-
1
-
-
76749083490
-
Lymphangiogenesis: Molecular mechanisms and future promise
-
Tammela T, Alitalo K. Lymphangiogenesis: Molecular mechanisms and future promise. Cell. 2010; 140(4):460-476.
-
(2010)
Cell
, vol.140
, Issue.4
, pp. 460-476
-
-
Tammela, T.1
Alitalo, K.2
-
2
-
-
84875981816
-
Getting out and about: The emergence and morphogenesis of the vertebrate lymphatic vasculature
-
Koltowska K, Betterman KL, Harvey NL, Hogan BM. Getting out and about: the emergence and morphogenesis of the vertebrate lymphatic vasculature. Development. 2013;140(9):1857-1870.
-
(2013)
Development
, vol.140
, Issue.9
, pp. 1857-1870
-
-
Koltowska, K.1
Betterman, K.L.2
Harvey, N.L.3
Hogan, B.M.4
-
3
-
-
9144236286
-
Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins
-
Karkkainen MJ, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol. 2004;5(1):74-80.
-
(2004)
Nat Immunol
, vol.5
, Issue.1
, pp. 74-80
-
-
Karkkainen, M.J.1
-
4
-
-
77956504969
-
Inside bloody lymphatics
-
D'Amico G, Alitalo K. Inside bloody lymphatics. Blood. 2010;116(4):512-513.
-
(2010)
Blood
, vol.116
, Issue.4
, pp. 512-513
-
-
D'amico, G.1
Alitalo, K.2
-
5
-
-
79958241544
-
Lymphatic vascular morphogenesis in development, physiology, and disease
-
Schulte-Merker S, Sabine A, Petrova TV. Lymphatic vascular morphogenesis in development, physiology, and disease. J Cell Biol. 2011;193(4):607-618.
-
(2011)
J Cell Biol
, vol.193
, Issue.4
, pp. 607-618
-
-
Schulte-Merker, S.1
Sabine, A.2
Petrova, T.V.3
-
6
-
-
0030973506
-
Hyperplasia of lymphatic vessels in VEGF-C transgenic mice
-
Jeltsch M, et al. Hyperplasia of lymphatic vessels in VEGF-C transgenic mice. Science. 1997; 276(5317):1423-1425.
-
(1997)
Science
, vol.276
, Issue.5317
, pp. 1423-1425
-
-
Jeltsch, M.1
-
7
-
-
0030026897
-
A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases
-
Joukov V, et al. A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J. 1996;15(7):1751-298.
-
(1996)
EMBO J
, vol.15
, Issue.7
, pp. 1751-298
-
-
Joukov, V.1
-
8
-
-
0028938746
-
Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development
-
Kaipainen A, et al. Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development. Proc Natl Acad Sci U S A. 1995;92(8):3566-3570.
-
(1995)
Proc Natl Acad Sci U S A
, vol.92
, Issue.8
, pp. 3566-3570
-
-
Kaipainen, A.1
-
9
-
-
84875217017
-
A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy
-
Hägerling R, et al. A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy. EMBO J. 2013;32(5):629-644.
-
(2013)
EMBO J
, vol.32
, Issue.5
, pp. 629-644
-
-
Hägerling, R.1
-
10
-
-
0035122695
-
Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3
-
Mäkinen T, et al. Inhibition of lymphangiogenesis with resulting lymphedema in transgenic mice expressing soluble VEGF receptor-3. Nat Med. 2001; 7(2):199-205.
-
(2001)
Nat Med
, vol.7
, Issue.2
, pp. 199-205
-
-
Mäkinen, T.1
-
11
-
-
69949160832
-
Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth
-
Albuquerque RJC, et al. Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat Med. 2009;15(9):1023-1030.
-
(2009)
Nat Med
, vol.15
, Issue.9
, pp. 1023-1030
-
-
Albuquerque, R.J.C.1
-
12
-
-
84880996710
-
Soluble vascular endothelial growth factor receptor 3 is essential for corneal alymphaticity
-
Singh N, et al. Soluble vascular endothelial growth factor receptor 3 is essential for corneal alymphaticity. Blood. 2013;121(20):4242-4249.
-
(2013)
Blood
, vol.121
, Issue.20
, pp. 4242-4249
-
-
Singh, N.1
-
13
-
-
77953896432
-
Cell signaling by receptor tyrosine kinases
-
Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell. 2010;141(7):1117-1134.
-
(2010)
Cell
, vol.141
, Issue.7
, pp. 1117-1134
-
-
Lemmon, M.A.1
Schlessinger, J.2
-
14
-
-
70849112486
-
Cell Signaling in space and time: Where proteins come together and when they're apart
-
Scott JD, Pawson T. Cell Signaling in space and time: where proteins come together and when they're apart. Science. 2009;326(5957):1220-1224.
-
(2009)
Science
, vol.326
, Issue.5957
, pp. 1220-1224
-
-
Scott, J.D.1
Pawson, T.2
-
15
-
-
0242624291
-
Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3
-
Mäkinen T, et al. Isolated lymphatic endothelial cells transduce growth, survival and migratory signals via the VEGF-C/D receptor VEGFR-3. EMBO J. 2001;20(17):4762-4773.
-
(2001)
EMBO J
, vol.20
, Issue.17
, pp. 4762-4773
-
-
Mäkinen, T.1
-
16
-
-
84862637350
-
Vascular endothelial growth factor receptor-3 directly interacts with phosphatidylinositol 3-kinase to regulate lymphangiogenesis
-
Coso S, Zeng Y, Opeskin K, Williams ED. Vascular endothelial growth factor receptor-3 directly interacts with phosphatidylinositol 3-kinase to regulate lymphangiogenesis. PLoS One. 2012;7(6):e39558.
-
(2012)
PLoS One
, vol.7
, Issue.6
-
-
Coso, S.1
Zeng, Y.2
Opeskin, K.3
Williams, E.D.4
-
17
-
-
78649992510
-
Effective suppression of vascular network formation by combination of antibodies blocking VEGFR ligand binding and receptor dimerization
-
Tvorogov D, et al. Effective suppression of vascular network formation by combination of antibodies blocking VEGFR ligand binding and receptor dimerization. Cancer Cell. 2010;18(6):630-640.
-
(2010)
Cancer Cell
, vol.18
, Issue.6
, pp. 630-640
-
-
Tvorogov, D.1
-
18
-
-
70349306570
-
Organ-specific lymphangiectasia, arrested lymphatic sprouting, and maturation defects resulting from gene-targeting of the PI3K regulatory isoforms p85α, p55α, and p50α
-
Mouta-Bellum C, et al. Organ-specific lymphangiectasia, arrested lymphatic sprouting, and maturation defects resulting from gene-targeting of the PI3K regulatory isoforms p85α, p55α, and p50α. Dev Dyn. 2009;238(10):2670-2679.
-
(2009)
Dev Dyn
, vol.238
, Issue.10
, pp. 2670-2679
-
-
Mouta-Bellum, C.1
-
19
-
-
34249026448
-
Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice
-
Gupta S, et al. Binding of ras to phosphoinositide 3-kinase p110alpha is required for ras-driven tumorigenesis in mice. Cell. 2007;129(5):957-968.
-
(2007)
Cell
, vol.129
, Issue.5
, pp. 957-968
-
-
Gupta, S.1
-
20
-
-
70450193250
-
Regulation of lymphatic-blood vessel separation by endothelial Rac1
-
D'Amico G, et al. Regulation of lymphatic-blood vessel separation by endothelial Rac1. Development. 2009;136(23):4043-4053.
-
(2009)
Development
, vol.136
, Issue.23
, pp. 4043-4053
-
-
D'amico, G.1
-
21
-
-
17044458971
-
Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites
-
Dixelius J, et al. Ligand-induced vascular endothelial growth factor receptor-3 (VEGFR-3) heterodimerization with VEGFR-2 in primary lymphatic endothelial cells regulates tyrosine phosphorylation sites. J Biol Chem. 2003;278(42):40973-40979.
-
(2003)
J Biol Chem
, vol.278
, Issue.42
, pp. 40973-40979
-
-
Dixelius, J.1
-
22
-
-
0034041161
-
Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema
-
Karkkainen MJ, et al. Missense mutations interfere with VEGFR-3 signalling in primary lymphoedema. Nat Genet. 2000;25(2):153-159.
-
(2000)
Nat Genet
, vol.25
, Issue.2
, pp. 153-159
-
-
Karkkainen, M.J.1
-
23
-
-
84871611836
-
FLT4/ VEGFR3and Milroy disease: Novel mutations, a review of published variants and database update
-
Gordon K, et al. FLT4/ VEGFR3and Milroy disease: novel mutations, a review of published variants and database update. Hum Mutat. 2012;34(1):23-31.
-
(2012)
Hum Mutat
, vol.34
, Issue.1
, pp. 23-31
-
-
Gordon, K.1
-
24
-
-
67449132621
-
Recessive primary congenital lymphoedema caused by a VEGFR3 mutation
-
Ghalamkarpour A, et al. Recessive primary congenital lymphoedema caused by a VEGFR3 mutation. J Med Genet. 2009;46(6):399-404.
-
(2009)
J Med Genet
, vol.46
, Issue.6
, pp. 399-404
-
-
Ghalamkarpour, A.1
-
25
-
-
33748325955
-
Hereditary lymphedema type i associated with VEGFR3 mutation: The first de novo case and atypical presentations
-
Ghalamkarpour A, et al. Hereditary lymphedema type I associated with VEGFR3 mutation: the first de novo case and atypical presentations. Clin Genet. 2006;70(4):330-335.
-
(2006)
Clin Genet
, vol.70
, Issue.4
, pp. 330-335
-
-
Ghalamkarpour, A.1
-
26
-
-
84875209848
-
Mutation in vascular endothelial growth factor-C, a ligand for vascular endothelial growth factor receptor-3, is associated with autosomal dominant milroy-like primary lymphedema
-
Gordon K, et al. Mutation in vascular endothelial growth factor-C, a ligand for vascular endothelial growth factor receptor-3, is associated with autosomal dominant milroy-like primary lymphedema. Circ Res. 2013;112(6):956-960.
-
(2013)
Circ Res
, vol.112
, Issue.6
, pp. 956-960
-
-
Gordon, K.1
-
27
-
-
34250370123
-
Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting
-
Wirzenius M, et al. Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting. J Exp Med. 2007; 204(6):1431-1440.
-
(2007)
J Exp Med
, vol.204
, Issue.6
, pp. 1431-1440
-
-
Wirzenius, M.1
-
28
-
-
27144524895
-
Vascular endothelial growth factor - A promotes peritumoral lymphangiogenesis and lymphatic metastasis
-
Bjorndahl MA, et al. Vascular endothelial growth factor-a promotes peritumoral lymphangiogenesis and lymphatic metastasis. Cancer Res. 2005; 65(20):9261-9268.
-
(2005)
Cancer Res
, vol.65
, Issue.20
, pp. 9261-9268
-
-
Bjorndahl, M.A.1
-
29
-
-
17144402207
-
VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis
-
Hirakawa S, et al. VEGF-A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med. 2005; 201(7):1089-1099.
-
(2005)
J Exp Med
, vol.201
, Issue.7
, pp. 1089-1099
-
-
Hirakawa, S.1
-
30
-
-
11144355004
-
VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment
-
Cursiefen C, et al. VEGF-A stimulates lymphangiogenesis and hemangiogenesis in inflammatory neovascularization via macrophage recruitment. J Clin Invest. 2004;113(7):1040-1050.
-
(2004)
J Clin Invest
, vol.113
, Issue.7
, pp. 1040-1050
-
-
Cursiefen, C.1
-
31
-
-
54749092522
-
Flt-1 signaling in macrophages promotes glioma growth in vivo
-
Kerber M, et al. Flt-1 signaling in macrophages promotes glioma growth in vivo. Cancer Res. 2008; 68(18):7342-7351.
-
(2008)
Cancer Res
, vol.68
, Issue.18
, pp. 7342-7351
-
-
Kerber, M.1
-
32
-
-
42249088751
-
VEGFR1 tyrosine kinase signaling promotes lymphangiogenesis as well as angiogenesis indirectly via macrophage recruitment
-
Murakami M, et al. VEGFR1 tyrosine kinase signaling promotes lymphangiogenesis as well as angiogenesis indirectly via macrophage recruitment. Arterioscler Thromb Vasc Biol. 2008;28(4):658-664.
-
(2008)
Arterioscler Thromb Vasc Biol
, vol.28
, Issue.4
, pp. 658-664
-
-
Murakami, M.1
-
33
-
-
78751693016
-
Blood vessel endothelial VEGFR-2 delays lymphangiogenesis: An endogenous trapping mechanism links lymph-and angiogenesis
-
Nakao S, et al. Blood vessel endothelial VEGFR-2 delays lymphangiogenesis: an endogenous trapping mechanism links lymph-and angiogenesis. Blood. 2011;117(3):1081-1090.
-
(2011)
Blood
, vol.117
, Issue.3
, pp. 1081-1090
-
-
Nakao, S.1
-
34
-
-
42349095246
-
VEGF-C induced angiogenesis preferentially occurs at a distance from lymphangiogenesis
-
Benest AV, Harper SJ, Herttuala SY, Alitalo K, Bates DO. VEGF-C induced angiogenesis preferentially occurs at a distance from lymphangiogenesis. Cardiovasc Res. 2008;78(2):315-323.
-
(2008)
Cardiovasc Res
, vol.78
, Issue.2
, pp. 315-323
-
-
Benest, A.V.1
Harper, S.J.2
Herttuala, S.Y.3
Alitalo, K.4
Bates, D.O.5
-
35
-
-
84896002041
-
Vascular endothelial growth factor receptor-2 promotes the development of the lymphatic vasculature
-
Dellinger MT, Meadows SM, Wynne K, Cleaver O, Brekken RA. Vascular endothelial growth factor receptor-2 promotes the development of the lymphatic vasculature. PLoS One. 2013;8(9):e74686.
-
(2013)
PLoS One
, vol.8
, Issue.9
-
-
Dellinger, M.T.1
Meadows, S.M.2
Wynne, K.3
Cleaver, O.4
Brekken, R.A.5
-
36
-
-
79960988887
-
Notch restricts lymphatic vessel sprouting induced by vascular endothelial growth factor
-
Zheng W, et al. Notch restricts lymphatic vessel sprouting induced by vascular endothelial growth factor. Blood. 2011;118(4):1154-1162.
-
(2011)
Blood
, vol.118
, Issue.4
, pp. 1154-1162
-
-
Zheng, W.1
-
37
-
-
63449128207
-
Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting
-
Hogan BM, et al. Ccbe1 is required for embryonic lymphangiogenesis and venous sprouting. Nat Genet. 2009;41(4):396-398.
-
(2009)
Nat Genet
, vol.41
, Issue.4
, pp. 396-398
-
-
Hogan, B.M.1
-
38
-
-
80052161700
-
CCBE1 is essential for mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo
-
Bos FL, et al. CCBE1 is essential for mammalian lymphatic vascular development and enhances the lymphangiogenic effect of vascular endothelial growth factor-C in vivo. Circ Res. 2011;109(5):486-491.
-
(2011)
Circ Res
, vol.109
, Issue.5
, pp. 486-491
-
-
Bos, F.L.1
-
39
-
-
70649091987
-
Mutations in CCBE1 cause generalized lymph vessel dysplasia in humans
-
Alders M, et al. Mutations in CCBE1 cause generalized lymph vessel dysplasia in humans. Nat Genet. 2009;41(12):1272-1274.
-
(2009)
Nat Genet
, vol.41
, Issue.12
, pp. 1272-1274
-
-
Alders, M.1
-
40
-
-
84860821068
-
Semaphorin signals tweaking the tumor microenvironment
-
Muratori C, Tamagnone L. Semaphorin signals tweaking the tumor microenvironment. Adv Cancer Res. 2012;114:59-85.
-
(2012)
Adv Cancer Res
, vol.114
, pp. 59-85
-
-
Muratori, C.1
Tamagnone, L.2
-
41
-
-
84855486320
-
Semaphorin signaling in angiogenesis, lymphangiogenesis and cancer
-
Sakurai A, Doci C, Gutkind JS. Semaphorin signaling in angiogenesis, lymphangiogenesis and cancer. Cell Res. 2011;22(1):23-32.
-
(2011)
Cell Res
, vol.22
, Issue.1
, pp. 23-32
-
-
Sakurai, A.1
Doci, C.2
Gutkind, J.S.3
-
42
-
-
0034756449
-
Differential expression of neuropilin-1 and neuropilin-2 in arteries and veins
-
Herzog Y, Kalcheim C, Kahane N, Reshef R, Neufeld G. Differential expression of neuropilin-1 and neuropilin-2 in arteries and veins. Mech Dev. 2001; 109(1):115-119.
-
(2001)
Mech Dev
, vol.109
, Issue.1
, pp. 115-119
-
-
Herzog, Y.1
Kalcheim, C.2
Kahane, N.3
Reshef, R.4
Neufeld, G.5
-
43
-
-
0035940403
-
A model for gene therapy of human hereditary lymphedema
-
Karkkainen MJ, et al. A model for gene therapy of human hereditary lymphedema. Proc Natl Acad Sci U S A. 2001;98(22):12677-12682.
-
(2001)
Proc Natl Acad Sci U S A
, vol.98
, Issue.22
, pp. 12677-12682
-
-
Karkkainen, M.J.1
-
44
-
-
0036803751
-
Abnormal lymphatic vessel development in neuropilin 2 mutant mice
-
Yuan L, et al. Abnormal lymphatic vessel development in neuropilin 2 mutant mice. Development. 2002;129(20):4797-4806.
-
(2002)
Development
, vol.129
, Issue.20
, pp. 4797-4806
-
-
Yuan, L.1
-
45
-
-
33746503288
-
Functional interaction of VEGFC and VEGF-D with neuropilin receptors
-
Karpanen T, et al. Functional interaction of VEGFC and VEGF-D with neuropilin receptors. FASEB J. 2006;20(9):1462-1472.
-
(2006)
FASEB J
, vol.20
, Issue.9
, pp. 1462-1472
-
-
Karpanen, T.1
-
46
-
-
41249088330
-
Blocking neuropilin-2 function inhibits tumor cell metastasis
-
Caunt M, et al. Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell. 2008;13(4):331-342.
-
(2008)
Cancer Cell
, vol.13
, Issue.4
, pp. 331-342
-
-
Caunt, M.1
-
47
-
-
75749124699
-
Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3
-
Xu Y, et al. Neuropilin-2 mediates VEGF-C-induced lymphatic sprouting together with VEGFR3. J Cell Biol. 2010;188(1):115-130.
-
(2010)
J Cell Biol
, vol.188
, Issue.1
, pp. 115-130
-
-
Xu, Y.1
-
48
-
-
84864874616
-
An unexpected role of semaphorin3a-neuropilin-1 signaling in lymphatic vessel maturation and valve formation
-
Jurisic G, et al. An unexpected role of semaphorin3a-neuropilin-1 signaling in lymphatic vessel maturation and valve formation. Circ Res. 2012; 111(4):426-436.
-
(2012)
Circ Res
, vol.111
, Issue.4
, pp. 426-436
-
-
Jurisic, G.1
-
49
-
-
84864883683
-
Semaphorin3A, Neuropilin-1, and PlexinA1 are required for lymphatic valve formation
-
Bouvrée K, et al. Semaphorin3A, Neuropilin-1, and PlexinA1 are required for lymphatic valve formation. Circ Res. 2012;111(4):437-445.
-
(2012)
Circ Res
, vol.111
, Issue.4
, pp. 437-445
-
-
Bouvrée, K.1
-
50
-
-
60749096085
-
Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system
-
Augustin HG, Koh GY, Thurston G, Alitalo K. Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol. 2009;10(3):165-177.
-
(2009)
Nat Rev Mol Cell Biol
, vol.10
, Issue.3
, pp. 165-177
-
-
Augustin, H.G.1
Koh, G.Y.2
Thurston, G.3
Alitalo, K.4
-
51
-
-
20444389049
-
Angiopoietin-1 promotes lymphatic sprouting and hyperplasia
-
Tammela T, et al. Angiopoietin-1 promotes lymphatic sprouting and hyperplasia. Blood. 2005; 105(12):4642-4648.
-
(2005)
Blood
, vol.105
, Issue.12
, pp. 4642-4648
-
-
Tammela, T.1
-
52
-
-
20444414142
-
Angiopoietin-1 promotes LYVE-1-positive lymphatic vessel formation
-
Morisada T, et al. Angiopoietin-1 promotes LYVE-1-positive lymphatic vessel formation. Blood. 2005; 105(12):4649-4656.
-
(2005)
Blood
, vol.105
, Issue.12
, pp. 4649-4656
-
-
Morisada, T.1
-
53
-
-
33847036675
-
In vivo actions of angiopoietins on quiescent and remodeling blood and lymphatic vessels in mouse airways and skin
-
Kim KE, et al. In vivo actions of angiopoietins on quiescent and remodeling blood and lymphatic vessels in mouse airways and skin. Arterioscler Thromb Vasc Biol. 2007;27(3):564-570.
-
(2007)
Arterioscler Thromb Vasc Biol
, vol.27
, Issue.3
, pp. 564-570
-
-
Kim, K.E.1
-
54
-
-
33750349223
-
Angiopoietin-2 functions as an autocrine protective factor in stressed endothelial cells
-
Daly C, et al. Angiopoietin-2 functions as an autocrine protective factor in stressed endothelial cells. Proc Natl Acad Sci U S A. 2006;103(42):15491- 15496.
-
(2006)
Proc Natl Acad Sci U S A
, vol.103
, Issue.42
, pp. 15491-15496
-
-
Daly, C.1
-
55
-
-
18644382318
-
Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1
-
Gale NW, et al. Angiopoietin-2 is required for postnatal angiogenesis and lymphatic patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell. 2002;3(3):411-423.
-
(2002)
Dev Cell
, vol.3
, Issue.3
, pp. 411-423
-
-
Gale, N.W.1
-
56
-
-
46049111407
-
Defective remodeling and maturation of the lymphatic vasculature in Angiopoietin-2 deficient mice
-
Dellinger M, et al. Defective remodeling and maturation of the lymphatic vasculature in Angiopoietin-2 deficient mice. Dev Biol. 2008;319(2):309-320.
-
(2008)
Dev Biol
, vol.319
, Issue.2
, pp. 309-320
-
-
Dellinger, M.1
-
57
-
-
84893859971
-
Tie1 deletion inhibits tumor growth and improves angiopoietin antagonist therapy
-
D'Amico G, et al. Tie1 deletion inhibits tumor growth and improves angiopoietin antagonist therapy. J Clin Invest. 2014;124(2):824-834.
-
(2014)
J Clin Invest
, vol.124
, Issue.2
, pp. 824-834
-
-
D'amico, G.1
-
58
-
-
32244436305
-
Angiopoietin-2 sensitizes endothelial cells to TNF-α and has a crucial role in the induction of inflammation
-
Fiedler U, et al. Angiopoietin-2 sensitizes endothelial cells to TNF-α and has a crucial role in the induction of inflammation. Nat Med. 2006; 12(2):235-239.
-
(2006)
Nat Med
, vol.12
, Issue.2
, pp. 235-239
-
-
Fiedler, U.1
-
59
-
-
78650191646
-
Angiopoietin-2-driven vascular remodeling in airway inflammation
-
Tabruyn SP, et al. Angiopoietin-2-driven vascular remodeling in airway inflammation. Am J Pathol. 2010;177(6):3233-3243.
-
(2010)
Am J Pathol
, vol.177
, Issue.6
, pp. 3233-3243
-
-
Tabruyn, S.P.1
-
60
-
-
77955914603
-
Netrin-4 induces lymphangiogenesis in vivo
-
Larrieu-Lahargue F, Welm AL, Thomas KR, Li DY. Netrin-4 induces lymphangiogenesis in vivo. Blood. 2010;115(26):5418-5426.
-
(2010)
Blood
, vol.115
, Issue.26
, pp. 5418-5426
-
-
Larrieu-Lahargue, F.1
Welm, A.L.2
Thomas, K.R.3
Li, D.Y.4
-
61
-
-
75149170979
-
Fibroblast growth factor signalling: From development to cancer
-
Turner N, Grose R. Fibroblast growth factor signalling: from development to cancer. Nat Rev Cancer. 2010;10(2):116-129.
-
(2010)
Nat Rev Cancer
, vol.10
, Issue.2
, pp. 116-129
-
-
Turner, N.1
Grose, R.2
-
62
-
-
84866856702
-
Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis
-
Cao R, et al. Collaborative interplay between FGF-2 and VEGF-C promotes lymphangiogenesis and metastasis. Proc Natl Acad Sci U S A. 2012; 109(39):15894-15899.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, Issue.39
, pp. 15894-15899
-
-
Cao, R.1
-
63
-
-
84863689885
-
In vitro assays using primary embryonic mouse lymphatic endothelial cells uncover key roles for FGFR1 signalling in lymphangiogenesis
-
Kazenwadel J, Secker GA, Betterman KL, Harvey NL. In vitro assays using primary embryonic mouse lymphatic endothelial cells uncover key roles for FGFR1 signalling in lymphangiogenesis. PLoS One. 2012;7(7):e40497.
-
(2012)
PLoS One
, vol.7
, Issue.7
-
-
Kazenwadel, J.1
Secker, G.A.2
Betterman, K.L.3
Harvey, N.L.4
-
64
-
-
0037172970
-
Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea
-
Kubo H, et al. Blockade of vascular endothelial growth factor receptor-3 signaling inhibits fibroblast growth factor-2-induced lymphangiogenesis in mouse cornea. Proc Natl Acad Sci U S A. 2002;99(13):8868-8873.
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, Issue.13
, pp. 8868-8873
-
-
Kubo, H.1
-
65
-
-
4143121247
-
Dose-dependent response of FGF-2 for lymphangiogenesis
-
Chang LK, et al. Dose-dependent response of FGF-2 for lymphangiogenesis. Proc Natl Acad Sci U S A. 2004;101(32):11658-11663.
-
(2004)
Proc Natl Acad Sci U S A
, vol.101
, Issue.32
, pp. 11658-11663
-
-
Chang, L.K.1
-
66
-
-
34447257690
-
Tumour-derived fibroblast growth factor-2 exerts lymphangiogenic effects through Akt/mTOR/ p70S6kinase pathway in rat lymphatic endothelial cells
-
Matsuo M, Yamada S, Koizumi K, Sakurai H, Saiki I. Tumour-derived fibroblast growth factor-2 exerts lymphangiogenic effects through Akt/mTOR/ p70S6kinase pathway in rat lymphatic endothelial cells. Eur J Cancer. 2007;43(11):1748-1754.
-
(2007)
Eur J Cancer
, vol.43
, Issue.11
, pp. 1748-1754
-
-
Matsuo, M.1
Yamada, S.2
Koizumi, K.3
Sakurai, H.4
Saiki, I.5
-
67
-
-
84874073075
-
Evidence for the interaction of fibroblast growth factor-2 with the lymphatic endothelial cell marker LYVE-1
-
Platonova N, et al. Evidence for the interaction of fibroblast growth factor-2 with the lymphatic endothelial cell marker LYVE-1. Blood. 2013; 121(7):1229-1237.
-
(2013)
Blood
, vol.121
, Issue.7
, pp. 1229-1237
-
-
Platonova, N.1
-
68
-
-
77952946424
-
Endothelial functions of sphingosine-1-phosphate
-
Lucke S, Levkau B. Endothelial functions of sphingosine-1-phosphate. Cell Physiol Biochem. 2010; 26(1):87-96.
-
(2010)
Cell Physiol Biochem
, vol.26
, Issue.1
, pp. 87-96
-
-
Lucke, S.1
Levkau, B.2
-
69
-
-
73349134982
-
Vascular integrity mediated by vascular endothelial cadherin and regulated by sphingosine 1-phosphate and angiopoietin-1
-
Mochizuki N. Vascular integrity mediated by vascular endothelial cadherin and regulated by sphingosine 1-phosphate and angiopoietin-1. Circ J. 2009;73(12):2183-2191.
-
(2009)
Circ J
, vol.73
, Issue.12
, pp. 2183-2191
-
-
Mochizuki, N.1
-
70
-
-
51649099579
-
Sphingosine-1-phosphate promotes lymphangiogenesis by stimulating S1P1/ Gi/PLC/Ca2+ signaling pathways
-
Yoon CM, et al. Sphingosine-1-phosphate promotes lymphangiogenesis by stimulating S1P1/ Gi/PLC/Ca2+ signaling pathways. Blood. 2008; 112(4):1129-1138.
-
(2008)
Blood
, vol.112
, Issue.4
, pp. 1129-1138
-
-
Yoon, C.M.1
-
71
-
-
84863057277
-
Sphingosine-1-phosphate produced by sphingosine kinase 1 promotes breast cancer progression by stimulating angiogenesis and lymphangiogenesis
-
Nagahashi M, et al. Sphingosine-1-phosphate produced by sphingosine kinase 1 promotes breast cancer progression by stimulating angiogenesis and lymphangiogenesis. Cancer Res. 2012;72(3):726-735.
-
(2012)
Cancer Res
, vol.72
, Issue.3
, pp. 726-735
-
-
Nagahashi, M.1
-
72
-
-
61549130907
-
Angiopoietin-2 exocytosis is stimulated by sphingosine-1-phosphate in human blood and lymphatic endothelial cells
-
Jang C, et al. Angiopoietin-2 exocytosis is stimulated by sphingosine-1-phosphate in human blood and lymphatic endothelial cells. Arterioscler Thromb Vasc Biol. 2009;29(3):401-407.
-
(2009)
Arterioscler Thromb Vasc Biol
, vol.29
, Issue.3
, pp. 401-407
-
-
Jang, C.1
-
73
-
-
76149126108
-
Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning
-
Pham THM, et al. Lymphatic endothelial cell sphingosine kinase activity is required for lymphocyte egress and lymphatic patterning. J Exp Med. 2010; 207(1):17-27.
-
(2010)
J Exp Med
, vol.207
, Issue.1
, pp. 17-27
-
-
Pham, T.H.M.1
-
74
-
-
77949898210
-
ALK1 signaling regulates early postnatal lymphatic vessel development
-
Niessen K, Zhang G, Ridgway JB, Chen H, Yan M. ALK1 signaling regulates early postnatal lymphatic vessel development. Blood. 2010;115(8):1654-1661.
-
(2010)
Blood
, vol.115
, Issue.8
, pp. 1654-1661
-
-
Niessen, K.1
Zhang, G.2
Ridgway, J.B.3
Chen, H.4
Yan, M.5
-
75
-
-
84886901002
-
Bone morphogenetic protein 9 (BMP9) controls lymphatic vessel maturation and valve formation
-
Levet S, et al. Bone morphogenetic protein 9 (BMP9) controls lymphatic vessel maturation and valve formation. Blood. 2013;122(4):598-607.
-
(2013)
Blood
, vol.122
, Issue.4
, pp. 598-607
-
-
Levet, S.1
-
77
-
-
84877143362
-
Notch as a hub for signaling in angiogenesis
-
Benedito R, Hellström M. Notch as a hub for signaling in angiogenesis. Exp Cell Res. 2013; 319(9):1281-1288.
-
(2013)
Exp Cell Res
, vol.319
, Issue.9
, pp. 1281-1288
-
-
Benedito, R.1
Hellström, M.2
-
78
-
-
36048978608
-
Notch alters VEGF responsiveness in human and murine endothelial cells by direct regulation of VEGFR-3 expression
-
Shawber CJ, et al. Notch alters VEGF responsiveness in human and murine endothelial cells by direct regulation of VEGFR-3 expression. J Clin Invest. 2007;117(11):3369-3382.
-
(2007)
J Clin Invest
, vol.117
, Issue.11
, pp. 3369-3382
-
-
Shawber, C.J.1
-
79
-
-
77955982948
-
Role of delta-like-4/Notch in the formation and wiring of the lymphatic network in zebrafish
-
Geudens I, et al. Role of delta-like-4/Notch in the formation and wiring of the lymphatic network in zebrafish. Arterioscler Thromb Vasc Biol. 2010; 30(9):1695-1702.
-
(2010)
Arterioscler Thromb Vasc Biol
, vol.30
, Issue.9
, pp. 1695-1702
-
-
Geudens, I.1
-
80
-
-
84877727181
-
Notch1 functions as a negative regulator of lymphatic endothelial cell differentiation in the venous endothelium
-
Murtomäki A, et al. Notch1 functions as a negative regulator of lymphatic endothelial cell differentiation in the venous endothelium. Development. 2013;140(11):2365-2376.
-
(2013)
Development
, vol.140
, Issue.11
, pp. 2365-2376
-
-
Murtomäki, A.1
-
81
-
-
13244292521
-
PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature
-
Mäkinen T, et al. PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev. 2005;19(3):397-410.
-
(2005)
Genes Dev
, vol.19
, Issue.3
, pp. 397-410
-
-
Mäkinen, T.1
-
82
-
-
77953029002
-
Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis
-
Wang Y, et al. Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis. Nature. 2010;465(7297):483-486.
-
(2010)
Nature
, vol.465
, Issue.7297
, pp. 483-486
-
-
Wang, Y.1
-
83
-
-
47149083462
-
Inhibition of endogenous TGF-β signaling enhances lymphangiogenesis
-
Oka M, et al. Inhibition of endogenous TGF-β signaling enhances lymphangiogenesis. Blood. 2008; 111(9):4571-4579.
-
(2008)
Blood
, vol.111
, Issue.9
, pp. 4571-4579
-
-
Oka, M.1
-
84
-
-
57049158279
-
TGF-beta1 is a negative regulator of lymphatic regeneration during wound repair
-
Clavin NW, et al. TGF-beta1 is a negative regulator of lymphatic regeneration during wound repair. Am J Physiol Heart Circ Physiol. 2008;295(5):H2113-H2127.
-
(2008)
Am J Physiol Heart Circ Physiol
, vol.295
, Issue.5
-
-
Clavin, N.W.1
-
85
-
-
78650209976
-
Blockade of transforming growth factor-β1 accelerates lymphatic regeneration during wound repair
-
Avraham T, et al. Blockade of transforming growth factor-β1 accelerates lymphatic regeneration during wound repair. Am J Pathol. 2010;177(6):3202-3214.
-
(2010)
Am J Pathol
, vol.177
, Issue.6
, pp. 3202-3214
-
-
Avraham, T.1
-
86
-
-
78751688024
-
T lymphocytes negatively regulate lymph node lymphatic vessel formation
-
Kataru RP, et al. T lymphocytes negatively regulate lymph node lymphatic vessel formation. Immunity. 2011;34(1):96-107.
-
(2011)
Immunity
, vol.34
, Issue.1
, pp. 96-107
-
-
Kataru, R.P.1
-
87
-
-
37549044181
-
Endostatin overexpression inhibits lymphangiogenesis and lymph node metastasis in mice
-
Brideau G, et al. Endostatin overexpression inhibits lymphangiogenesis and lymph node metastasis in mice. Cancer Res. 2007;67(24):11528-11535.
-
(2007)
Cancer Res
, vol.67
, Issue.24
, pp. 11528-11535
-
-
Brideau, G.1
-
88
-
-
0242443253
-
Intrinsic versus microenvironmental regulation of lymphatic endothelial cell phenotype and function
-
Veikkola T, et al. Intrinsic versus microenvironmental regulation of lymphatic endothelial cell phenotype and function. FASEB J. 2003;17(14):2006- 2013.
-
(2003)
FASEB J
, vol.17
, Issue.14
, pp. 2006-2013
-
-
Veikkola, T.1
-
89
-
-
84892923730
-
Bone morphogenetic protein 2 signaling negatively modulates lymphatic development in vertebrate embryos
-
Dunworth WP, et al. Bone morphogenetic protein 2 signaling negatively modulates lymphatic development in vertebrate embryos. Circ Res. 2014; 114(1):56-66.
-
(2014)
Circ Res
, vol.114
, Issue.1
, pp. 56-66
-
-
Dunworth, W.P.1
-
90
-
-
84860008988
-
In vivo imaging of lymphatic vessels in development, wound healing, inflammation, and tumor metastasis
-
Martínez-Corral I, et al. In vivo imaging of lymphatic vessels in development, wound healing, inflammation, and tumor metastasis. Proc Natl Acad Sci U S A. 2012;109(16):6223-6228.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, Issue.16
, pp. 6223-6228
-
-
Martínez-Corral, I.1
-
91
-
-
81255188905
-
The lymphatic vasculature in disease
-
Alitalo K. The lymphatic vasculature in disease. Nat Med. 2011;17(11):1371-1380.
-
(2011)
Nat Med
, vol.17
, Issue.11
, pp. 1371-1380
-
-
Alitalo, K.1
-
92
-
-
84880456245
-
Inhibition of VEGF-C modulates distal lymphatic remodeling and secondary metastasis
-
Gogineni A, et al. Inhibition of VEGF-C modulates distal lymphatic remodeling and secondary metastasis. PLoS One. 2013;8(7):e68755.
-
(2013)
PLoS One
, vol.8
, Issue.7
-
-
Gogineni, A.1
-
93
-
-
84871910943
-
Dual suppression of hemangiogenesis and lymphangiogenesis by splice-shifting morpholinos targeting vascular endothelial growth factor receptor 2 (KDR)
-
Uehara H, et al. Dual suppression of hemangiogenesis and lymphangiogenesis by splice-shifting morpholinos targeting vascular endothelial growth factor receptor 2 (KDR). FASEB J. 2013;27(1):76-85.
-
(2013)
FASEB J
, vol.27
, Issue.1
, pp. 76-85
-
-
Uehara, H.1
-
94
-
-
84876714654
-
Novel anti(lymph)angiogenic treatment strategies for corneal and ocular surface diseases
-
Bock F, et al. Novel anti(lymph)angiogenic treatment strategies for corneal and ocular surface diseases. Prog Retin Eye Res. 2013;34:89-124.
-
(2013)
Prog Retin Eye Res
, vol.34
, pp. 89-124
-
-
Bock, F.1
-
95
-
-
77950224116
-
Targeting lymphatic vessel activation and CCL21 production by vascular endothelial growth factor receptor-3 inhibition has novel immunomodulatory and antiarteriosclerotic effects in cardiac allografts
-
Nykänen AI, et al. Targeting lymphatic vessel activation and CCL21 production by vascular endothelial growth factor receptor-3 inhibition has novel immunomodulatory and antiarteriosclerotic effects in cardiac allografts. Circulation. 2010; 121(12):1413-1422.
-
(2010)
Circulation
, vol.121
, Issue.12
, pp. 1413-1422
-
-
Nykänen, A.I.1
-
96
-
-
10744229023
-
Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates
-
Kerjaschki D, et al. Lymphatic neoangiogenesis in human kidney transplants is associated with immunologically active lymphocytic infiltrates. J Am Soc Nephrol. 2004;15(3):603-612.
-
(2004)
J Am Soc Nephrol
, vol.15
, Issue.3
, pp. 603-612
-
-
Kerjaschki, D.1
-
97
-
-
58249124355
-
Vascular endothelial growth factor-C and C-C chemokine receptor 7 in tumor cell-lymphatic cross-talk promote invasive phenotype
-
Issa A, Le TX, Shoushtari AN, Shields JD, Swartz MA. Vascular endothelial growth factor-C and C-C chemokine receptor 7 in tumor cell-lymphatic cross-talk promote invasive phenotype. Cancer Res. 2009;69(1):349-357.
-
(2009)
Cancer Res
, vol.69
, Issue.1
, pp. 349-357
-
-
Issa, A.1
Le, T.X.2
Shoushtari, A.N.3
Shields, J.D.4
Swartz, M.A.5
-
98
-
-
78650315639
-
CXCR4 signaling regulates metastasis of chemoresistant melanoma cells by a lymphatic metastatic niche
-
Kim M, et al. CXCR4 signaling regulates metastasis of chemoresistant melanoma cells by a lymphatic metastatic niche. Cancer Res. 2010; 70(24):10411-10421.
-
(2010)
Cancer Res
, vol.70
, Issue.24
, pp. 10411-10421
-
-
Kim, M.1
-
99
-
-
84873489315
-
Inhibition of lymphangiogenesis and angiogenesis in breast tumor xenografts and lymph nodes by a peptide derived from transmembrane protein 45A
-
Lee E, Koskimaki JE, Pandey NB, Popel AS. Inhibition of lymphangiogenesis and angiogenesis in breast tumor xenografts and lymph nodes by a peptide derived from transmembrane protein 45A. Neoplasia. 2013;15(2):112-124.
-
(2013)
Neoplasia
, vol.15
, Issue.2
, pp. 112-124
-
-
Lee, E.1
Koskimaki, J.E.2
Pandey, N.B.3
Popel, A.S.4
-
100
-
-
84861083859
-
Blocking ephrinB2 with highly specific antibodies inhibits angiogenesis, lymphangiogenesis, and tumor growth
-
Abéngozar MA, et al. Blocking ephrinB2 with highly specific antibodies inhibits angiogenesis, lymphangiogenesis, and tumor growth. Blood. 2012;119(19):4565-4576.
-
(2012)
Blood
, vol.119
, Issue.19
, pp. 4565-4576
-
-
Abéngozar, M.A.1
-
101
-
-
79953750307
-
Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells
-
Mazzieri R, et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell. 2011;19(4):512-526.
-
(2011)
Cancer Cell
, vol.19
, Issue.4
, pp. 512-526
-
-
Mazzieri, R.1
-
102
-
-
84859488747
-
MEDI3617, a human antiangiopoietin 2 monoclonal antibody, inhibits angiogenesis and tumor growth in human tumor xenograft models
-
Leow CC, et al. MEDI3617, a human antiangiopoietin 2 monoclonal antibody, inhibits angiogenesis and tumor growth in human tumor xenograft models. Int J Oncol. 2012;40(5):1321-1330.
-
(2012)
Int J Oncol
, vol.40
, Issue.5
, pp. 1321-1330
-
-
Leow, C.C.1
-
103
-
-
84859089030
-
Effects of Angiopoietin-2-blocking antibody on endothelial cell-cell junctions and lung metastasis
-
Holopainen T, et al. Effects of Angiopoietin-2-blocking antibody on endothelial cell-cell junctions and lung metastasis. J Natl Cancer Inst. 2012; 104(6):461-475.
-
(2012)
J Natl Cancer Inst
, vol.104
, Issue.6
, pp. 461-475
-
-
Holopainen, T.1
-
104
-
-
33845907380
-
Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis
-
Ridgway J, et al. Inhibition of Dll4 signalling inhibits tumour growth by deregulating angiogenesis. Nature. 2006;444(7122):1083-1087.
-
(2006)
Nature
, vol.444
, Issue.7122
, pp. 1083-1087
-
-
Ridgway, J.1
-
105
-
-
33845877157
-
Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis
-
Noguera-Troise I, et al. Blockade of Dll4 inhibits tumour growth by promoting non-productive angiogenesis. Nature. 2006;444(7122):1032-1037.
-
(2006)
Nature
, vol.444
, Issue.7122
, pp. 1032-1037
-
-
Noguera-Troise, I.1
-
106
-
-
84862703800
-
Blocking fibroblast growth factor receptor signaling inhibits tumor growth, lymphangiogenesis, and metastasis
-
Larrieu-Lahargue F, et al. Blocking fibroblast growth factor receptor signaling inhibits tumor growth, lymphangiogenesis, and metastasis. PLoS One. 2012;7(6):e39540.
-
(2012)
PLoS One
, vol.7
, Issue.6
-
-
Larrieu-Lahargue, F.1
-
107
-
-
34147121375
-
Rapamycin, a specific inhibitor of the mammalian target of rapamycin, suppresses lymphangiogenesis and lymphatic metastasis
-
Kobayashi S, et al. Rapamycin, a specific inhibitor of the mammalian target of rapamycin, suppresses lymphangiogenesis and lymphatic metastasis. Cancer Sci. 2007;98(5):726-733.
-
(2007)
Cancer Sci
, vol.98
, Issue.5
, pp. 726-733
-
-
Kobayashi, S.1
-
108
-
-
81155126038
-
Decreased lymphangiogenesis and lymph node metastasis by mTOR inhibition in head and neck cancer
-
Patel V, et al. Decreased lymphangiogenesis and lymph node metastasis by mTOR inhibition in head and neck cancer. Cancer Res. 2011;71(22):7103-7112.
-
(2011)
Cancer Res
, vol.71
, Issue.22
, pp. 7103-7112
-
-
Patel, V.1
-
109
-
-
70349658714
-
TNF-α drives remodeling of blood vessels and lymphatics in sustained airway inflammation in mice
-
Baluk P, et al. TNF-α drives remodeling of blood vessels and lymphatics in sustained airway inflammation in mice. J Clin Invest. 2009;119(10):2954-2964.
-
(2009)
J Clin Invest
, vol.119
, Issue.10
, pp. 2954-2964
-
-
Baluk, P.1
-
110
-
-
84875130753
-
Transgenic overexpression of interleukin-1β induces persistent lymphangiogenesis but not angiogenesis in mouse airways
-
Baluk P, et al. Transgenic overexpression of interleukin-1β induces persistent lymphangiogenesis but not angiogenesis in mouse airways. Am J Pathol. 2013;182(4):1434-1447.
-
(2013)
Am J Pathol
, vol.182
, Issue.4
, pp. 1434-1447
-
-
Baluk, P.1
-
111
-
-
84892516740
-
Neutrophils contribute to inflammatory lymphangiogenesis by increasing VEGF-A bioavailability and secreting VEGF-D
-
Tan KW, et al. Neutrophils contribute to inflammatory lymphangiogenesis by increasing VEGF-A bioavailability and secreting VEGF-D. Blood. 2013; 122(22):3666-3677.
-
(2013)
Blood
, vol.122
, Issue.22
, pp. 3666-3677
-
-
Tan, K.W.1
-
112
-
-
2642641324
-
Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C
-
Ristimäki A, Narko K, Enholm B, Joukov V, Alitalo K. Proinflammatory cytokines regulate expression of the lymphatic endothelial mitogen vascular endothelial growth factor-C. J Biol Chem. 1998; 273(14):8413-8418.
-
(1998)
J Biol Chem
, vol.273
, Issue.14
, pp. 8413-8418
-
-
Ristimäki, A.1
Narko, K.2
Enholm, B.3
Joukov, V.4
Alitalo, K.5
-
113
-
-
63849230366
-
Toll-like receptor 4 in lymphatic endothelial cells contributes to LPS-induced lymphangiogenesis by chemotactic recruitment of macrophages
-
Kang S, et al. Toll-like receptor 4 in lymphatic endothelial cells contributes to LPS-induced lymphangiogenesis by chemotactic recruitment of macrophages. Blood. 2009;113(11):2605-2613.
-
(2009)
Blood
, vol.113
, Issue.11
, pp. 2605-2613
-
-
Kang, S.1
-
114
-
-
67049167170
-
Critical role of CD11b+ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution
-
Kataru RP, et al. Critical role of CD11b+ macrophages and VEGF in inflammatory lymphangiogenesis, antigen clearance, and inflammation resolution. Blood. 2009;113(22):5650-5659.
-
(2009)
Blood
, vol.113
, Issue.22
, pp. 5650-5659
-
-
Kataru, R.P.1
-
115
-
-
79956099863
-
Thrombospondin 1 inhibits inflammatory lymphangiogenesis by CD36 ligation on monocytes
-
Cursiefen C, et al. Thrombospondin 1 inhibits inflammatory lymphangiogenesis by CD36 ligation on monocytes. J Exp Med. 2011;208(5):1083- 1092.
-
(2011)
J Exp Med
, vol.208
, Issue.5
, pp. 1083-1092
-
-
Cursiefen, C.1
-
116
-
-
79955583515
-
Roles of prostaglandin E2-EP3/ EP4 receptor signaling in the enhancement of lymphangiogenesis during fibroblast growth factor-2-induced granulation formation
-
Hosono K, et al. Roles of prostaglandin E2-EP3/ EP4 receptor signaling in the enhancement of lymphangiogenesis during fibroblast growth factor-2-induced granulation formation. Arterioscler Thromb Vasc Biol. 2011;31(5):1049-1058.
-
(2011)
Arterioscler Thromb Vasc Biol
, vol.31
, Issue.5
, pp. 1049-1058
-
-
Hosono, K.1
-
117
-
-
77957742772
-
Stimulation of lymphangiogenesis via VEGFR-3 inhibits chronic skin inflammation
-
Huggenberger R, et al. Stimulation of lymphangiogenesis via VEGFR-3 inhibits chronic skin inflammation. J Exp Med. 2010;207(10):2255-2269.
-
(2010)
J Exp Med
, vol.207
, Issue.10
, pp. 2255-2269
-
-
Huggenberger, R.1
-
118
-
-
46749086699
-
Inhibition of chronic and acute skin inflammation by treatment with a vascular endothelial growth factor receptor tyrosine kinase inhibitor
-
Halin C, et al. Inhibition of chronic and acute skin inflammation by treatment with a vascular endothelial growth factor receptor tyrosine kinase inhibitor. Am J Pathol. 2008;173(1):265-277.
-
(2008)
Am J Pathol
, vol.173
, Issue.1
, pp. 265-277
-
-
Halin, C.1
-
119
-
-
20144369085
-
Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation
-
Baluk P, et al. Pathogenesis of persistent lymphatic vessel hyperplasia in chronic airway inflammation. J Clin Invest. 2005;115(2):247-257.
-
(2005)
J Clin Invest
, vol.115
, Issue.2
, pp. 247-257
-
-
Baluk, P.1
-
120
-
-
79955957828
-
An important role of lymphatic vessel activation in limiting acute inflammation
-
Huggenberger R, et al. An important role of lymphatic vessel activation in limiting acute inflammation. Blood. 2011;117(17):4667-4678.
-
(2011)
Blood
, vol.117
, Issue.17
, pp. 4667-4678
-
-
Huggenberger, R.1
-
121
-
-
84862648524
-
Regulation and implications of inflammatory lymphangiogenesis
-
Kim H, Kataru RP, Koh GY. Regulation and implications of inflammatory lymphangiogenesis. Trends in Immunology. 2012;33(7):350-356.
-
(2012)
Trends in Immunology
, vol.33
, Issue.7
, pp. 350-356
-
-
Kim, H.1
Kataru, R.P.2
Koh, G.Y.3
-
122
-
-
84863011445
-
VEGF-D promotes tumor metastasis by regulating prostaglandins produced by the collecting lymphatic endothelium
-
Karnezis T, et al. VEGF-D promotes tumor metastasis by regulating prostaglandins produced by the collecting lymphatic endothelium. Cancer Cell. 2012; 21(2):181-195.
-
(2012)
Cancer Cell
, vol.21
, Issue.2
, pp. 181-195
-
-
Karnezis, T.1
-
123
-
-
84859127106
-
Rapamycin inhibits lymphatic endothelial cell tube formation by downregulating vascular endothelial growth factor receptor 3 protein expression
-
Luo Y, et al. Rapamycin inhibits lymphatic endothelial cell tube formation by downregulating vascular endothelial growth factor receptor 3 protein expression. Neoplasia. 2012;14(3):228-237.
-
(2012)
Neoplasia
, vol.14
, Issue.3
, pp. 228-237
-
-
Luo, Y.1
-
124
-
-
84867055688
-
Phenotype-based high-content chemical library screening identifies statins as inhibitors of in vivo lymphangiogenesis
-
Schulz MMP, et al. Phenotype-based high-content chemical library screening identifies statins as inhibitors of in vivo lymphangiogenesis. Proc Natl Acad Sci U S A. 2012;109(40):E2665-E2674.
-
(2012)
Proc Natl Acad Sci U S A
, vol.109
, Issue.40
-
-
Schulz, M.M.P.1
-
125
-
-
36849058242
-
Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation
-
Tammela T, et al. Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat Med. 2007; 13(12):1458-1466.
-
(2007)
Nat Med
, vol.13
, Issue.12
, pp. 1458-1466
-
-
Tammela, T.1
-
126
-
-
0037373489
-
VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema
-
Yoon Y-S, et al. VEGF-C gene therapy augments postnatal lymphangiogenesis and ameliorates secondary lymphedema. J Clin Invest. 2003;111(5):717-725.
-
(2003)
J Clin Invest
, vol.111
, Issue.5
, pp. 717-725
-
-
Yoon, Y.-S.1
-
127
-
-
17744396472
-
Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice
-
Veikkola T, et al. Signalling via vascular endothelial growth factor receptor-3 is sufficient for lymphangiogenesis in transgenic mice. EMBO J. 2001; 20(6):1223-1231.
-
(2001)
EMBO J
, vol.20
, Issue.6
, pp. 1223-1231
-
-
Veikkola, T.1
-
128
-
-
0037714018
-
VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses
-
Rissanen TT, et al. VEGF-D is the strongest angiogenic and lymphangiogenic effector among VEGFs delivered into skeletal muscle via adenoviruses. Circulation. 2003;92(10):1098-1106.
-
(2003)
Circulation
, vol.92
, Issue.10
, pp. 1098-1106
-
-
Rissanen, T.T.1
-
129
-
-
0037120009
-
Lymphangiogenic gene therapy with minimal blood vascular side effects
-
Saaristo A, et al. Lymphangiogenic gene therapy with minimal blood vascular side effects. J Exp Med. 2002;196(6):719-730.
-
(2002)
J Exp Med
, vol.196
, Issue.6
, pp. 719-730
-
-
Saaristo, A.1
-
130
-
-
84858375066
-
Growth factor therapy and autologous lymph node transfer in lymphedema
-
Hartiala P, Saaristo AM. Growth factor therapy and autologous lymph node transfer in lymphedema. Trends Cardiovasc Med. 2010;20(8):249-253.
-
(2010)
Trends Cardiovasc Med
, vol.20
, Issue.8
, pp. 249-253
-
-
Hartiala, P.1
Saaristo, A.M.2
-
131
-
-
79951682042
-
Growth factor therapy and autologous lymph node transfer in lymphedema
-
Lähteenvuo M, et al. Growth factor therapy and autologous lymph node transfer in lymphedema. Circulation. 2011;123(6):613-620.
-
(2011)
Circulation
, vol.123
, Issue.6
, pp. 613-620
-
-
Lähteenvuo, M.1
-
132
-
-
84861653413
-
Lower-extremity lymphedema and elevated body-mass index
-
Greene AK, Grant FD, Slavin SA. Lower-extremity lymphedema and elevated body-mass index. N Engl J Med. 2012;366(22):2136-2137.
-
(2012)
N Engl J Med
, vol.366
, Issue.22
, pp. 2136-2137
-
-
Greene, A.K.1
Grant, F.D.2
Slavin, S.A.3
-
133
-
-
84877264563
-
Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR-BI-mediated transport of HDL
-
Lim HY, et al. Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR-BI-mediated transport of HDL. Cell Metabolism. 2013;17(5):671-684.
-
(2013)
Cell Metabolism
, vol.17
, Issue.5
, pp. 671-684
-
-
Lim, H.Y.1
-
134
-
-
84875873877
-
Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice
-
Martel C, et al. Lymphatic vasculature mediates macrophage reverse cholesterol transport in mice. J Clin Invest. 2013;123(4):1571-1579.
-
(2013)
J Clin Invest
, vol.123
, Issue.4
, pp. 1571-1579
-
-
Martel, C.1
-
135
-
-
84857026228
-
Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation
-
Sabine A, et al. Mechanotransduction, PROX1, and FOXC2 cooperate to control connexin37 and calcineurin during lymphatic-valve formation. Dev Cell. 2012;22(2):430-445.
-
(2012)
Dev Cell
, vol.22
, Issue.2
, pp. 430-445
-
-
Sabine, A.1
-
136
-
-
84868109832
-
Critical role of VEGF-C/VEGFR-3 signaling in innate and adaptive immune responses in experimental obliterative bronchiolitis
-
Krebs R, et al. Critical role of VEGF-C/VEGFR-3 signaling in innate and adaptive immune responses in experimental obliterative bronchiolitis. Am J Pathol. 2012;181(5):1607-1620.
-
(2012)
Am J Pathol
, vol.181
, Issue.5
, pp. 1607-1620
-
-
Krebs, R.1
-
137
-
-
84880906032
-
VEGF-C and VEGF-D blockade inhibits inflammatory skin carcinogenesis
-
Alitalo AK, et al. VEGF-C and VEGF-D blockade inhibits inflammatory skin carcinogenesis. Cancer Res. 2013;73(14):4212-4221.
-
(2013)
Cancer Res
, vol.73
, Issue.14
, pp. 4212-4221
-
-
Alitalo, A.K.1
-
138
-
-
21144437844
-
Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels
-
He Y, et al. Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res. 2005; 65(11):4739-4746.
-
(2005)
Cancer Res
, vol.65
, Issue.11
, pp. 4739-4746
-
-
He, Y.1
-
139
-
-
0037024472
-
Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling
-
He Y, et al. Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst. 2002;94(11):819-825.
-
(2002)
J Natl Cancer Inst
, vol.94
, Issue.11
, pp. 819-825
-
-
He, Y.1
-
140
-
-
79953790937
-
Soluble vascular endothelial growth factor receptor-3 suppresses lymphangiogenesis and lymphatic metastasis in bladder cancer
-
Yang H, et al. Soluble vascular endothelial growth factor receptor-3 suppresses lymphangiogenesis and lymphatic metastasis in bladder cancer. Mol Cancer. 2011;10:36.
-
(2011)
Mol Cancer
, vol.10
, pp. 36
-
-
Yang, H.1
-
141
-
-
23044501991
-
Inhibition of lymphogenous metastasis using adeno-associated virus-mediated gene transfer of a soluble VEGFR-3 decoy receptor
-
Lin J, et al. Inhibition of lymphogenous metastasis using adeno-associated virus-mediated gene transfer of a soluble VEGFR-3 decoy receptor. Cancer Res. 2005;65(15):6901-6909.
-
(2005)
Cancer Res
, vol.65
, Issue.15
, pp. 6901-6909
-
-
Lin, J.1
-
142
-
-
84870687721
-
Inhibition of lymphatic metastasis in neuroblastoma by a novel neutralizing antibody to vascular endothelial growth factor-D
-
Kashima K, et al. Inhibition of lymphatic metastasis in neuroblastoma by a novel neutralizing antibody to vascular endothelial growth factor-D. Cancer Science. 2012;103(12):2144-2152.
-
(2012)
Cancer Science
, vol.103
, Issue.12
, pp. 2144-2152
-
-
Kashima, K.1
-
143
-
-
33645046619
-
Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2
-
Roberts N, et al. Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res. 2006; 66(5):2650-2657.
-
(2006)
Cancer Res
, vol.66
, Issue.5
, pp. 2650-2657
-
-
Roberts, N.1
-
144
-
-
12444343144
-
Complete and specific inhibition of adult lymphatic regeneration by a novel VEGFR-3 neutralizing antibody
-
Pytowski B, et al. Complete and specific inhibition of adult lymphatic regeneration by a novel VEGFR-3 neutralizing antibody. J Natl Cancer Inst. 2005; 97(1):14-21.
-
(2005)
J Natl Cancer Inst
, vol.97
, Issue.1
, pp. 14-21
-
-
Pytowski, B.1
-
145
-
-
11144353700
-
Suppression of VEGFR-3 signaling inhibits lymph node metastasis in gastric cancer
-
Shimizu K, et al. Suppression of VEGFR-3 signaling inhibits lymph node metastasis in gastric cancer. Cancer Sci. 2004;95(4):328-333.
-
(2004)
Cancer Sci
, vol.95
, Issue.4
, pp. 328-333
-
-
Shimizu, K.1
-
146
-
-
84864879183
-
SAR131675, a potent and selective VEGFR-3-TK inhibitor with antilymphangiogenic, antitumoral, and antimetastatic activities
-
Alam A, et al. SAR131675, a potent and selective VEGFR-3-TK inhibitor with antilymphangiogenic, antitumoral, and antimetastatic activities. Mol Cancer Ther. 2012;11(8):1637-1649.
-
(2012)
Mol Cancer Ther
, vol.11
, Issue.8
, pp. 1637-1649
-
-
Alam, A.1
-
147
-
-
49649083397
-
The tyrosine kinase inhibitor cediranib blocks ligand-induced vascular endothelial growth factor receptor-3 activity and lymphangiogenesis
-
Heckman CA, et al. The tyrosine kinase inhibitor cediranib blocks ligand-induced vascular endothelial growth factor receptor-3 activity and lymphangiogenesis. Cancer Res. 2008;68(12):4754-4762.
-
(2008)
Cancer Res
, vol.68
, Issue.12
, pp. 4754-4762
-
-
Heckman, C.A.1
-
148
-
-
84866917884
-
The CXCL12-CXCR4 chemokine pathway: A novel axis regulates lymphangiogenesis
-
Zhuo W, et al. The CXCL12-CXCR4 chemokine pathway: a novel axis regulates lymphangiogenesis. Clin Cancer Res. 2012;18(19):5387-5398.
-
(2012)
Clin Cancer Res
, vol.18
, Issue.19
, pp. 5387-5398
-
-
Zhuo, W.1
-
149
-
-
79851483971
-
Photodynamic ablation of lymphatic vessels and intralymphatic cancer cells prevents metastasis
-
Tammela T, et al. Photodynamic ablation of lymphatic vessels and intralymphatic cancer cells prevents metastasis. Sci Transl Med. 2011;3(69):69ra11.
-
(2011)
Sci Transl Med
, vol.3
, Issue.69
-
-
Tammela, T.1
-
150
-
-
84876297899
-
Lymph node transfer and perinodal lymphatic growth factor treatment for lymphedema
-
Honkonen KM, et al. Lymph node transfer and perinodal lymphatic growth factor treatment for lymphedema. Ann Surg. 2013;257(5):961-967.
-
(2013)
Ann Surg
, vol.257
, Issue.5
, pp. 961-967
-
-
Honkonen, K.M.1
|