, G.2
Rivera-Munoz, P.3
Abramowski, V.4
Olivier-Martin, C.5
Goujet-Zalc, C.6
Charneau, P.7
de Villartay, J.P.8
-
62
-
-
84875974739
-
Coincident resection at both ends of random, gamma-induced double-strand breaks requires MRX (MRN), Sae2 (Ctp1), and Mre11-nuclease
-
Westmoreland J.W., Resnick M.A. Coincident resection at both ends of random, gamma-induced double-strand breaks requires MRX (MRN), Sae2 (Ctp1), and Mre11-nuclease. PLoS Genet. 2013, 9:e1003420.
-
(2013)
PLoS Genet.
, vol.9
-
-
Westmoreland, J.W.1
Resnick, M.A.2
-
63
-
-
84888206404
-
Genome-wide consequences of deleting any single gene
-
Teng X., Dayhoff-Brannigan M., Cheng W.C., Gilbert C.E., Sing C.N., Diny N.L., Wheelan S.J., Dunham M.J., Boeke J.D., Pineda F.J., Hardwick J.M. Genome-wide consequences of deleting any single gene. Mol. Cell. 2013, 52:485-494.
-
(2013)
Mol. Cell.
, vol.52
, pp. 485-494
-
-
Teng, X.1
Dayhoff-Brannigan, M.2
Cheng, W.C.3
Gilbert, C.E.4
Sing, C.N.5
Diny, N.L.6
Wheelan, S.J.7
Dunham, M.J.8
Boeke, J.D.9
Pineda, F.J.10
Hardwick, J.M.11
-
64
-
-
84879650163
-
Saccharomyces cerevisiae DNA ligase IV supports imprecise end joining independently of its catalytic activity
-
Chiruvella K.K., Liang Z., Birkeland S.R., Basrur V., Wilson T.E. Saccharomyces cerevisiae DNA ligase IV supports imprecise end joining independently of its catalytic activity. PLoS Genet. 2013, 9:e1003599.
-
(2013)
PLoS Genet.
, vol.9
-
-
Chiruvella, K.K.1
Liang, Z.2
Birkeland, S.R.3
Basrur, V.4
Wilson, T.E.5
-
65
-
-
66149148362
-
Ionizing radiation induces microhomology-mediated end joining in trans in yeast and mammalian cells
-
Scuric Z., Chan C.Y., Hafer K., Schiestl R.H. Ionizing radiation induces microhomology-mediated end joining in trans in yeast and mammalian cells. Radiat. Res. 2009, 171:454-463.
-
(2009)
Radiat. Res.
, vol.171
, pp. 454-463
-
-
Scuric, Z.1
Chan, C.Y.2
Hafer, K.3
Schiestl, R.H.4
-
66
-
-
84887406519
-
Regulation of the DNA damage response by cyclin-dependent kinases
-
Trovesi C., Manfrini N., Falcettoni M., Longhese M.P. Regulation of the DNA damage response by cyclin-dependent kinases. J. Mol. Biol. 2013, 425:4756-4766.
-
(2013)
J. Mol. Biol.
, vol.425
, pp. 4756-4766
-
-
Trovesi, C.1
Manfrini, N.2
Falcettoni, M.3
Longhese, M.P.4
-
67
-
-
51949118680
-
Checkpoint-dependent phosphorylation of Exo1 modulates the DNA damage response
-
Morin I., Ngo H.P., Greenall A., Zubko M.K., Morrice N., Lydall D. Checkpoint-dependent phosphorylation of Exo1 modulates the DNA damage response. EMBO J. 2008, 27:2400-2410.
-
(2008)
EMBO J.
, vol.27
, pp. 2400-2410
-
-
Morin, I.1
Ngo, H.P.2
Greenall, A.3
Zubko, M.K.4
Morrice, N.5
Lydall, D.6
-
68
-
-
84910024542
-
Quantitation of DNA double-strand break resection intermediates in human cells
-
Zhou Y., Caron P., Legube G., Paull T.T. Quantitation of DNA double-strand break resection intermediates in human cells. Nucleic Acids Res. 2013.
-
(2013)
Nucleic Acids Res.
-
-
Zhou, Y.1
Caron, P.2
Legube, G.3
Paull, T.T.4
-
69
-
-
33746225419
-
Budding yeast Sae2 is an in vivo target of the mec1 and tel1 checkpoint kinases during meiosis
-
Cartagena-Lirola H., Guerini I., Viscardi V., Lucchini G., Longhese M.P. Budding yeast Sae2 is an in vivo target of the mec1 and tel1 checkpoint kinases during meiosis. Cell Cycle 2006, 5:1549-1559.
-
(2006)
Cell Cycle
, vol.5
, pp. 1549-1559
-
-
Cartagena-Lirola, H.1
Guerini, I.2
Viscardi, V.3
Lucchini, G.4
Longhese, M.P.5
-
70
-
-
84859394323
-
The response to and repair of RAG-mediated DNA double-strand breaks
-
Helmink B.A., Sleckman B.P. The response to and repair of RAG-mediated DNA double-strand breaks. Annu. Rev. Immunol. 2012, 30:175-202.
-
(2012)
Annu. Rev. Immunol.
, vol.30
, pp. 175-202
-
-
Helmink, B.A.1
Sleckman, B.P.2
-
71
-
-
77950955761
-
Origin of chromosomal translocations in lymphoid cancer
-
Nussenzweig A., Nussenzweig M.C. Origin of chromosomal translocations in lymphoid cancer. Cell 2010, 141:27-38.
-
(2010)
Cell
, vol.141
, pp. 27-38
-
-
Nussenzweig, A.1
Nussenzweig, M.C.2
-
72
-
-
0035917489
-
Artemis a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency
-
Moshous D., Callebaut I.R., Chasseval d., Corneo B., Cavazzana-Calvo M., Diest F.L., Tezcan I., Sanal O., Bertrand Y., Philippe N., Fischer A.J.P., Villartay d. Artemis a novel DNA double-strand break repair/V(D)J recombination protein, is mutated in human severe combined immune deficiency. Cell 2001, 105:177-186.
-
(2001)
Cell
, vol.105
, pp. 177-186
-
-
Moshous, D.1
Callebaut, I.R.2
Chasseval, D.3
Corneo, B.4
Cavazzana-Calvo, M.5
Diest, F.L.6
Tezcan, I.7
Sanal, O.8
Bertrand, Y.9
Philippe, N.10
Fischer, A.J.P.11
Villartay, D.12
-
73
-
-
31044432090
-
XLF interacts with the XRCC4-DNA ligase IV complex to promote nonhomologous end-joining
-
Ahnesorg P., Smith P., Jackson S.P. XLF interacts with the XRCC4-DNA ligase IV complex to promote nonhomologous end-joining. Cell 2006, 124:301-313.
-
(2006)
Cell
, vol.124
, pp. 301-313
-
-
Ahnesorg, P.1
Smith, P.2
Jackson, S.P.3
-
74
-
-
33749821755
-
The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates
-
Ahel I., Rass U., El-Khamisy S.F., Katyal S., Clements P.M., McKinnon P.J., Caldecott K.W., West S.C. The neurodegenerative disease protein aprataxin resolves abortive DNA ligation intermediates. Nature 2006, 443:713-716.
-
(2006)
Nature
, vol.443
, pp. 713-716
-
-
Ahel, I.1
Rass, U.2
El-Khamisy, S.F.3
Katyal, S.4
Clements, P.M.5
McKinnon, P.J.6
Caldecott, K.W.7
West, S.C.8
|