-
1
-
-
0037184977
-
A web of circadian pacemakers
-
Schibler, U. & P. Sassone-Corsi . 2002. A web of circadian pacemakers. Cell 111: 919-922.
-
(2002)
Cell
, vol.111
, pp. 919-922
-
-
Schibler, U.1
Sassone-Corsi, P.2
-
2
-
-
13944254430
-
System-level identification of transcriptional circuits underlying mammalian circadian clocks
-
Ueda, H.R. et al . 2005. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat. Genet. 37: 187-192.
-
(2005)
Nat. Genet.
, vol.37
, pp. 187-192
-
-
Ueda, H.R.1
-
4
-
-
70450239457
-
Metabolism and cancer: the circadian clock connection
-
Sahar, S. & P. Sassone-Corsi . 2009. Metabolism and cancer: the circadian clock connection. Nat. Rev. Cancer 9: 886-896.
-
(2009)
Nat. Rev. Cancer
, vol.9
, pp. 886-896
-
-
Sahar, S.1
Sassone-Corsi, P.2
-
5
-
-
0025021084
-
Transplanted suprachiasmatic nucleus determines circadian period
-
Ralph, M.R. et al . 1990. Transplanted suprachiasmatic nucleus determines circadian period. Science 247: 975-978.
-
(1990)
Science
, vol.247
, pp. 975-978
-
-
Ralph, M.R.1
-
6
-
-
0028904194
-
Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms
-
Welsh, D.K. et al . 1995. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14: 697-706.
-
(1995)
Neuron
, vol.14
, pp. 697-706
-
-
Welsh, D.K.1
-
7
-
-
0036889795
-
Time after time: inputs to and outputs from the mammalian circadian oscillators
-
Morse, D. & P. Sassone-Corsi . 2002. Time after time: inputs to and outputs from the mammalian circadian oscillators. Trends Neurosci. 25: 632-637.
-
(2002)
Trends Neurosci.
, vol.25
, pp. 632-637
-
-
Morse, D.1
Sassone-Corsi, P.2
-
8
-
-
0034724728
-
Resetting central and peripheral circadian oscillators in transgenic rats
-
Yamazaki, S. et al . 2000. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288: 682-685.
-
(2000)
Science
, vol.288
, pp. 682-685
-
-
Yamazaki, S.1
-
9
-
-
11144353910
-
PERIOD2: LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues
-
Yoo, S.H. et al . 2004. PERIOD2: LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. USA 101: 5339-5346.
-
(2004)
Proc. Natl. Acad. Sci. USA
, vol.101
, pp. 5339-5346
-
-
Yoo, S.H.1
-
10
-
-
0041835846
-
The biological clock nucleus: a multiphasic oscillator network regulated by light
-
Quintero, J.E., S.J. Kuhlman & D.G. McMahon . 2003. The biological clock nucleus: a multiphasic oscillator network regulated by light. J. Neurosci. 23: 8070-8076.
-
(2003)
J. Neurosci.
, vol.23
, pp. 8070-8076
-
-
Quintero, J.E.1
Kuhlman, S.J.2
McMahon, D.G.3
-
11
-
-
78649725166
-
Mammalian circadian clock and metabolism-the epigenetic link
-
Bellet, M.M. & P. Sassone-Corsi . 2010. Mammalian circadian clock and metabolism-the epigenetic link. J. Cell Sci. 123: 3837-3848.
-
(2010)
J. Cell Sci.
, vol.123
, pp. 3837-3848
-
-
Bellet, M.M.1
Sassone-Corsi, P.2
-
12
-
-
0033574775
-
Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors
-
Freedman, M.S. et al . 1999. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284: 502-504.
-
(1999)
Science
, vol.284
, pp. 502-504
-
-
Freedman, M.S.1
-
13
-
-
0035196373
-
Melanopsin in cells of origin of the retinohypothalamic tract
-
Gooley, J.J. et al . 2001. Melanopsin in cells of origin of the retinohypothalamic tract. Nat. Neurosci. 4: 1165.
-
(2001)
Nat. Neurosci.
, vol.4
, pp. 1165
-
-
Gooley, J.J.1
-
14
-
-
0033695926
-
Light induces chromatin modification in cells of the mammalian circadian clock
-
Crosio, C. et al . 2000. Light induces chromatin modification in cells of the mammalian circadian clock. Nat. Neurosci. 3: 1241-1247.
-
(2000)
Nat. Neurosci.
, vol.3
, pp. 1241-1247
-
-
Crosio, C.1
-
15
-
-
0023265407
-
Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain
-
Lehman, M.N. et al . 1987. Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J. Neurosci. 7: 1626-1638.
-
(1987)
J. Neurosci.
, vol.7
, pp. 1626-1638
-
-
Lehman, M.N.1
-
16
-
-
0037067652
-
Phenotypic rescue of a peripheral clock genetic defect via SCN hierarchical dominance
-
Pando, M.P. et al . 2002. Phenotypic rescue of a peripheral clock genetic defect via SCN hierarchical dominance. Cell 110: 107-117.
-
(2002)
Cell
, vol.110
, pp. 107-117
-
-
Pando, M.P.1
-
17
-
-
14644423201
-
Orchestrating time: arrangements of the brain circadian clock
-
Antle, M.C. & R. Silver . 2005. Orchestrating time: arrangements of the brain circadian clock. Trends Neurosci. 28: 145-151.
-
(2005)
Trends Neurosci.
, vol.28
, pp. 145-151
-
-
Antle, M.C.1
Silver, R.2
-
18
-
-
0037161808
-
Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus
-
Cheng, M.Y. et al . 2002. Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 417: 405-410.
-
(2002)
Nature
, vol.417
, pp. 405-410
-
-
Cheng, M.Y.1
-
19
-
-
0035930732
-
Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling
-
Kramer, A. et al . 2001. Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294: 2511-2515.
-
(2001)
Science
, vol.294
, pp. 2511-2515
-
-
Kramer, A.1
-
20
-
-
0035910387
-
Entrainment of the circadian clock in the liver by feeding
-
Stokkan, K.A. et al . 2001. Entrainment of the circadian clock in the liver by feeding. Science 291: 490-493.
-
(2001)
Science
, vol.291
, pp. 490-493
-
-
Stokkan, K.A.1
-
21
-
-
0033637383
-
Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus
-
Damiola, F. et al . 2000. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14: 2950-2961.
-
(2000)
Genes Dev.
, vol.14
, pp. 2950-2961
-
-
Damiola, F.1
-
22
-
-
66149109671
-
Metabolism control by the circadian clock and vice versa
-
Eckel-Mahan, K. & P. Sassone-Corsi . 2009. Metabolism control by the circadian clock and vice versa. Nat. Struct. Mol. Biol. 16: 462-467.
-
(2009)
Nat. Struct. Mol. Biol.
, vol.16
, pp. 462-467
-
-
Eckel-Mahan, K.1
Sassone-Corsi, P.2
-
23
-
-
28844502722
-
Circadian clocks-the fall and rise of physiology
-
Roenneberg, T. & M. Merrow . 2005. Circadian clocks-the fall and rise of physiology. Nat. Rev. Mol. Cell Biol. 6: 965-971.
-
(2005)
Nat. Rev. Mol. Cell Biol.
, vol.6
, pp. 965-971
-
-
Roenneberg, T.1
Merrow, M.2
-
24
-
-
0037125939
-
Rhythms of mammalian body temperature can sustain peripheral circadian clocks
-
Brown, S.A. et al . 2002. Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr. Biol. 12: 1574-1583.
-
(2002)
Curr. Biol.
, vol.12
, pp. 1574-1583
-
-
Brown, S.A.1
-
25
-
-
0037178787
-
The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator
-
Preitner, N. et al . 2002. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110: 251-260.
-
(2002)
Cell
, vol.110
, pp. 251-260
-
-
Preitner, N.1
-
26
-
-
4143142003
-
A functional genomics strategy reveals Rora as a component of the mammalian circadian clock
-
Sato, T.K. et al . 2004. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron. 43: 527-537.
-
(2004)
Neuron.
, vol.43
, pp. 527-537
-
-
Sato, T.K.1
-
27
-
-
23944470712
-
Circadian clock control by SUMOylation of BMAL1
-
Cardone, L. et al . 2005. Circadian clock control by SUMOylation of BMAL1. Science 309: 1390-1394.
-
(2005)
Science
, vol.309
, pp. 1390-1394
-
-
Cardone, L.1
-
28
-
-
0015353260
-
Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions
-
Stephan, F.K. & I. Zucker . 1972. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl. Acad. Sci. USA 69: 1583-1586.
-
(1972)
Proc. Natl. Acad. Sci. USA
, vol.69
, pp. 1583-1586
-
-
Stephan, F.K.1
Zucker, I.2
-
29
-
-
77958574512
-
Plasticity and specificity of the circadian epigenome
-
Masri, S. & P. Sassone-Corsi . 2010. Plasticity and specificity of the circadian epigenome. Nat. Neurosci. 13: 1324-1329.
-
(2010)
Nat. Neurosci.
, vol.13
, pp. 1324-1329
-
-
Masri, S.1
Sassone-Corsi, P.2
-
30
-
-
1642505804
-
Suprachiasmatic nuclei grafts restore the circadian rhythm in the paraventricular nucleus of the hypothalamus
-
Tousson, E. & H. Meissl . 2004. Suprachiasmatic nuclei grafts restore the circadian rhythm in the paraventricular nucleus of the hypothalamus. J. Neurosci. 24: 2983-2988.
-
(2004)
J. Neurosci.
, vol.24
, pp. 2983-2988
-
-
Tousson, E.1
Meissl, H.2
-
31
-
-
0015504847
-
Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat
-
Moore, R.Y. & V.B. Eichler . 1972. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 42: 201-206.
-
(1972)
Brain Res.
, vol.42
, pp. 201-206
-
-
Moore, R.Y.1
Eichler, V.B.2
-
32
-
-
0037006795
-
Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus
-
Akhtar, R.A. et al . 2002. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr. Biol. 12: 540-550.
-
(2002)
Curr. Biol.
, vol.12
, pp. 540-550
-
-
Akhtar, R.A.1
-
33
-
-
18444414586
-
Coordinated transcription of key pathways in the mouse by the circadian clock
-
Panda, S. et al . 2002. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109: 307-320.
-
(2002)
Cell
, vol.109
, pp. 307-320
-
-
Panda, S.1
-
34
-
-
55449106027
-
Analysis of gene regulatory networks in the mammalian circadian rhythm
-
Yan, J. et al . 2008. Analysis of gene regulatory networks in the mammalian circadian rhythm. PLoS Comput. Biol. 4: e1000193.
-
(2008)
PLoS Comput. Biol.
, vol.4
-
-
Yan, J.1
-
35
-
-
65949100132
-
Network features of the mammalian circadian clock
-
Baggs, J.E. et al . 2009. Network features of the mammalian circadian clock. PLoS Biol. 7: e52.
-
(2009)
PLoS Biol.
, vol.7
-
-
Baggs, J.E.1
-
36
-
-
0037188513
-
Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity
-
Travnickova-Bendova, Z. et al . 2002. Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc. Natl. Acad. Sci. USA 99: 7728-7733.
-
(2002)
Proc. Natl. Acad. Sci. USA
, vol.99
, pp. 7728-7733
-
-
Travnickova-Bendova, Z.1
-
37
-
-
0034644473
-
Signaling to chromatin through histone modifications
-
Cheung, P., C.D. Allis & P. Sassone-Corsi . 2000. Signaling to chromatin through histone modifications. Cell 103: 263-271.
-
(2000)
Cell
, vol.103
, pp. 263-271
-
-
Cheung, P.1
Allis, C.D.2
Sassone-Corsi, P.3
-
38
-
-
85015069067
-
Controlling the double helix
-
Felsenfeld, G. & M. Groudine . 2003. Controlling the double helix. Nature 421: 448-453.
-
(2003)
Nature
, vol.421
, pp. 448-453
-
-
Felsenfeld, G.1
Groudine, M.2
-
39
-
-
0033636595
-
Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation
-
Cheung, P. et al . 2000. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell 5: 905-915.
-
(2000)
Mol. Cell
, vol.5
, pp. 905-915
-
-
Cheung, P.1
-
40
-
-
57649239938
-
Decoding the epigenetic language of neuronal plasticity
-
Borrelli, E. et al . 2008. Decoding the epigenetic language of neuronal plasticity. Neuron. 60: 961-974.
-
(2008)
Neuron.
, vol.60
, pp. 961-974
-
-
Borrelli, E.1
-
41
-
-
0030798245
-
Histone acetylation in chromatin structure and transcription
-
Grunstein, M. 1997. Histone acetylation in chromatin structure and transcription. Nature 389: 349-352.
-
(1997)
Nature
, vol.389
, pp. 349-352
-
-
Grunstein, M.1
-
42
-
-
0032142918
-
Roles of histone acetyltransferases and deacetylases in gene regulation
-
Kuo, M.H. & C.D. Allis . 1998. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20: 615-626.
-
(1998)
Bioessays
, vol.20
, pp. 615-626
-
-
Kuo, M.H.1
Allis, C.D.2
-
43
-
-
0032030770
-
Histone acetylation and transcriptional regulatory mechanisms
-
Struhl, K. 1998. Histone acetylation and transcriptional regulatory mechanisms. Genes. Dev. 12: 599-606.
-
(1998)
Genes. Dev.
, vol.12
, pp. 599-606
-
-
Struhl, K.1
-
44
-
-
0030961614
-
Histone acetyltransferases in control
-
Wade, P.A. & A.P. Wolffe . 1997. Histone acetyltransferases in control. Curr. Biol. 7: R82-R84.
-
(1997)
Curr. Biol.
, vol.7
-
-
Wade, P.A.1
Wolffe, A.P.2
-
45
-
-
0031707751
-
Alteration of nucleosome structure as a mechanism of transcriptional regulation
-
Workman, J.L. & R.E. Kingston . 1998. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67: 545-579.
-
(1998)
Annu. Rev. Biochem.
, vol.67
, pp. 545-579
-
-
Workman, J.L.1
Kingston, R.E.2
-
46
-
-
33646145721
-
Circadian regulator CLOCK is a histone acetyltransferase
-
Doi, M., J. Hirayama & P. Sassone-Corsi . 2006. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125: 497-508.
-
(2006)
Cell
, vol.125
, pp. 497-508
-
-
Doi, M.1
Hirayama, J.2
Sassone-Corsi, P.3
-
47
-
-
37249053976
-
CLOCK-mediated acetylation of BMAL1 controls circadian function
-
Hirayama, J. et al . 2007. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450: 1086-1090.
-
(2007)
Nature
, vol.450
, pp. 1086-1090
-
-
Hirayama, J.1
-
48
-
-
47549088250
-
The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
-
Nakahata, Y. et al . 2008. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134: 329-340.
-
(2008)
Cell
, vol.134
, pp. 329-340
-
-
Nakahata, Y.1
-
49
-
-
78649886477
-
The histone methyltransferase MLL1 permits the oscillation of circadian gene expression
-
Katada, S. & P. Sassone-Corsi . 2010. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat. Struct. Mol. Biol. 17: 1414-1421.
-
(2010)
Nat. Struct. Mol. Biol.
, vol.17
, pp. 1414-1421
-
-
Katada, S.1
Sassone-Corsi, P.2
-
50
-
-
80053355301
-
Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock
-
DiTacchio, L. et al . 2011. Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 333: 1881-1885.
-
(2011)
Science
, vol.333
, pp. 1881-1885
-
-
DiTacchio, L.1
-
51
-
-
33751113602
-
Mammalian sirtuins-emerging roles in physiology, aging, and calorie restriction
-
Haigis, M.C. & L.P. Guarente . 2006. Mammalian sirtuins-emerging roles in physiology, aging, and calorie restriction. Genes Dev. 20: 2913-2921.
-
(2006)
Genes Dev.
, vol.20
, pp. 2913-2921
-
-
Haigis, M.C.1
Guarente, L.P.2
-
52
-
-
47749140333
-
SIRT1 regulates circadian clock gene expression through PER2 deacetylation
-
Asher, G. et al . 2008. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134: 317-328.
-
(2008)
Cell
, vol.134
, pp. 317-328
-
-
Asher, G.1
-
53
-
-
79952529158
-
A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
-
Feng, D. et al . 2011. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331: 1315-1319.
-
(2011)
Science
, vol.331
, pp. 1315-1319
-
-
Feng, D.1
-
54
-
-
0001059908
-
Phase relationship of glycolytic intermediates in yeast cells with oscillatory metabolic control
-
Betz, A. & B. Chance . 1965. Phase relationship of glycolytic intermediates in yeast cells with oscillatory metabolic control. Arch. Biochem. Biophys. 109: 585-594.
-
(1965)
Arch. Biochem. Biophys.
, vol.109
, pp. 585-594
-
-
Betz, A.1
Chance, B.2
-
55
-
-
65549118773
-
Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1
-
Nakahata, Y. et al . 2009. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324: 654-657.
-
(2009)
Science
, vol.324
, pp. 654-657
-
-
Nakahata, Y.1
-
56
-
-
65549103855
-
Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
-
Ramsey, K.M. et al . 2009. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324: 651-654.
-
(2009)
Science
, vol.324
, pp. 651-654
-
-
Ramsey, K.M.1
-
57
-
-
33744475759
-
Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage
-
Kolthur-Seetharam, U. et al . 2006. Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage. Cell Cycle 5: 873-877.
-
(2006)
Cell Cycle
, vol.5
, pp. 873-877
-
-
Kolthur-Seetharam, U.1
-
58
-
-
77956627087
-
Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding
-
Asher, G. et al . 2010. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142: 943-953.
-
(2010)
Cell
, vol.142
, pp. 943-953
-
-
Asher, G.1
-
59
-
-
84857124907
-
The human circadian metabolome
-
Dallmann, R. et al . 2012. The human circadian metabolome. Proc. Natl. Acad. Sci. USA 109: 2625-2629.
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 2625-2629
-
-
Dallmann, R.1
-
60
-
-
67649875655
-
Measurement of internal body time by blood metabolomics
-
Minami, Y. et al . 2009. Measurement of internal body time by blood metabolomics. Proc. Natl. Acad. Sci. USA 106: 9890-9895.
-
(2009)
Proc. Natl. Acad. Sci. USA
, vol.106
, pp. 9890-9895
-
-
Minami, Y.1
-
61
-
-
84859459231
-
Coordination of the transcriptome and metabolome by the circadian clock
-
Eckel-Mahan, K.L. et al . 2012. Coordination of the transcriptome and metabolome by the circadian clock. Proc. Natl. Acad. Sci. USA 109: 5541-5546.
-
(2012)
Proc. Natl. Acad. Sci. USA
, vol.109
, pp. 5541-5546
-
-
Eckel-Mahan, K.L.1
-
62
-
-
33746344698
-
The polycomb group protein EZH2 is required for mammalian circadian clock function
-
Etchegaray, J.P. et al . 2006. The polycomb group protein EZH2 is required for mammalian circadian clock function. J. Biol. Chem. 281: 21209-21215.
-
(2006)
J. Biol. Chem.
, vol.281
, pp. 21209-21215
-
-
Etchegaray, J.P.1
|