-
1
-
-
84894215562
-
-
WHO TB Report 2012. Available from: http://www.who.int/tb/country/en/ index. html
-
WHO TB Report 2012
-
-
-
2
-
-
77952542701
-
Multidrug-resistant and extensively drugresistant tuberculosis: A threat to global control of tuberculosis
-
Gandhi NR, Nunn P, Dheda K, et al. Multidrug-resistant and extensively drugresistant tuberculosis: a threat to global control of tuberculosis. Lancet 2010;375: 1830-43
-
(2010)
Lancet
, vol.375
, pp. 1830-1843
-
-
Gandhi, N.R.1
Nunn, P.2
Dheda, K.3
-
3
-
-
84856711991
-
Totally drug-resistant tuberculosis in India
-
Udwadia ZF, Amale R, Ajbani K, Rodrigues C. Totally drug-resistant tuberculosis in India. Clin Infect Dis 2012;54(4): 579-81
-
(2012)
Clin Infect Dis
, vol.54
, Issue.4
, pp. 579-581
-
-
Udwadia, Z.F.1
Amale, R.2
Ajbani, K.3
Rodrigues, C.4
-
4
-
-
84871725540
-
Infectious disease: TB's revenge
-
Phillips L. Infectious disease: TB's revenge. Nature 2013;493: 14-16
-
(2013)
Nature
, vol.493
, pp. 14-16
-
-
Phillips, L.1
-
5
-
-
84894183756
-
-
Available from: http://www.who.int/tb/features-archive/new-treatment- guidelines-may2010/en/index.html
-
-
-
-
6
-
-
84860380179
-
New drugs for the treatment of tuberculosis: Needs, challenges, promise, and prospects for the future
-
Lienhardt C, Raviglione M, Spigelman M, et al. New drugs for the treatment of tuberculosis: needs, challenges, promise, and prospects for the future. J Infect Dis 2010;205:S241-9
-
(2010)
J Infect Dis
, vol.205
-
-
Lienhardt, C.1
Raviglione, M.2
Spigelman, M.3
-
7
-
-
84858389346
-
Outwitting evolution: Fighting drugresistant TB malaria and HIV
-
Goldberg DE, Siliciano RF, Jacobs WR. Outwitting evolution: fighting drugresistant TB, malaria, and HIV. Cell 2012;148(6): 1271-83
-
(2012)
Cell
, vol.148
, Issue.6
, pp. 1271-1283
-
-
Goldberg, D.E.1
Siliciano, R.F.2
Jacobs, W.R.3
-
9
-
-
84860368544
-
Drug-resistant tuberculosis - current dilemmas, unanswered questions, challenges, and priority needs
-
Zumla A, Abubakar I, Raviglione M, et al. Drug-resistant tuberculosis - current dilemmas, unanswered questions, challenges, and priority needs. J Infect Dis 2012;205(Suppl 2):S228-40
-
(2012)
J Infect Dis
, vol.205
, Issue.SUPPL. 2
-
-
Zumla, A.1
Abubakar, I.2
Raviglione, M.3
-
10
-
-
78449274705
-
Drugs in development for tuberculosis
-
Ginsberg AM. Drugs in development for tuberculosis. Drugs 2010;70(17): 2201-14
-
(2010)
Drugs
, vol.70
, Issue.17
, pp. 2201-2214
-
-
Ginsberg, A.M.1
-
11
-
-
53249084552
-
New antituberculosis drugs with novel mechanisms of action
-
Rivers EC, Mancera RL. New antituberculosis drugs with novel mechanisms of action. Curr Med Chem 2008;15(19): 1956-67
-
(2008)
Curr Med Chem
, vol.15
, Issue.19
, pp. 1956-1967
-
-
Rivers, E.C.1
Mancera, R.L.2
-
13
-
-
78049452813
-
The mechanisms and consequences of the extra-pulmonary dissemination of Mycobacterium tuberculosis
-
Krishnan N, Robertson BD, Thwaites G. The mechanisms and consequences of the extra-pulmonary dissemination of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2010;90(6): 361-6
-
(2010)
Tuberculosis (Edinb)
, vol.90
, Issue.6
, pp. 361-366
-
-
Krishnan, N.1
Robertson, B.D.2
Thwaites, G.3
-
14
-
-
84894126674
-
-
WHO TB/HIV Report. Available from: http://www.who.int/tb/challenges/hiv/ factsheets/en/index.html
-
WHO TB/HIV Report
-
-
-
15
-
-
0032508046
-
Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence
-
Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998;393(6685): 537-44
-
(1998)
Nature
, vol.393
, Issue.6685
, pp. 537-544
-
-
Cole, S.T.1
Brosch, R.2
Parkhill, J.3
-
16
-
-
40849118255
-
Bacterial growth and cell division: A mycobacterial perspective
-
Hett EC, Rubin EJ. Bacterial growth and cell division: a mycobacterial perspective. Microbiol Mol Biol Rev 2008;72(1): 126-56
-
(2008)
Microbiol Mol Biol Rev
, vol.72
, Issue.1
, pp. 126-156
-
-
Hett, E.C.1
Rubin, E.J.2
-
17
-
-
84868090447
-
Targeting the mycobacterial envelope for tuberculosis drug development
-
Favrot L, Ronning DR. Targeting the mycobacterial envelope for tuberculosis drug development. Expert Rev Anti Infect Ther 2012;10(9): 1023-36
-
(2012)
Expert Rev Anti Infect Ther
, vol.10
, Issue.9
, pp. 1023-1036
-
-
Favrot, L.1
Ronning, D.R.2
-
18
-
-
0037844364
-
Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis
-
Brennan PJ. Structure, function, and biogenesis of the cell wall of Mycobacterium tuberculosis. Tuberculosis (Edinburgh) 2003;83: 91-7
-
(2003)
Tuberculosis (Edinburgh)
, vol.83
, pp. 91-97
-
-
Brennan, P.J.1
-
19
-
-
12844278679
-
Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis
-
Takayama K, Wang C, Besra GS. Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin Microbiol Rev 2005;18(1): 81-101 • Extensive review of the mycolic acid biosynthesis.
-
(2005)
Clin Microbiol Rev
, vol.18
, Issue.1
, pp. 81-101
-
-
Takayama, K.1
Wang, C.2
Besra, G.S.3
-
20
-
-
69249187769
-
Biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis
-
Kaur D, Guerin ME, Škovierová H, et al. Biogenesis of the cell wall and other glycoconjugates of Mycobacterium tuberculosis. Adv Appl Microbiol 2009;69: 23-78
-
(2009)
Adv Appl Microbiol
, vol.69
, pp. 23-78
-
-
Kaur, D.1
Guerin, M.E.2
Škovierová, H.3
-
21
-
-
41649116701
-
Disclosure of the mycobacterial outer membrane: Cryo-electron tomography and vitreous sections reveal the lipid bilayer structure
-
Hoffmann C, Leis A, Niederweis M, et al. Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc Natl Acad Sci USA 2008;105(10): 3963-7
-
(2008)
Proc Natl Acad Sci USA
, vol.105
, Issue.10
, pp. 3963-3967
-
-
Hoffmann, C.1
Leis, A.2
Niederweis, M.3
-
22
-
-
84862262996
-
Towards understanding the functional diversity of cell wall mycolic acids of Mycobacterium tuberculosis
-
Verschoor JA, Baird MS, Grooten J. Towards understanding the functional diversity of cell wall mycolic acids of Mycobacterium tuberculosis. Prog Lipid Res 2012;51(4): 325-39
-
(2012)
Prog Lipid Res
, vol.51
, Issue.4
, pp. 325-339
-
-
Verschoor, J.A.1
Baird, M.S.2
Grooten, J.3
-
23
-
-
84863815961
-
Mycobacterium tuberculosis lacking all mycolic acid cyclopropanation is viable but highly attenuated and hyperinflammatory in mice
-
Barkan D, Hedhli D, Yan HG, et al. Mycobacterium tuberculosis lacking all mycolic acid cyclopropanation is viable but highly attenuated and hyperinflammatory in mice. Infect Immun 2012;80(6): 1958-68
-
(2012)
Infect Immun
, vol.80
, Issue.6
, pp. 1958-1968
-
-
Barkan, D.1
Hedhli, D.2
Yan, H.G.3
-
24
-
-
78851469937
-
Molecular structure of the Mycobacterium tuberculosis virulence factor, mycolic acid, determines the elicited inflammatory pattern
-
Vander Beken S, Al Dulayymi JR, Naessens T, et al. Molecular structure of the Mycobacterium tuberculosis virulence factor, mycolic acid, determines the elicited inflammatory pattern. Eur J Immunol 2011;41(2): 450-60
-
(2011)
Eur J Immunol
, vol.41
, Issue.2
, pp. 450-460
-
-
Vander Beken, S.1
Al Dulayymi, J.R.2
Naessens, T.3
-
25
-
-
0031694056
-
The effect of oxygenated mycolic acid composition on cell wall function and macrophage growth in Mycobacterium tuberculosis
-
Yuan Y, Zhu Y, Crane DD, Barry CE III. The effect of oxygenated mycolic acid composition on cell wall function and macrophage growth in Mycobacterium tuberculosis. Mol Microbiol 1998;29(6): 1449-58
-
(1998)
Mol Microbiol
, vol.29
, Issue.6
, pp. 1449-1458
-
-
Yuan, Y.1
Zhu, Y.2
Crane, D.D.3
Barry III, C.E.4
-
26
-
-
0034073375
-
Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice
-
Dubnau E, Chan J, Raynaud C, et al. Oxygenated mycolic acids are necessary for virulence of Mycobacterium tuberculosis in mice. Mol Microbiol 2000;36(3): 630
-
(2000)
Mol Microbiol
, vol.36
, Issue.3
, pp. 630
-
-
Dubnau, E.1
Chan, J.2
Raynaud, C.3
-
27
-
-
4544275674
-
Microbial type i fatty acid synthases (FAS): Major players in a network of cellular FAS systems
-
Schweizer E, Hofmann J. Microbial type I fatty acid synthases (FAS): major players in a network of cellular FAS systems. Microbiol Mol Biol Rev 2004;68(3): 501-17
-
(2004)
Microbiol Mol Biol Rev
, vol.68
, Issue.3
, pp. 501-517
-
-
Schweizer, E.1
Hofmann, J.2
-
28
-
-
34250198660
-
The Mycobacterium tuberculosis FAS-II condensing enzymes: Their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development
-
Bhatt A, Molle V, Besra GS, et al. The Mycobacterium tuberculosis FAS-II condensing enzymes: their role in mycolic acid biosynthesis, acid-fastness, pathogenesis and in future drug development. Mol Microbiol 2007;64(6): 1442-54
-
(2007)
Mol Microbiol
, vol.64
, Issue.6
, pp. 1442-1454
-
-
Bhatt, A.1
Molle, V.2
Besra, G.S.3
-
29
-
-
12344300344
-
The reductase steps of the type II fatty acid synthase as antimicrobial targets
-
Zhang YM, Lu YJ, Rock CO. The reductase steps of the type II fatty acid synthase as antimicrobial targets. Lipids 2004;39(11): 1055-60
-
(2004)
Lipids
, vol.39
, Issue.11
, pp. 1055-1060
-
-
Zhang, Y.M.1
Lu, Y.J.2
Rock, C.O.3
-
30
-
-
0035861550
-
Purification and biochemical characterization of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthases KasA and KasB
-
Schaeffer ML, Agnihotri G, Volker C, et al. Purification and biochemical characterization of the Mycobacterium tuberculosis beta-ketoacyl-acyl carrier protein synthases KasA and KasB. J Biol Chem 2001;276(50): 47029-37
-
(2001)
J Biol Chem
, vol.276
, Issue.50
, pp. 47029-47037
-
-
Schaeffer, M.L.1
Agnihotri, G.2
Volker, C.3
-
31
-
-
35548929836
-
The missing piece of the type II fatty acid synthase system from Mycobacterium tuberculosis
-
Sacco E, Covarrubias AS, O'Hare HM, et al. The missing piece of the type II fatty acid synthase system from Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2007;104(37): 14628-33
-
(2007)
Proc Natl Acad Sci USA
, vol.104
, Issue.37
, pp. 14628-14633
-
-
Sacco, E.1
Covarrubias, A.S.2
O'Hare, H.M.3
-
32
-
-
0347719360
-
A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms
-
Portevin D, De Sousa-D'Auria C, Houssin C, et al. A polyketide synthase catalyzes the last condensation step of mycolic acid biosynthesis in mycobacteria and related organisms. Proc Natl Acad Sci USA 2004;101(1): 314-19
-
(2004)
Proc Natl Acad Sci USA
, vol.101
, Issue.1
, pp. 314-319
-
-
Portevin, D.1
De Sousa-D'Auria, C.2
Houssin, C.3
-
33
-
-
0036020524
-
Drugs that inhibit mycolic acid biosynthesis in Mycobacterium tuberculosis
-
Schroeder EK, de Souza N, Santos DS, et al. Drugs that inhibit mycolic acid biosynthesis in Mycobacterium tuberculosis. Curr Pharm Biotechnol 2002;3(3): 197-225
-
(2002)
Curr Pharm Biotechnol
, vol.3
, Issue.3
, pp. 197-225
-
-
Schroeder, E.K.1
De Souza, N.2
Santos, D.S.3
-
34
-
-
0033962136
-
InhA, a target of the antituberculous drug isoniazid, is involved in a mycobacterial fatty acid elongation system, FAS-II
-
Marrakchi H, Lanéelle G, Quémard A. InhA, a target of the antituberculous drug isoniazid, is involved in a mycobacterial fatty acid elongation system, FAS-II. Microbiology 2000;146(Pt 2): 289-96
-
(2000)
Microbiology
, vol.146
, Issue.PART 2
, pp. 289-296
-
-
Marrakchi, H.1
Lanéelle, G.2
Quémard, A.3
-
35
-
-
84869029377
-
A common mechanism of inhibition of the Mycobacterium tuberculosis mycolic acid biosynthetic pathway by isoxyl and thiacetazone
-
Grzegorzewicz AE, Korduláková J, Jones V, et al. A common mechanism of inhibition of the Mycobacterium tuberculosis mycolic acid biosynthetic pathway by isoxyl and thiacetazone. J Biol Chem 2012;287(46): 38434-41
-
(2012)
J Biol Chem
, vol.287
, Issue.46
, pp. 38434-38441
-
-
Grzegorzewicz, A.E.1
Korduláková, J.2
Jones, V.3
-
36
-
-
84868125770
-
Mutations in the essential FAS II betahydroxyacyl ACP dehydratase complex confer resistance to thiacetazone in Mycobacterium tuberculosis and Mycobacterium kansasii
-
Belardinelli JM, Morbidoni HR. Mutations in the essential FAS II betahydroxyacyl ACP dehydratase complex confer resistance to thiacetazone in Mycobacterium tuberculosis and Mycobacterium kansasii. Mol Microbiol 2012;86(3): 568-79
-
(2012)
Mol Microbiol
, vol.86
, Issue.3
, pp. 568-579
-
-
Belardinelli, J.M.1
Morbidoni, H.R.2
-
37
-
-
60849124512
-
Triclosan derivatives: Towards potent inhibitors of drug-sensitive and drug-resistant Mycobacterium tuberculosis
-
Freundlich JS, Wang F, Vilchèze C, et al. Triclosan derivatives: towards potent inhibitors of drug-sensitive and drug-resistant Mycobacterium tuberculosis. ChemMedChem 2009;4(2): 241-8
-
(2009)
Chem Med Chem
, vol.4
, Issue.2
, pp. 241-248
-
-
Freundlich, J.S.1
Wang, F.2
Vilchèze, C.3
-
38
-
-
17644436310
-
Inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis, by triclosan and isoniazid
-
Parikh SL, Xiao G, Tonge PJ. Inhibition of InhA, the enoyl reductase from Mycobacterium tuberculosis, by triclosan and isoniazid. Biochemistry 2000;39(26): 7645-50
-
(2000)
Biochemistry
, vol.39
, Issue.26
, pp. 7645-7650
-
-
Parikh, S.L.1
Xiao, G.2
Tonge, P.J.3
-
39
-
-
0034595879
-
Thiolactomycin and related analogues as novel anti-mycobacterial agents targeting KasA and KasB condensing enzymes in Mycobacterium tuberculosis
-
Kremer L, Douglas JD, Baulard AR, et al. Thiolactomycin and related analogues as novel anti-mycobacterial agents targeting KasA and KasB condensing enzymes in Mycobacterium tuberculosis. J Biol Chem 2000;275(22): 16857-64
-
(2000)
J Biol Chem
, vol.275
, Issue.22
, pp. 16857-16864
-
-
Kremer, L.1
Douglas, J.D.2
Baulard, A.R.3
-
40
-
-
0041922652
-
Signature gene expression profiles discriminate between isoniazid-, thiolactomycin-, and triclosan-treated Mycobacterium tuberculosis
-
Betts JC, McLaren A, Lennon MG, et al. Signature gene expression profiles discriminate between isoniazid-, thiolactomycin-, and triclosan-treated Mycobacterium tuberculosis. Antimicrob Agents Chemother 2003;47(9): 2903-13
-
(2003)
Antimicrob Agents Chemother
, vol.47
, Issue.9
, pp. 2903-2913
-
-
Betts, J.C.1
McLaren, A.2
Lennon, M.G.3
-
41
-
-
0031007903
-
Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis
-
Belisle JT, Vissa VD, Sievert T, et al. Role of the major antigen of Mycobacterium tuberculosis in cell wall biogenesis. Science 1997;276(5317): 1420-2
-
(1997)
Science
, vol.276
, Issue.5317
, pp. 1420-1422
-
-
Belisle, J.T.1
Vissa, V.D.2
Sievert, T.3
-
42
-
-
0033960935
-
Crystal structure of the secreted form of antigen 85C reveals potential targets for mycobacterial drugs and vaccines
-
Ronning DR, Klabunde T, Besra GS, et al. Crystal structure of the secreted form of antigen 85C reveals potential targets for mycobacterial drugs and vaccines. Nat Struct Biol 2000;7(2): 141-6
-
(2000)
Nat Struct Biol
, vol.7
, Issue.2
, pp. 141-146
-
-
Ronning, D.R.1
Klabunde, T.2
Besra, G.S.3
-
43
-
-
84858692080
-
Antigen 85C inhibition restricts Mycobacterium tuberculosis growth through disruption of cord factor biosynthesis
-
Warrier T, Tropis M, Werngren J, et al. Antigen 85C inhibition restricts Mycobacterium tuberculosis growth through disruption of cord factor biosynthesis. Antimicrob Agents Chemother 2012;56(4): 1735-43
-
(2012)
Antimicrob Agents Chemother
, vol.56
, Issue.4
, pp. 1735-1743
-
-
Warrier, T.1
Tropis, M.2
Werngren, J.3
-
44
-
-
84860181497
-
MmpL genes are associated with mycolic acid metabolism in mycobacteria and corynebacteria
-
Varela C, Rittmann D, Singh A, et al. MmpL genes are associated with mycolic acid metabolism in mycobacteria and corynebacteria. Chem Biol 2012;19(4): 498-506 • Genetic evidence to suggest MmpL3 as a transporter of mycolic acids.
-
(2012)
Chem Biol
, vol.19
, Issue.4
, pp. 498-506
-
-
Varela, C.1
Rittmann, D.2
Singh, A.3
-
46
-
-
79956087446
-
Switch or funnel: How RNDtype transport systems control periplasmic metal homeostasis
-
Kim EH, Nies DH, McEvoy MM, Rensing C. Switch or funnel: how RNDtype transport systems control periplasmic metal homeostasis. J Bacteriol 2011;193(10): 2381-7
-
(2011)
J Bacteriol
, vol.193
, Issue.10
, pp. 2381-2387
-
-
Kim, E.H.1
Nies, D.H.2
McEvoy, M.M.3
Rensing, C.4
-
47
-
-
19744376797
-
Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance
-
Domenech P, Reed MB, Barry CE III. Contribution of the Mycobacterium tuberculosis MmpL protein family to virulence and drug resistance. Infect Immun 2005;73(6): 3492-501 • Article demonstrating essentiality of MmpL3 to Mtb.
-
(2005)
Infect Immun
, vol.73
, Issue.6
, pp. 3492-3501
-
-
Domenech, P.1
Reed, M.B.2
Barry III, C.E.3
-
48
-
-
0032708648
-
Analysis of the proteome of Mycobacterium tuberculosis in silico
-
Tekaia F, Gordon SV, Garnier T, et al. Analysis of the proteome of Mycobacterium tuberculosis in silico. Tuber Lung Dis 1999;79(6): 329-42
-
(1999)
Tuber Lung Dis
, vol.79
, Issue.6
, pp. 329-342
-
-
Tekaia, F.1
Gordon, S.V.2
Garnier, T.3
-
49
-
-
0038623770
-
MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence
-
Converse SE, Mougous JD, Leavell MD, et al. MmpL8 is required for sulfolipid-1 biosynthesis and Mycobacterium tuberculosis virulence. Proc Natl Acad Sci USA 2003;100(10): 6121-6
-
(2003)
Proc Natl Acad Sci USA
, vol.100
, Issue.10
, pp. 6121-6126
-
-
Converse, S.E.1
Mougous, J.D.2
Leavell, M.D.3
-
50
-
-
2442686856
-
The role of MmpL8 in sulfatide biogenesis and virulence of Mycobacterium tuberculosis
-
Domenech P, Reed MB, Dowd CS, et al. The role of MmpL8 in sulfatide biogenesis and virulence of Mycobacterium tuberculosis. J Biol Chem 2004;279(20): 21257-65
-
(2004)
J Biol Chem
, vol.279
, Issue.20
, pp. 21257-21265
-
-
Domenech, P.1
Reed, M.B.2
Dowd, C.S.3
-
51
-
-
33746680377
-
Mycobacterium tuberculosis transporter MmpL7 is a potential substrate for kinase PknD
-
Pérez J, Garcia R, Bach H, et al. Mycobacterium tuberculosis transporter MmpL7 is a potential substrate for kinase PknD. Biochem Biophys Res Commun 2006;348(1): 6-12
-
(2006)
Biochem Biophys Res Commun
, vol.348
, Issue.1
, pp. 6-12
-
-
Pérez, J.1
Garcia, R.2
Bach, H.3
-
52
-
-
79953175298
-
Discovery and characterization of a unique mycobacterial heme acquisition system
-
Tullius MV, Harmston CA, Owens CP, et al. Discovery and characterization of a unique mycobacterial heme acquisition system. Proc Natl Acad Sci USA 2011;108(12): 5051-6 • Implication of MmpL3 and 11 in heme transport.
-
(2011)
Proc Natl Acad Sci USA
, vol.108
, Issue.12
, pp. 5051-5056
-
-
Tullius, M.V.1
Harmston, C.A.2
Owens, C.P.3
-
53
-
-
84881232776
-
The mycobacterium tuberculosis secreted protein Rv0203 transfers Heme to membrane proteins MmpL3 and MmpL11
-
Owens CP, Chim N, Graves AB, et al. The mycobacterium tuberculosis secreted protein Rv0203 transfers Heme to membrane proteins MmpL3 and MmpL11. J Biol Chem 2013;288(30): 21714-28 • Evidence for heme binding by MmpL3.
-
(2013)
J Biol Chem
, vol.288
, Issue.30
, pp. 21714-21728
-
-
Owens, C.P.1
Chim, N.2
Graves, A.B.3
-
54
-
-
84881498792
-
Insights on how the Mycobacterium tuberculosis heme uptake pathway can be used as a drug target
-
Owens CP, Chim N, Goulding CW. Insights on how the Mycobacterium tuberculosis heme uptake pathway can be used as a drug target. Fut Med Chem 2013;5(12): 1391-403
-
(2013)
Fut Med Chem
, vol.5
, Issue.12
, pp. 1391-1403
-
-
Owens, C.P.1
Chim, N.2
Goulding, C.W.3
-
55
-
-
84858677107
-
Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane
-
Grzegorzewicz AE, Pham H, Gundi VA, et al. Inhibition of mycolic acid transport across the Mycobacterium tuberculosis plasma membrane. Nat Chem Biol 2012;8(4): 334-41 • First paper demonstrating involvement of MmpL3 in mycolic acid transport.
-
(2012)
Nat Chem Biol
, vol.8
, Issue.4
, pp. 334-341
-
-
Grzegorzewicz, A.E.1
Pham, H.2
Gundi, V.A.3
-
56
-
-
84876129597
-
Design synthesis and antituberculosis activity of 1-adamantyl-3- heteroaryl ureas with improved in vitro pharmacokinetic properties
-
North EJ, Scherman MS, Bruhn DF, et al. Design, synthesis and antituberculosis activity of 1-adamantyl-3- heteroaryl ureas with improved in vitro pharmacokinetic properties. Bioorg Med Chem 2013;21(9): 2587-99
-
(2013)
Bioorg Med Chem
, vol.21
, Issue.9
, pp. 2587-2599
-
-
North, E.J.1
Scherman, M.S.2
Bruhn, D.F.3
-
57
-
-
0031753303
-
Bactericidal activities of the pyrrole derivative BM212 against multidrugresistant and intramacrophagic Mycobacterium tuberculosis strains
-
Deidda D, Lampis G, Fioravanti R, et al. Bactericidal activities of the pyrrole derivative BM212 against multidrugresistant and intramacrophagic Mycobacterium tuberculosis strains. Antimicrob Agents Chemother 1998;42(11): 3035-7
-
(1998)
Antimicrob Agents Chemother
, vol.42
, Issue.11
, pp. 3035-3037
-
-
Deidda, D.1
Lampis, G.2
Fioravanti, R.3
-
58
-
-
84455173193
-
MmpL3 is the cellular target of the antitubercular pyrrole derivative BM212
-
La Rosa V, Poce G, Canseco JO, et al. MmpL3 is the cellular target of the antitubercular pyrrole derivative BM212. Antimicrob Agents Chemother 2012;56(1): 324-31 • Identification of target for BM212.
-
(2012)
Antimicrob Agents Chemother
, vol.56
, Issue.1
, pp. 324-331
-
-
La Rosa, V.1
Poce, G.2
Canseco, J.O.3
-
59
-
-
84874297088
-
Improved BM212 MmpL3 inhibitor analogue shows efficacy in acute murine model of tuberculosis infection
-
Poce G, Bates RH, Alfonso S, et al. Improved BM212 MmpL3 inhibitor analogue shows efficacy in acute murine model of tuberculosis infection. PLoS One 2013;8(2):e56980
-
(2013)
PLoS One
, vol.8
, Issue.2
-
-
Poce, G.1
Bates, R.H.2
Alfonso, S.3
-
60
-
-
13244283085
-
Pharmacodynamics and pharmacokinetics of SQ109, a new diamine-based antitubercular drug
-
Jia L, Tomaszewski JE, Hanrahan C, et al. Pharmacodynamics and pharmacokinetics of SQ109, a new diamine-based antitubercular drug. Br J Pharmacol 2005;144: 80-7
-
(2005)
Br J Pharmacol
, vol.144
, pp. 80-87
-
-
Jia, L.1
Tomaszewski, J.E.2
Hanrahan, C.3
-
61
-
-
84863404695
-
SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis
-
Tahlan K, Wilson R, Kastrinsky DB, et al. SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis. Antimicrob Agents Chemother 2012;56(4): 1797-809 • Identification of mechanism of action of SQ109.
-
(2012)
Antimicrob Agents Chemother
, vol.56
, Issue.4
, pp. 1797-1809
-
-
Tahlan, K.1
Wilson, R.2
Kastrinsky, D.B.3
-
62
-
-
84865253965
-
Identification of novel inhibitors of M. Tuberculosis growth using whole cell based high-throughput screening
-
Stanley SA, Grant SS, Kawate T, et al. Identification of novel inhibitors of M. tuberculosis growth using whole cell based high-throughput screening. ACS Chem Biol 2012;7(8): 1377-84 • Identification of MmpL3 and DprE1 inhibitors from whole cell screening.
-
(2012)
ACS Chem Biol
, vol.7
, Issue.8
, pp. 1377-1384
-
-
Stanley, S.A.1
Grant, S.S.2
Kawate, T.3
-
63
-
-
84876272210
-
Tetrahydropyrazolo[15-A] Pyrimidine-3-Carboxamide and NBenzyl- 6'7'-Dihydrospiro[ Piperidine- 44'-Thieno[32-c]Pyran] Analogues with Bactericidal Efficacy against Mycobacterium tuberculosis Targeting MmpL3
-
Remuiñán MJ, Pérez-Herrán E, Rullás J, et al. Tetrahydropyrazolo[1,5-a] Pyrimidine-3-Carboxamide and NBenzyl- 6',7'-Dihydrospiro[ Piperidine- 4,4'-Thieno[3,2-c]Pyran] Analogues with Bactericidal Efficacy against Mycobacterium tuberculosis Targeting MmpL3. PLoS One 2013;8(4):e60933 • Two novel inhibitors of MmpL3 showing in vivo efficacy.
-
(2013)
PLoS One
, vol.8
, Issue.4
-
-
Remuiñán, M.J.1
Pérez-Herrán, E.2
Rullás, J.3
-
64
-
-
0037057652
-
Crystal structure of bacterial multidrug efflux transporter AcrB
-
Murakami S, Nakashima R, Yamashita E, Yamaguchi A. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 2002;419(6907): 587-93
-
(2002)
Nature
, vol.419
, Issue.6907
, pp. 587-593
-
-
Murakami, S.1
Nakashima, R.2
Yamashita, E.3
Yamaguchi, A.4
-
65
-
-
0036889033
-
Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominantly by two large periplasmic loops
-
Elkins CA, Nikaido H. Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominantly by two large periplasmic loops. J Bacteriol 2002;184(23): 6490-8
-
(2002)
J Bacteriol
, vol.184
, Issue.23
, pp. 6490-6498
-
-
Elkins, C.A.1
Nikaido, H.2
-
66
-
-
0038670226
-
Structural basis of multiple drugbinding capacity of the AcrB multidrug efflux pump
-
Yu EW, McDermott G, Zgurskaya HI, et al. Structural basis of multiple drugbinding capacity of the AcrB multidrug efflux pump. Science 2003;300(5621): 976-80
-
(2003)
Science
, vol.300
, Issue.5621
, pp. 976-980
-
-
Yu, E.W.1
McDermott, G.2
Zgurskaya, H.I.3
-
67
-
-
0141615783
-
AcrB multidrug efflux pump of Escherichia coli: Composite substrate-binding cavity of exceptional flexibility generates its extremely wide substrate specificity
-
Yu EW, Aires JR, Nikaido H. AcrB multidrug efflux pump of Escherichia coli: composite substrate-binding cavity of exceptional flexibility generates its extremely wide substrate specificity. J Bacteriol 2003;185(19): 5657-64
-
(2003)
J Bacteriol
, vol.185
, Issue.19
, pp. 5657-5664
-
-
Yu, E.W.1
Aires, J.R.2
Nikaido, H.3
-
68
-
-
84858626341
-
Infectious diseases: Transporter targeted in tuberculosis
-
Cole ST. Infectious diseases: transporter targeted in tuberculosis. Nat Chem Biol 2012;8(4): 326-7
-
(2012)
Nat Chem Biol
, vol.8
, Issue.4
, pp. 326-327
-
-
Cole, S.T.1
-
69
-
-
84877267006
-
Advances in the development of new tuberculosis drugs and treatment regimens
-
Zumla A, Nahid P, Cole ST. Advances in the development of new tuberculosis drugs and treatment regimens. Nat Rev Drug Discov 2013;12(5): 388-404 • Review article covering novel targets like MmpL3 and DprE1.
-
(2013)
Nat Rev Drug Discov
, vol.12
, Issue.5
, pp. 388-404
-
-
Zumla, A.1
Nahid, P.2
Cole, S.T.3
-
70
-
-
33646937005
-
Interaction between polyketide synthase and transporter suggests coupled synthesis and export of virulence lipid in M. Tuberculosis
-
Jain M, Cox JS. Interaction between polyketide synthase and transporter suggests coupled synthesis and export of virulence lipid in M. tuberculosis. PLoS Pathog 2005;1(1):e2
-
(2005)
PLoS Pathog
, vol.1
, Issue.1
-
-
Jain, M.1
Cox, J.S.2
-
71
-
-
84881309351
-
Hitting the tuberculosis wall
-
Harrison C. Hitting the tuberculosis wall. Nat Rev Drug Discov 2013;12: 578-9
-
(2013)
Nat Rev Drug Discov
, vol.12
, pp. 578-579
-
-
Harrison, C.1
-
72
-
-
73649143180
-
High content screening identifies decaprenyl-phosphoribose 2' epimerase as a target for intracellular antimycobacterial inhibitors
-
Christophe T, Jackson M, Jeon HK, et al. High content screening identifies decaprenyl-phosphoribose 2' epimerase as a target for intracellular antimycobacterial inhibitors. PLoS Pathog 2009;5(10):e1000645
-
(2009)
PLoS Pathog
, vol.5
, Issue.10
-
-
Christophe, T.1
Jackson, M.2
Jeon, H.K.3
-
73
-
-
77955626451
-
Decaprenylphosphoryl-b-D-ribose 2'- epimerase from Mycobacterium tuberculosis is a magic drug target
-
Manina G, Pasca MR, Buroni S, et al. Decaprenylphosphoryl-b-D-ribose 2'- epimerase from Mycobacterium tuberculosis is a magic drug target. Curr Med Chem 2010;17(27): 3099-108
-
(2010)
Curr Med Chem
, vol.17
, Issue.27
, pp. 3099-3108
-
-
Manina, G.1
Pasca, M.R.2
Buroni, S.3
-
74
-
-
78049483746
-
Leads for antitubercular compounds from kinase inhibitor library screens
-
Magnet S, Hartkoorn RC, Székely R, et al. Leads for antitubercular compounds from kinase inhibitor library screens. Tuberculosis (Edinb) 2010;90(6): 354-60
-
(2010)
Tuberculosis (Edinb)
, vol.90
, Issue.6
, pp. 354-360
-
-
Magnet, S.1
Hartkoorn, R.C.2
Székely, R.3
-
75
-
-
79951566404
-
Decaprenylphosphoryl-beta- D-ribose 2'-epimerase the target of benzothiazinones and dinitrobenzamides is an essential enzyme in Mycobacterium smegmatis
-
Crellin PK, Brammananth R, Coppel RL. Decaprenylphosphoryl-beta- D-ribose 2'-epimerase, the target of benzothiazinones and dinitrobenzamides, is an essential enzyme in Mycobacterium smegmatis. PLoS One 2011;6(2):e16869
-
(2011)
PLoS One
, vol.6
, Issue.2
-
-
Crellin, P.K.1
Brammananth, R.2
Coppel, R.L.3
-
76
-
-
84863919677
-
Structural basis of inhibition of Mycobacterium tuberculosis DprE1 by benzothiazinone inhibitors
-
Batt SM, Jabeen T, Bhowruth V, et al. Structural basis of inhibition of Mycobacterium tuberculosis DprE1 by benzothiazinone inhibitors. Proc Natl Acad Sci USA 2012;109(28): 11354-9
-
(2012)
Proc Natl Acad Sci USA
, vol.109
, Issue.28
, pp. 11354-11359
-
-
Batt, S.M.1
Jabeen, T.2
Bhowruth, V.3
-
77
-
-
84855948516
-
Benzothiazinones are suicide inhibitors of mycobacterial decaprenylphosphoryl-beta- D-ribofuranose 2'-oxidase DprE1
-
Trefzer C, Škovierová H, Buroni S, et al. Benzothiazinones are suicide inhibitors of mycobacterial decaprenylphosphoryl-beta- D-ribofuranose 2'-oxidase DprE1. J Am Chem Soc 2012;134(2): 912-15
-
(2012)
J Am Chem Soc
, vol.134
, Issue.2
, pp. 912-915
-
-
Trefzer, C.1
Škovierová, H.2
Buroni, S.3
-
78
-
-
84879707160
-
Identification of a small molecule with activity against drug-resistant and persistent tuberculosis
-
Wang F, Sambandan D, Halder R, et al. Identification of a small molecule with activity against drug-resistant and persistent tuberculosis. Proc Natl Acad Sci USA 2013;110(27):E2510-17
-
(2013)
Proc Natl Acad Sci USA
, vol.110
, Issue.27
-
-
Wang, F.1
Sambandan, D.2
Halder, R.3
-
79
-
-
65649096556
-
Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis
-
Makarov V, Manina G, Mikusova K, et al. Benzothiazinones kill Mycobacterium tuberculosis by blocking arabinan synthesis. Science 2009;324(5928): 801-4
-
(2009)
Science
, vol.324
, Issue.5928
, pp. 801-804
-
-
Makarov, V.1
Manina, G.2
Mikusova, K.3
|