메뉴 건너뛰기




Volumn 1264, Issue 1, 2012, Pages 103-109

The circadian clock transcriptional complex: Metabolic feedback intersects with epigenetic control

Author keywords

Circadian clock; Epigenetics; Metabolism

Indexed keywords

NICOTINAMIDE ADENINE DINUCLEOTIDE; TRANSCRIPTOME;

EID: 84864857778     PISSN: 00778923     EISSN: 17496632     Source Type: Book Series    
DOI: 10.1111/j.1749-6632.2012.06649.x     Document Type: Article
Times cited : (46)

References (62)
  • 1
    • 0037184977 scopus 로고    scopus 로고
    • A web of circadian pacemakers
    • Schibler, U. & P. Sassone-Corsi . 2002. A web of circadian pacemakers. Cell 111: 919-922.
    • (2002) Cell , vol.111 , pp. 919-922
    • Schibler, U.1    Sassone-Corsi, P.2
  • 2
    • 13944254430 scopus 로고    scopus 로고
    • System-level identification of transcriptional circuits underlying mammalian circadian clocks
    • Ueda, H.R. et al . 2005. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat. Genet. 37: 187-192.
    • (2005) Nat. Genet. , vol.37 , pp. 187-192
    • Ueda, H.R.1
  • 3
    • 50249100374 scopus 로고    scopus 로고
    • The meter of metabolism
    • Green, C.B., J.S. Takahashi & J. Bass . 2008. The meter of metabolism. Cell 134: 728-742.
    • (2008) Cell , vol.134 , pp. 728-742
    • Green, C.B.1    Takahashi, J.S.2    Bass, J.3
  • 4
    • 70450239457 scopus 로고    scopus 로고
    • Metabolism and cancer: the circadian clock connection
    • Sahar, S. & P. Sassone-Corsi . 2009. Metabolism and cancer: the circadian clock connection. Nat. Rev. Cancer 9: 886-896.
    • (2009) Nat. Rev. Cancer , vol.9 , pp. 886-896
    • Sahar, S.1    Sassone-Corsi, P.2
  • 5
    • 0025021084 scopus 로고
    • Transplanted suprachiasmatic nucleus determines circadian period
    • Ralph, M.R. et al . 1990. Transplanted suprachiasmatic nucleus determines circadian period. Science 247: 975-978.
    • (1990) Science , vol.247 , pp. 975-978
    • Ralph, M.R.1
  • 6
    • 0028904194 scopus 로고
    • Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms
    • Welsh, D.K. et al . 1995. Individual neurons dissociated from rat suprachiasmatic nucleus express independently phased circadian firing rhythms. Neuron 14: 697-706.
    • (1995) Neuron , vol.14 , pp. 697-706
    • Welsh, D.K.1
  • 7
    • 0036889795 scopus 로고    scopus 로고
    • Time after time: inputs to and outputs from the mammalian circadian oscillators
    • Morse, D. & P. Sassone-Corsi . 2002. Time after time: inputs to and outputs from the mammalian circadian oscillators. Trends Neurosci. 25: 632-637.
    • (2002) Trends Neurosci. , vol.25 , pp. 632-637
    • Morse, D.1    Sassone-Corsi, P.2
  • 8
    • 0034724728 scopus 로고    scopus 로고
    • Resetting central and peripheral circadian oscillators in transgenic rats
    • Yamazaki, S. et al . 2000. Resetting central and peripheral circadian oscillators in transgenic rats. Science 288: 682-685.
    • (2000) Science , vol.288 , pp. 682-685
    • Yamazaki, S.1
  • 9
    • 11144353910 scopus 로고    scopus 로고
    • PERIOD2: LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues
    • Yoo, S.H. et al . 2004. PERIOD2: LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc. Natl. Acad. Sci. USA 101: 5339-5346.
    • (2004) Proc. Natl. Acad. Sci. USA , vol.101 , pp. 5339-5346
    • Yoo, S.H.1
  • 10
    • 0041835846 scopus 로고    scopus 로고
    • The biological clock nucleus: a multiphasic oscillator network regulated by light
    • Quintero, J.E., S.J. Kuhlman & D.G. McMahon . 2003. The biological clock nucleus: a multiphasic oscillator network regulated by light. J. Neurosci. 23: 8070-8076.
    • (2003) J. Neurosci. , vol.23 , pp. 8070-8076
    • Quintero, J.E.1    Kuhlman, S.J.2    McMahon, D.G.3
  • 11
    • 78649725166 scopus 로고    scopus 로고
    • Mammalian circadian clock and metabolism-the epigenetic link
    • Bellet, M.M. & P. Sassone-Corsi . 2010. Mammalian circadian clock and metabolism-the epigenetic link. J. Cell Sci. 123: 3837-3848.
    • (2010) J. Cell Sci. , vol.123 , pp. 3837-3848
    • Bellet, M.M.1    Sassone-Corsi, P.2
  • 12
    • 0033574775 scopus 로고    scopus 로고
    • Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors
    • Freedman, M.S. et al . 1999. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284: 502-504.
    • (1999) Science , vol.284 , pp. 502-504
    • Freedman, M.S.1
  • 13
    • 0035196373 scopus 로고    scopus 로고
    • Melanopsin in cells of origin of the retinohypothalamic tract
    • Gooley, J.J. et al . 2001. Melanopsin in cells of origin of the retinohypothalamic tract. Nat. Neurosci. 4: 1165.
    • (2001) Nat. Neurosci. , vol.4 , pp. 1165
    • Gooley, J.J.1
  • 14
    • 0033695926 scopus 로고    scopus 로고
    • Light induces chromatin modification in cells of the mammalian circadian clock
    • Crosio, C. et al . 2000. Light induces chromatin modification in cells of the mammalian circadian clock. Nat. Neurosci. 3: 1241-1247.
    • (2000) Nat. Neurosci. , vol.3 , pp. 1241-1247
    • Crosio, C.1
  • 15
    • 0023265407 scopus 로고
    • Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain
    • Lehman, M.N. et al . 1987. Circadian rhythmicity restored by neural transplant. Immunocytochemical characterization of the graft and its integration with the host brain. J. Neurosci. 7: 1626-1638.
    • (1987) J. Neurosci. , vol.7 , pp. 1626-1638
    • Lehman, M.N.1
  • 16
    • 0037067652 scopus 로고    scopus 로고
    • Phenotypic rescue of a peripheral clock genetic defect via SCN hierarchical dominance
    • Pando, M.P. et al . 2002. Phenotypic rescue of a peripheral clock genetic defect via SCN hierarchical dominance. Cell 110: 107-117.
    • (2002) Cell , vol.110 , pp. 107-117
    • Pando, M.P.1
  • 17
    • 14644423201 scopus 로고    scopus 로고
    • Orchestrating time: arrangements of the brain circadian clock
    • Antle, M.C. & R. Silver . 2005. Orchestrating time: arrangements of the brain circadian clock. Trends Neurosci. 28: 145-151.
    • (2005) Trends Neurosci. , vol.28 , pp. 145-151
    • Antle, M.C.1    Silver, R.2
  • 18
    • 0037161808 scopus 로고    scopus 로고
    • Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus
    • Cheng, M.Y. et al . 2002. Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 417: 405-410.
    • (2002) Nature , vol.417 , pp. 405-410
    • Cheng, M.Y.1
  • 19
    • 0035930732 scopus 로고    scopus 로고
    • Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling
    • Kramer, A. et al . 2001. Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signaling. Science 294: 2511-2515.
    • (2001) Science , vol.294 , pp. 2511-2515
    • Kramer, A.1
  • 20
    • 0035910387 scopus 로고    scopus 로고
    • Entrainment of the circadian clock in the liver by feeding
    • Stokkan, K.A. et al . 2001. Entrainment of the circadian clock in the liver by feeding. Science 291: 490-493.
    • (2001) Science , vol.291 , pp. 490-493
    • Stokkan, K.A.1
  • 21
    • 0033637383 scopus 로고    scopus 로고
    • Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus
    • Damiola, F. et al . 2000. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 14: 2950-2961.
    • (2000) Genes Dev. , vol.14 , pp. 2950-2961
    • Damiola, F.1
  • 22
    • 66149109671 scopus 로고    scopus 로고
    • Metabolism control by the circadian clock and vice versa
    • Eckel-Mahan, K. & P. Sassone-Corsi . 2009. Metabolism control by the circadian clock and vice versa. Nat. Struct. Mol. Biol. 16: 462-467.
    • (2009) Nat. Struct. Mol. Biol. , vol.16 , pp. 462-467
    • Eckel-Mahan, K.1    Sassone-Corsi, P.2
  • 23
    • 28844502722 scopus 로고    scopus 로고
    • Circadian clocks-the fall and rise of physiology
    • Roenneberg, T. & M. Merrow . 2005. Circadian clocks-the fall and rise of physiology. Nat. Rev. Mol. Cell Biol. 6: 965-971.
    • (2005) Nat. Rev. Mol. Cell Biol. , vol.6 , pp. 965-971
    • Roenneberg, T.1    Merrow, M.2
  • 24
    • 0037125939 scopus 로고    scopus 로고
    • Rhythms of mammalian body temperature can sustain peripheral circadian clocks
    • Brown, S.A. et al . 2002. Rhythms of mammalian body temperature can sustain peripheral circadian clocks. Curr. Biol. 12: 1574-1583.
    • (2002) Curr. Biol. , vol.12 , pp. 1574-1583
    • Brown, S.A.1
  • 25
    • 0037178787 scopus 로고    scopus 로고
    • The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator
    • Preitner, N. et al . 2002. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell 110: 251-260.
    • (2002) Cell , vol.110 , pp. 251-260
    • Preitner, N.1
  • 26
    • 4143142003 scopus 로고    scopus 로고
    • A functional genomics strategy reveals Rora as a component of the mammalian circadian clock
    • Sato, T.K. et al . 2004. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron. 43: 527-537.
    • (2004) Neuron. , vol.43 , pp. 527-537
    • Sato, T.K.1
  • 27
    • 23944470712 scopus 로고    scopus 로고
    • Circadian clock control by SUMOylation of BMAL1
    • Cardone, L. et al . 2005. Circadian clock control by SUMOylation of BMAL1. Science 309: 1390-1394.
    • (2005) Science , vol.309 , pp. 1390-1394
    • Cardone, L.1
  • 28
    • 0015353260 scopus 로고
    • Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions
    • Stephan, F.K. & I. Zucker . 1972. Circadian rhythms in drinking behavior and locomotor activity of rats are eliminated by hypothalamic lesions. Proc. Natl. Acad. Sci. USA 69: 1583-1586.
    • (1972) Proc. Natl. Acad. Sci. USA , vol.69 , pp. 1583-1586
    • Stephan, F.K.1    Zucker, I.2
  • 29
    • 77958574512 scopus 로고    scopus 로고
    • Plasticity and specificity of the circadian epigenome
    • Masri, S. & P. Sassone-Corsi . 2010. Plasticity and specificity of the circadian epigenome. Nat. Neurosci. 13: 1324-1329.
    • (2010) Nat. Neurosci. , vol.13 , pp. 1324-1329
    • Masri, S.1    Sassone-Corsi, P.2
  • 30
    • 1642505804 scopus 로고    scopus 로고
    • Suprachiasmatic nuclei grafts restore the circadian rhythm in the paraventricular nucleus of the hypothalamus
    • Tousson, E. & H. Meissl . 2004. Suprachiasmatic nuclei grafts restore the circadian rhythm in the paraventricular nucleus of the hypothalamus. J. Neurosci. 24: 2983-2988.
    • (2004) J. Neurosci. , vol.24 , pp. 2983-2988
    • Tousson, E.1    Meissl, H.2
  • 31
    • 0015504847 scopus 로고
    • Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat
    • Moore, R.Y. & V.B. Eichler . 1972. Loss of a circadian adrenal corticosterone rhythm following suprachiasmatic lesions in the rat. Brain Res. 42: 201-206.
    • (1972) Brain Res. , vol.42 , pp. 201-206
    • Moore, R.Y.1    Eichler, V.B.2
  • 32
    • 0037006795 scopus 로고    scopus 로고
    • Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus
    • Akhtar, R.A. et al . 2002. Circadian cycling of the mouse liver transcriptome, as revealed by cDNA microarray, is driven by the suprachiasmatic nucleus. Curr. Biol. 12: 540-550.
    • (2002) Curr. Biol. , vol.12 , pp. 540-550
    • Akhtar, R.A.1
  • 33
    • 18444414586 scopus 로고    scopus 로고
    • Coordinated transcription of key pathways in the mouse by the circadian clock
    • Panda, S. et al . 2002. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell 109: 307-320.
    • (2002) Cell , vol.109 , pp. 307-320
    • Panda, S.1
  • 34
    • 55449106027 scopus 로고    scopus 로고
    • Analysis of gene regulatory networks in the mammalian circadian rhythm
    • Yan, J. et al . 2008. Analysis of gene regulatory networks in the mammalian circadian rhythm. PLoS Comput. Biol. 4: e1000193.
    • (2008) PLoS Comput. Biol. , vol.4
    • Yan, J.1
  • 35
    • 65949100132 scopus 로고    scopus 로고
    • Network features of the mammalian circadian clock
    • Baggs, J.E. et al . 2009. Network features of the mammalian circadian clock. PLoS Biol. 7: e52.
    • (2009) PLoS Biol. , vol.7
    • Baggs, J.E.1
  • 36
    • 0037188513 scopus 로고    scopus 로고
    • Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity
    • Travnickova-Bendova, Z. et al . 2002. Bimodal regulation of mPeriod promoters by CREB-dependent signaling and CLOCK/BMAL1 activity. Proc. Natl. Acad. Sci. USA 99: 7728-7733.
    • (2002) Proc. Natl. Acad. Sci. USA , vol.99 , pp. 7728-7733
    • Travnickova-Bendova, Z.1
  • 37
    • 0034644473 scopus 로고    scopus 로고
    • Signaling to chromatin through histone modifications
    • Cheung, P., C.D. Allis & P. Sassone-Corsi . 2000. Signaling to chromatin through histone modifications. Cell 103: 263-271.
    • (2000) Cell , vol.103 , pp. 263-271
    • Cheung, P.1    Allis, C.D.2    Sassone-Corsi, P.3
  • 38
    • 85015069067 scopus 로고    scopus 로고
    • Controlling the double helix
    • Felsenfeld, G. & M. Groudine . 2003. Controlling the double helix. Nature 421: 448-453.
    • (2003) Nature , vol.421 , pp. 448-453
    • Felsenfeld, G.1    Groudine, M.2
  • 39
    • 0033636595 scopus 로고    scopus 로고
    • Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation
    • Cheung, P. et al . 2000. Synergistic coupling of histone H3 phosphorylation and acetylation in response to epidermal growth factor stimulation. Mol. Cell 5: 905-915.
    • (2000) Mol. Cell , vol.5 , pp. 905-915
    • Cheung, P.1
  • 40
    • 57649239938 scopus 로고    scopus 로고
    • Decoding the epigenetic language of neuronal plasticity
    • Borrelli, E. et al . 2008. Decoding the epigenetic language of neuronal plasticity. Neuron. 60: 961-974.
    • (2008) Neuron. , vol.60 , pp. 961-974
    • Borrelli, E.1
  • 41
    • 0030798245 scopus 로고    scopus 로고
    • Histone acetylation in chromatin structure and transcription
    • Grunstein, M. 1997. Histone acetylation in chromatin structure and transcription. Nature 389: 349-352.
    • (1997) Nature , vol.389 , pp. 349-352
    • Grunstein, M.1
  • 42
    • 0032142918 scopus 로고    scopus 로고
    • Roles of histone acetyltransferases and deacetylases in gene regulation
    • Kuo, M.H. & C.D. Allis . 1998. Roles of histone acetyltransferases and deacetylases in gene regulation. Bioessays 20: 615-626.
    • (1998) Bioessays , vol.20 , pp. 615-626
    • Kuo, M.H.1    Allis, C.D.2
  • 43
    • 0032030770 scopus 로고    scopus 로고
    • Histone acetylation and transcriptional regulatory mechanisms
    • Struhl, K. 1998. Histone acetylation and transcriptional regulatory mechanisms. Genes. Dev. 12: 599-606.
    • (1998) Genes. Dev. , vol.12 , pp. 599-606
    • Struhl, K.1
  • 44
    • 0030961614 scopus 로고    scopus 로고
    • Histone acetyltransferases in control
    • Wade, P.A. & A.P. Wolffe . 1997. Histone acetyltransferases in control. Curr. Biol. 7: R82-R84.
    • (1997) Curr. Biol. , vol.7
    • Wade, P.A.1    Wolffe, A.P.2
  • 45
    • 0031707751 scopus 로고    scopus 로고
    • Alteration of nucleosome structure as a mechanism of transcriptional regulation
    • Workman, J.L. & R.E. Kingston . 1998. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu. Rev. Biochem. 67: 545-579.
    • (1998) Annu. Rev. Biochem. , vol.67 , pp. 545-579
    • Workman, J.L.1    Kingston, R.E.2
  • 46
    • 33646145721 scopus 로고    scopus 로고
    • Circadian regulator CLOCK is a histone acetyltransferase
    • Doi, M., J. Hirayama & P. Sassone-Corsi . 2006. Circadian regulator CLOCK is a histone acetyltransferase. Cell 125: 497-508.
    • (2006) Cell , vol.125 , pp. 497-508
    • Doi, M.1    Hirayama, J.2    Sassone-Corsi, P.3
  • 47
    • 37249053976 scopus 로고    scopus 로고
    • CLOCK-mediated acetylation of BMAL1 controls circadian function
    • Hirayama, J. et al . 2007. CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450: 1086-1090.
    • (2007) Nature , vol.450 , pp. 1086-1090
    • Hirayama, J.1
  • 48
    • 47549088250 scopus 로고    scopus 로고
    • The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control
    • Nakahata, Y. et al . 2008. The NAD+-dependent deacetylase SIRT1 modulates CLOCK-mediated chromatin remodeling and circadian control. Cell 134: 329-340.
    • (2008) Cell , vol.134 , pp. 329-340
    • Nakahata, Y.1
  • 49
    • 78649886477 scopus 로고    scopus 로고
    • The histone methyltransferase MLL1 permits the oscillation of circadian gene expression
    • Katada, S. & P. Sassone-Corsi . 2010. The histone methyltransferase MLL1 permits the oscillation of circadian gene expression. Nat. Struct. Mol. Biol. 17: 1414-1421.
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 1414-1421
    • Katada, S.1    Sassone-Corsi, P.2
  • 50
    • 80053355301 scopus 로고    scopus 로고
    • Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock
    • DiTacchio, L. et al . 2011. Histone lysine demethylase JARID1a activates CLOCK-BMAL1 and influences the circadian clock. Science 333: 1881-1885.
    • (2011) Science , vol.333 , pp. 1881-1885
    • DiTacchio, L.1
  • 51
    • 33751113602 scopus 로고    scopus 로고
    • Mammalian sirtuins-emerging roles in physiology, aging, and calorie restriction
    • Haigis, M.C. & L.P. Guarente . 2006. Mammalian sirtuins-emerging roles in physiology, aging, and calorie restriction. Genes Dev. 20: 2913-2921.
    • (2006) Genes Dev. , vol.20 , pp. 2913-2921
    • Haigis, M.C.1    Guarente, L.P.2
  • 52
    • 47749140333 scopus 로고    scopus 로고
    • SIRT1 regulates circadian clock gene expression through PER2 deacetylation
    • Asher, G. et al . 2008. SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134: 317-328.
    • (2008) Cell , vol.134 , pp. 317-328
    • Asher, G.1
  • 53
    • 79952529158 scopus 로고    scopus 로고
    • A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism
    • Feng, D. et al . 2011. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science 331: 1315-1319.
    • (2011) Science , vol.331 , pp. 1315-1319
    • Feng, D.1
  • 54
    • 0001059908 scopus 로고
    • Phase relationship of glycolytic intermediates in yeast cells with oscillatory metabolic control
    • Betz, A. & B. Chance . 1965. Phase relationship of glycolytic intermediates in yeast cells with oscillatory metabolic control. Arch. Biochem. Biophys. 109: 585-594.
    • (1965) Arch. Biochem. Biophys. , vol.109 , pp. 585-594
    • Betz, A.1    Chance, B.2
  • 55
    • 65549118773 scopus 로고    scopus 로고
    • Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1
    • Nakahata, Y. et al . 2009. Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science 324: 654-657.
    • (2009) Science , vol.324 , pp. 654-657
    • Nakahata, Y.1
  • 56
    • 65549103855 scopus 로고    scopus 로고
    • Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis
    • Ramsey, K.M. et al . 2009. Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science 324: 651-654.
    • (2009) Science , vol.324 , pp. 651-654
    • Ramsey, K.M.1
  • 57
    • 33744475759 scopus 로고    scopus 로고
    • Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage
    • Kolthur-Seetharam, U. et al . 2006. Control of AIF-mediated cell death by the functional interplay of SIRT1 and PARP-1 in response to DNA damage. Cell Cycle 5: 873-877.
    • (2006) Cell Cycle , vol.5 , pp. 873-877
    • Kolthur-Seetharam, U.1
  • 58
    • 77956627087 scopus 로고    scopus 로고
    • Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding
    • Asher, G. et al . 2010. Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142: 943-953.
    • (2010) Cell , vol.142 , pp. 943-953
    • Asher, G.1
  • 59
    • 84857124907 scopus 로고    scopus 로고
    • The human circadian metabolome
    • Dallmann, R. et al . 2012. The human circadian metabolome. Proc. Natl. Acad. Sci. USA 109: 2625-2629.
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 2625-2629
    • Dallmann, R.1
  • 60
    • 67649875655 scopus 로고    scopus 로고
    • Measurement of internal body time by blood metabolomics
    • Minami, Y. et al . 2009. Measurement of internal body time by blood metabolomics. Proc. Natl. Acad. Sci. USA 106: 9890-9895.
    • (2009) Proc. Natl. Acad. Sci. USA , vol.106 , pp. 9890-9895
    • Minami, Y.1
  • 61
    • 84859459231 scopus 로고    scopus 로고
    • Coordination of the transcriptome and metabolome by the circadian clock
    • Eckel-Mahan, K.L. et al . 2012. Coordination of the transcriptome and metabolome by the circadian clock. Proc. Natl. Acad. Sci. USA 109: 5541-5546.
    • (2012) Proc. Natl. Acad. Sci. USA , vol.109 , pp. 5541-5546
    • Eckel-Mahan, K.L.1
  • 62
    • 33746344698 scopus 로고    scopus 로고
    • The polycomb group protein EZH2 is required for mammalian circadian clock function
    • Etchegaray, J.P. et al . 2006. The polycomb group protein EZH2 is required for mammalian circadian clock function. J. Biol. Chem. 281: 21209-21215.
    • (2006) J. Biol. Chem. , vol.281 , pp. 21209-21215
    • Etchegaray, J.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.