-
1
-
-
34249714158
-
The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress
-
Nakai A., et al. The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat. Med. 2007, 13:619-624.
-
(2007)
Nat. Med.
, vol.13
, pp. 619-624
-
-
Nakai, A.1
-
2
-
-
17044440789
-
Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease)
-
Nishino I., et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature 2000, 406:906-910.
-
(2000)
Nature
, vol.406
, pp. 906-910
-
-
Nishino, I.1
-
3
-
-
34147168105
-
Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy
-
Matsui Y., et al. Distinct roles of autophagy in the heart during ischemia and reperfusion: roles of AMP-activated protein kinase and Beclin 1 in mediating autophagy. Circ. Res. 2007, 100:914-922.
-
(2007)
Circ. Res.
, vol.100
, pp. 914-922
-
-
Matsui, Y.1
-
4
-
-
33845511362
-
Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy
-
Hamacher-Brady A., et al. Response to myocardial ischemia/reperfusion injury involves Bnip3 and autophagy. Cell Death Differ. 2007, 14:146-157.
-
(2007)
Cell Death Differ.
, vol.14
, pp. 146-157
-
-
Hamacher-Brady, A.1
-
5
-
-
84879621442
-
AMPK, insulin resistance, and the metabolic syndrome
-
Ruderman N.B., et al. AMPK, insulin resistance, and the metabolic syndrome. J. Clin. Invest. 2013, 123:2764-2772.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 2764-2772
-
-
Ruderman, N.B.1
-
6
-
-
79958071314
-
Autophagy limits acute myocardial infarction induced by permanent coronary artery occlusion
-
Kanamori H., et al. Autophagy limits acute myocardial infarction induced by permanent coronary artery occlusion. Am. J. Physiol. Heart Circ. Physiol. 2011, 300:H2261-H2271.
-
(2011)
Am. J. Physiol. Heart Circ. Physiol.
, vol.300
-
-
Kanamori, H.1
-
7
-
-
84872283780
-
Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction
-
Kubli D.A., et al. Parkin protein deficiency exacerbates cardiac injury and reduces survival following myocardial infarction. J. Biol. Chem. 2013, 288:915-926.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 915-926
-
-
Kubli, D.A.1
-
8
-
-
84874315293
-
Akt2 knockout preserves cardiac function in high-fat diet-induced obesity by rescuing cardiac autophagosome maturation
-
Xu X., et al. Akt2 knockout preserves cardiac function in high-fat diet-induced obesity by rescuing cardiac autophagosome maturation. J. Mol. Cell Biol. 2013, 5:61-63.
-
(2013)
J. Mol. Cell Biol.
, vol.5
, pp. 61-63
-
-
Xu, X.1
-
9
-
-
84880065357
-
Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes
-
Xu X., et al. Diminished autophagy limits cardiac injury in mouse models of type 1 diabetes. J. Biol. Chem. 2013, 288:18077-18092.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 18077-18092
-
-
Xu, X.1
-
10
-
-
84865610149
-
Autophagy, myocardial protection, and the metabolic syndrome
-
Giricz Z., et al. Autophagy, myocardial protection, and the metabolic syndrome. J. Cardiovasc. Pharmacol. 2012, 60:125-132.
-
(2012)
J. Cardiovasc. Pharmacol.
, vol.60
, pp. 125-132
-
-
Giricz, Z.1
-
11
-
-
79952628267
-
The Beclin 1 network regulates autophagy and apoptosis
-
Kang R., et al. The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 2011, 18:571-580.
-
(2011)
Cell Death Differ.
, vol.18
, pp. 571-580
-
-
Kang, R.1
-
12
-
-
25444473426
-
Autophagy in chronically ischemic myocardium
-
Yan L., et al. Autophagy in chronically ischemic myocardium. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:13807-13812.
-
(2005)
Proc. Natl. Acad. Sci. U.S.A.
, vol.102
, pp. 13807-13812
-
-
Yan, L.1
-
13
-
-
38549110110
-
Fission and selective fusion govern mitochondrial segregation and elimination by autophagy
-
Twig G., et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy. EMBO J. 2008, 27:433-446.
-
(2008)
EMBO J.
, vol.27
, pp. 433-446
-
-
Twig, G.1
-
14
-
-
58149314211
-
Parkin is recruited selectively to impaired mitochondria and promotes their autophagy
-
Narendra D., et al. Parkin is recruited selectively to impaired mitochondria and promotes their autophagy. J. Cell Biol. 2008, 183:795-803.
-
(2008)
J. Cell Biol.
, vol.183
, pp. 795-803
-
-
Narendra, D.1
-
15
-
-
0037178786
-
MTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery
-
Kim D-H., et al. mTOR interacts with raptor to form a nutrient-sensitive complex that signals to the cell growth machinery. Cell 2002, 110:163-175.
-
(2002)
Cell
, vol.110
, pp. 163-175
-
-
Kim, D.-H.1
-
16
-
-
7044234995
-
Regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis
-
Kim J.E., Chen J. Regulation of peroxisome proliferator-activated receptor-gamma activity by mammalian target of rapamycin and amino acids in adipogenesis. Diabetes 2004, 53:2748-2756.
-
(2004)
Diabetes
, vol.53
, pp. 2748-2756
-
-
Kim, J.E.1
Chen, J.2
-
17
-
-
0036789574
-
Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin
-
Hudson C.C., et al. Regulation of hypoxia-inducible factor 1alpha expression and function by the mammalian target of rapamycin. Mol. Cell. Biol. 2002, 22:7004-7014.
-
(2002)
Mol. Cell. Biol.
, vol.22
, pp. 7004-7014
-
-
Hudson, C.C.1
-
18
-
-
36749081539
-
MTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex
-
Cunningham J.T., et al. mTOR controls mitochondrial oxidative function through a YY1-PGC-1alpha transcriptional complex. Nature 2007, 450:736-740.
-
(2007)
Nature
, vol.450
, pp. 736-740
-
-
Cunningham, J.T.1
-
19
-
-
0036713778
-
TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling
-
Inoki K., et al. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 2002, 4:648-657.
-
(2002)
Nat. Cell Biol.
, vol.4
, pp. 648-657
-
-
Inoki, K.1
-
20
-
-
34547099855
-
PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding
-
Wang L., et al. PRAS40 regulates mTORC1 kinase activity by functioning as a direct inhibitor of substrate binding. J. Biol. Chem. 2007, 282:20036-20044.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 20036-20044
-
-
Wang, L.1
-
21
-
-
45849105156
-
The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1
-
Sancak Y., et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science 2008, 320:1496-1501.
-
(2008)
Science
, vol.320
, pp. 1496-1501
-
-
Sancak, Y.1
-
22
-
-
84875423993
-
Amino acid signalling upstream of mTOR
-
Jewell J.L., et al. Amino acid signalling upstream of mTOR. Nat. Rev. Mol. Cell Biol. 2013, 14:133-139.
-
(2013)
Nat. Rev. Mol. Cell Biol.
, vol.14
, pp. 133-139
-
-
Jewell, J.L.1
-
23
-
-
21244480367
-
The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses
-
Smith E.M., et al. The tuberous sclerosis protein TSC2 is not required for the regulation of the mammalian target of rapamycin by amino acids and certain cellular stresses. J. Biol. Chem. 2005, 280:18717-18727.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 18717-18727
-
-
Smith, E.M.1
-
24
-
-
77951768486
-
Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids
-
Sancak Y., et al. Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids. Cell 2010, 141:290-303.
-
(2010)
Cell
, vol.141
, pp. 290-303
-
-
Sancak, Y.1
-
25
-
-
21244456553
-
Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency
-
Long X., et al. Rheb binding to mammalian target of rapamycin (mTOR) is regulated by amino acid sufficiency. J. Biol. Chem. 2005, 280:23433-23436.
-
(2005)
J. Biol. Chem.
, vol.280
, pp. 23433-23436
-
-
Long, X.1
-
26
-
-
84873665112
-
Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival
-
Efeyan A., et al. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature 2013, 493:679-683.
-
(2013)
Nature
, vol.493
, pp. 679-683
-
-
Efeyan, A.1
-
27
-
-
11144245626
-
The role of autophagy during the early neonatal starvation period
-
Kuma A., et al. The role of autophagy during the early neonatal starvation period. Nature 2004, 432:1032-1036.
-
(2004)
Nature
, vol.432
, pp. 1032-1036
-
-
Kuma, A.1
-
28
-
-
84890026772
-
Insulin receptor substrate signaling suppresses neonatal autophagy in the heart
-
Riehle C., et al. Insulin receptor substrate signaling suppresses neonatal autophagy in the heart. J. Clin. Invest. 2013, 123:5319-5333.
-
(2013)
J. Clin. Invest.
, vol.123
, pp. 5319-5333
-
-
Riehle, C.1
-
29
-
-
84872354779
-
Mechanistic target of rapamycin (Mtor) is essential for murine embryonic heart development and growth
-
Zhu Y., et al. Mechanistic target of rapamycin (Mtor) is essential for murine embryonic heart development and growth. PLoS ONE 2013, 8:e54221.
-
(2013)
PLoS ONE
, vol.8
-
-
Zhu, Y.1
-
30
-
-
79953033875
-
Cardiac Raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression, and causes heart failure in mice
-
Shende P., et al. Cardiac Raptor ablation impairs adaptive hypertrophy, alters metabolic gene expression, and causes heart failure in mice. Circulation 2011, 123:1073-1082.
-
(2011)
Circulation
, vol.123
, pp. 1073-1082
-
-
Shende, P.1
-
31
-
-
0016251063
-
Role of diabetes in congestive heart failure: the Framingham study
-
Kannel W.B., et al. Role of diabetes in congestive heart failure: the Framingham study. Am. J. Cardiol. 1974, 34:29-34.
-
(1974)
Am. J. Cardiol.
, vol.34
, pp. 29-34
-
-
Kannel, W.B.1
-
32
-
-
85056058295
-
Causes and characteristics of diabetic cardiomyopathy
-
Wang J., et al. Causes and characteristics of diabetic cardiomyopathy. Rev. Diabet. Stud. 2006, 3:108-117.
-
(2006)
Rev. Diabet. Stud.
, vol.3
, pp. 108-117
-
-
Wang, J.1
-
33
-
-
0024264743
-
The impact of diabetes on survival following myocardial infarction in men vs women. The Framingham Study
-
Abbott R.D., et al. The impact of diabetes on survival following myocardial infarction in men vs women. The Framingham Study. JAMA 1988, 260:3456-3460.
-
(1988)
JAMA
, vol.260
, pp. 3456-3460
-
-
Abbott, R.D.1
-
34
-
-
0032560807
-
Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction
-
Haffner S.M., et al. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N. Engl. J. Med. 1998, 339:229-234.
-
(1998)
N. Engl. J. Med.
, vol.339
, pp. 229-234
-
-
Haffner, S.M.1
-
35
-
-
79959385996
-
Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice
-
Xie Z., et al. Improvement of cardiac functions by chronic metformin treatment is associated with enhanced cardiac autophagy in diabetic OVE26 mice. Diabetes 2011, 60:1770-1778.
-
(2011)
Diabetes
, vol.60
, pp. 1770-1778
-
-
Xie, Z.1
-
36
-
-
0034623856
-
Myocardial cell death in human diabetes
-
Frustaci A., et al. Myocardial cell death in human diabetes. Circ. Res. 2000, 87:1123-1132.
-
(2000)
Circ. Res.
, vol.87
, pp. 1123-1132
-
-
Frustaci, A.1
-
37
-
-
84862287069
-
Suppression of autophagy is protective in high glucose-induced cardiomyocyte injury
-
Kobayashi S., et al. Suppression of autophagy is protective in high glucose-induced cardiomyocyte injury. Autophagy 2012, 8:577-592.
-
(2012)
Autophagy
, vol.8
, pp. 577-592
-
-
Kobayashi, S.1
-
38
-
-
78650848689
-
The emerging role of autophagy in the pathophysiology of diabetes mellitus
-
Gonzalez C.D., et al. The emerging role of autophagy in the pathophysiology of diabetes mellitus. Autophagy 2011, 7:2-11.
-
(2011)
Autophagy
, vol.7
, pp. 2-11
-
-
Gonzalez, C.D.1
-
39
-
-
79955658311
-
Myocardial autophagy activation and suppressed survival signaling is associated with insulin resistance in fructose-fed mice
-
Mellor K.M., et al. Myocardial autophagy activation and suppressed survival signaling is associated with insulin resistance in fructose-fed mice. J. Mol. Cell. Cardiol. 2011, 50:1035-1043.
-
(2011)
J. Mol. Cell. Cardiol.
, vol.50
, pp. 1035-1043
-
-
Mellor, K.M.1
-
40
-
-
0033941806
-
Relation of weight gain and weight loss on subsequent diabetes risk in overweight adults
-
Resnick H.E. Relation of weight gain and weight loss on subsequent diabetes risk in overweight adults. J. Epidemiol. Community Health 2000, 54:596-602.
-
(2000)
J. Epidemiol. Community Health
, vol.54
, pp. 596-602
-
-
Resnick, H.E.1
-
41
-
-
15444366991
-
Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation
-
Dandona P., et al. Metabolic syndrome: a comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation 2005, 111:1448-1454.
-
(2005)
Circulation
, vol.111
, pp. 1448-1454
-
-
Dandona, P.1
-
42
-
-
84862823783
-
Transition from obesity to metabolic syndrome is associated with altered myocardial autophagy and apoptosis
-
Li Z-L., et al. Transition from obesity to metabolic syndrome is associated with altered myocardial autophagy and apoptosis. Arterioscler. Thromb. Vasc. Biol. 2012, 32:1132-1141.
-
(2012)
Arterioscler. Thromb. Vasc. Biol.
, vol.32
, pp. 1132-1141
-
-
Li, Z.-L.1
-
43
-
-
77956400005
-
Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
-
Yang L., et al. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 2010, 11:467-478.
-
(2010)
Cell Metab.
, vol.11
, pp. 467-478
-
-
Yang, L.1
-
44
-
-
84857914471
-
Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome
-
Sciarretta S., et al. Rheb is a critical regulator of autophagy during myocardial ischemia: pathophysiological implications in obesity and metabolic syndrome. Circulation 2012, 125:1134-1146.
-
(2012)
Circulation
, vol.125
, pp. 1134-1146
-
-
Sciarretta, S.1
-
45
-
-
34548512483
-
Autophagy in the heart and liver during normal aging and calorie restriction
-
Wohlgemuth S.E., et al. Autophagy in the heart and liver during normal aging and calorie restriction. Rejuvenation Res. 2007, 10:281-292.
-
(2007)
Rejuvenation Res.
, vol.10
, pp. 281-292
-
-
Wohlgemuth, S.E.1
-
46
-
-
75049085555
-
Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise
-
Wohlgemuth S.E., et al. Skeletal muscle autophagy and apoptosis during aging: effects of calorie restriction and life-long exercise. Exp. Gerontol. 2010, 45:138-148.
-
(2010)
Exp. Gerontol.
, vol.45
, pp. 138-148
-
-
Wohlgemuth, S.E.1
-
47
-
-
77955342581
-
Inhibition of autophagy in the heart induces age-related cardiomyopathy
-
Taneike M., et al. Inhibition of autophagy in the heart induces age-related cardiomyopathy. Autophagy 2010, 6:304-306.
-
(2010)
Autophagy
, vol.6
, pp. 304-306
-
-
Taneike, M.1
-
48
-
-
36849089101
-
Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice
-
Komatsu M., et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell 2007, 131:1149-1163.
-
(2007)
Cell
, vol.131
, pp. 1149-1163
-
-
Komatsu, M.1
-
49
-
-
65949095803
-
Autophagy regulates lipid metabolism
-
Singh R., et al. Autophagy regulates lipid metabolism. Nature 2009, 458:1131-1135.
-
(2009)
Nature
, vol.458
, pp. 1131-1135
-
-
Singh, R.1
-
50
-
-
79961194820
-
Autophagy impairment induces premature senescence in primary human fibroblasts
-
Kang H.T., et al. Autophagy impairment induces premature senescence in primary human fibroblasts. PLoS ONE 2011, 6:e23367.
-
(2011)
PLoS ONE
, vol.6
-
-
Kang, H.T.1
-
51
-
-
67650944993
-
Rapamycin fed late in life extends lifespan in genetically heterogeneous mice
-
Harrison D.E., et al. Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature 2009, 460:392-395.
-
(2009)
Nature
, vol.460
, pp. 392-395
-
-
Harrison, D.E.1
-
52
-
-
79953043473
-
Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy
-
Morselli E., et al. Caloric restriction and resveratrol promote longevity through the Sirtuin-1-dependent induction of autophagy. Cell Death Dis. 2010, 1:e10.
-
(2010)
Cell Death Dis.
, vol.1
-
-
Morselli, E.1
-
53
-
-
67650439330
-
Caloric restriction delays disease onset and mortality in rhesus monkeys
-
Colman R.J., et al. Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 2009, 325:201-204.
-
(2009)
Science
, vol.325
, pp. 201-204
-
-
Colman, R.J.1
-
54
-
-
33746633037
-
Caloric restriction and human longevity: what can we learn from the Okinawans?
-
Willcox D.C., et al. Caloric restriction and human longevity: what can we learn from the Okinawans?. Biogerontology 2006, 7:173-177.
-
(2006)
Biogerontology
, vol.7
, pp. 173-177
-
-
Willcox, D.C.1
-
55
-
-
70449906931
-
Cellular mechanisms of cardioprotection by calorie restriction: state of the science and future perspectives
-
Marzetti E., et al. Cellular mechanisms of cardioprotection by calorie restriction: state of the science and future perspectives. Clin. Geriatr. Med. 2009, 25:715-732.
-
(2009)
Clin. Geriatr. Med.
, vol.25
, pp. 715-732
-
-
Marzetti, E.1
-
56
-
-
80052511813
-
The AMPK signalling pathway coordinates cell growth, autophagy and metabolism
-
Mihaylova M.M., Shaw R.J. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat. Cell Biol. 2011, 13:1016-1023.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 1016-1023
-
-
Mihaylova, M.M.1
Shaw, R.J.2
-
57
-
-
84858782079
-
AMPK: a nutrient and energy sensor that maintains energy homeostasis
-
Hardie D.G., et al. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat. Rev. Mol. Cell Biol. 2012, 13:251-262.
-
(2012)
Nat. Rev. Mol. Cell Biol.
, vol.13
, pp. 251-262
-
-
Hardie, D.G.1
-
58
-
-
84875450015
-
Dissociation of Bcl-2-Beclin1 complex by activated AMPK enhances cardiac autophagy and protects against cardiomyocyte apoptosis in diabetes
-
He C., et al. Dissociation of Bcl-2-Beclin1 complex by activated AMPK enhances cardiac autophagy and protects against cardiomyocyte apoptosis in diabetes. Diabetes 2013, 62:1270-1281.
-
(2013)
Diabetes
, vol.62
, pp. 1270-1281
-
-
He, C.1
-
59
-
-
84863116629
-
Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function
-
Jaber N., et al. Class III PI3K Vps34 plays an essential role in autophagy and in heart and liver function. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:2003-2008.
-
(2012)
Proc. Natl. Acad. Sci. U.S.A.
, vol.109
, pp. 2003-2008
-
-
Jaber, N.1
-
60
-
-
36448940798
-
FoxO3 controls autophagy in skeletal muscle in vivo
-
Mammucari C., et al. FoxO3 controls autophagy in skeletal muscle in vivo. Cell Metab. 2007, 6:458-471.
-
(2007)
Cell Metab.
, vol.6
, pp. 458-471
-
-
Mammucari, C.1
-
61
-
-
70350500068
-
FoxO transcription factors promote autophagy in cardiomyocytes
-
Sengupta A., et al. FoxO transcription factors promote autophagy in cardiomyocytes. J. Biol. Chem. 2009, 284:28319-28331.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 28319-28331
-
-
Sengupta, A.1
-
62
-
-
78650691023
-
Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes
-
Hariharan N., et al. Deacetylation of FoxO by Sirt1 plays an essential role in mediating starvation-induced autophagy in cardiac myocytes. Circ. Res. 2010, 107:1470-1482.
-
(2010)
Circ. Res.
, vol.107
, pp. 1470-1482
-
-
Hariharan, N.1
-
63
-
-
67349276169
-
+ metabolism and SIRT1 activity
-
+ metabolism and SIRT1 activity. Nature 2009, 458:1056-1060.
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Cantó, C.1
-
64
-
-
12144290563
-
Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
-
Brunet A., et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004, 303:2011-2015.
-
(2004)
Science
, vol.303
, pp. 2011-2015
-
-
Brunet, A.1
-
65
-
-
84863283393
-
Metabolic stress-induced activation of FoxO1 triggers diabetic cardiomyopathy in mice
-
Battiprolu P.K., et al. Metabolic stress-induced activation of FoxO1 triggers diabetic cardiomyopathy in mice. J. Clin. Invest. 2012, 122:1109-1118.
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 1109-1118
-
-
Battiprolu, P.K.1
-
66
-
-
79251587803
-
Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
-
Egan D.F., et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science 2011, 331:456-461.
-
(2011)
Science
, vol.331
, pp. 456-461
-
-
Egan, D.F.1
-
67
-
-
79551598347
-
AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
-
Kim J., et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat. Cell Biol. 2011, 13:132-141.
-
(2011)
Nat. Cell Biol.
, vol.13
, pp. 132-141
-
-
Kim, J.1
-
68
-
-
0345167800
-
TSC2 mediates cellular energy response to control cell growth and survival
-
Inoki K., et al. TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003, 115:577-590.
-
(2003)
Cell
, vol.115
, pp. 577-590
-
-
Inoki, K.1
-
69
-
-
84872586081
-
Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy
-
Kim J., et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell 2013, 152:290-303.
-
(2013)
Cell
, vol.152
, pp. 290-303
-
-
Kim, J.1
-
70
-
-
65249119430
-
Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
-
Hosokawa N., et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol. Biol. Cell 2009, 20:1981-1991.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1981-1991
-
-
Hosokawa, N.1
-
71
-
-
65249176304
-
ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
-
Jung C.H., et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol. Biol. Cell 2009, 20:1992-2003.
-
(2009)
Mol. Biol. Cell
, vol.20
, pp. 1992-2003
-
-
Jung, C.H.1
-
72
-
-
84880331368
-
ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
-
Russell R.C., et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat. Cell Biol. 2013, 15:741-750.
-
(2013)
Nat. Cell Biol.
, vol.15
, pp. 741-750
-
-
Russell, R.C.1
-
73
-
-
84866061320
-
AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization
-
Mack H.I.D., et al. AMPK-dependent phosphorylation of ULK1 regulates ATG9 localization. Autophagy 2012, 8:1197-1214.
-
(2012)
Autophagy
, vol.8
, pp. 1197-1214
-
-
Mack, H.I.D.1
-
74
-
-
70450215504
-
Effects of physical activity on cardiovascular and noncardiovascular outcomes in older adults
-
Sattelmair J.R., et al. Effects of physical activity on cardiovascular and noncardiovascular outcomes in older adults. Clin. Geriatr. Med. 2009, 25:677-702.
-
(2009)
Clin. Geriatr. Med.
, vol.25
, pp. 677-702
-
-
Sattelmair, J.R.1
-
75
-
-
4444347411
-
Explaining the increase in coronary heart disease mortality in Beijing between 1984 and 1999
-
Critchley J., et al. Explaining the increase in coronary heart disease mortality in Beijing between 1984 and 1999. Circulation 2004, 110:1236-1244.
-
(2004)
Circulation
, vol.110
, pp. 1236-1244
-
-
Critchley, J.1
-
76
-
-
84863393597
-
Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis
-
He C., et al. Exercise-induced BCL2-regulated autophagy is required for muscle glucose homeostasis. Nature 2012, 481:511-515.
-
(2012)
Nature
, vol.481
, pp. 511-515
-
-
He, C.1
-
77
-
-
84874812584
-
Statins for the primary prevention of cardiovascular disease
-
Taylor F., et al. Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst. Rev. 2013, 1:CD004816.
-
(2013)
Cochrane Database Syst. Rev.
, vol.1
-
-
Taylor, F.1
-
78
-
-
84913546616
-
Mitophagy is required for acute cardioprotection by simvastatin
-
Andres A.M., et al. Mitophagy is required for acute cardioprotection by simvastatin. Antioxid. Redox Signal. 2013, 10.1089/ars.2013.5416.
-
(2013)
Antioxid. Redox Signal.
-
-
Andres, A.M.1
-
79
-
-
0034773404
-
Role of AMP-activated protein kinase in mechanism of metformin action
-
Zhou G., et al. Role of AMP-activated protein kinase in mechanism of metformin action. J. Clin. Invest. 2001, 108:1167-1174.
-
(2001)
J. Clin. Invest.
, vol.108
, pp. 1167-1174
-
-
Zhou, G.1
-
80
-
-
34447133404
-
Cardiac autophagy is a maladaptive response to hemodynamic stress
-
Zhu H., et al. Cardiac autophagy is a maladaptive response to hemodynamic stress. J. Clin. Invest. 2007, 117:1782-1793.
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 1782-1793
-
-
Zhu, H.1
-
81
-
-
52749094770
-
Loss of autophagy diminishes pancreatic ? cell mass and function with resultant hyperglycemia
-
Jung H.S., et al. Loss of autophagy diminishes pancreatic ? cell mass and function with resultant hyperglycemia. Cell Metab. 2008, 8:318-324.
-
(2008)
Cell Metab.
, vol.8
, pp. 318-324
-
-
Jung, H.S.1
-
82
-
-
37649005234
-
Autophagy in the pathogenesis of disease
-
Levine B., Kroemer G. Autophagy in the pathogenesis of disease. Cell 2008, 132:27-42.
-
(2008)
Cell
, vol.132
, pp. 27-42
-
-
Levine, B.1
Kroemer, G.2
-
83
-
-
84894329747
-
Mitochondrial dysregulation in the pathogenesis of diabetes: potential for mitochondrial biogenesis-mediated interventions
-
Joseph A-M., et al. Mitochondrial dysregulation in the pathogenesis of diabetes: potential for mitochondrial biogenesis-mediated interventions. Exp. Diabetes Res. 2012, 2012:1-16.
-
(2012)
Exp. Diabetes Res.
, vol.2012
, pp. 1-16
-
-
Joseph, A.-M.1
-
84
-
-
67349150186
-
Autophagy in human type 2 diabetes pancreatic beta cells
-
Masini M., et al. Autophagy in human type 2 diabetes pancreatic beta cells. Diabetologia 2009, 52:1083-1086.
-
(2009)
Diabetologia
, vol.52
, pp. 1083-1086
-
-
Masini, M.1
-
85
-
-
84875978061
-
Rheb (Ras homologue enriched in brain)-dependent mechanistic target of rapamycin complex 1 (mTORC1) activation becomes indispensable for cardiac hypertrophic growth after early postnatal period
-
Tamai T., et al. Rheb (Ras homologue enriched in brain)-dependent mechanistic target of rapamycin complex 1 (mTORC1) activation becomes indispensable for cardiac hypertrophic growth after early postnatal period. J. Biol. Chem. 2013, 288:10176-10187.
-
(2013)
J. Biol. Chem.
, vol.288
, pp. 10176-10187
-
-
Tamai, T.1
|