메뉴 건너뛰기




Volumn 5, Issue 1, 2013, Pages

Effective and efficient microprocessor design space exploration using unlabeled design configurations

Author keywords

Active learning; Design space exploration; Machine learning; Microprocessor design; Semisupervised learning; Simulation

Indexed keywords

ACTIVE LEARNING; DESIGN SPACE EXPLORATION; MICROPROCESSOR DESIGNS; SEMI- SUPERVISED LEARNING; SIMULATION;

EID: 84891783012     PISSN: 21576904     EISSN: 21576912     Source Type: Journal    
DOI: 10.1145/2542182.2542202     Document Type: Article
Times cited : (25)

References (47)
  • 1
    • 0036469652 scopus 로고    scopus 로고
    • Simplescalar: An infrastructure for computer system modeling
    • AUSTIN, T., LARSON, E., AND ERNST, D. 2002. Simplescalar: An infrastructure for computer system modeling. Computer 35, 2, 59-67.
    • (2002) Computer , vol.35 , Issue.2 , pp. 59-67
    • Austin, T.1    Larson, E.2    Ernst, D.3
  • 10
    • 80052635395 scopus 로고    scopus 로고
    • An empirical architecture-centric approach to microarchitectural design space exploration
    • DUBACH, C., JONES, T., AND O'BOYLE,M. 2011. An empirical architecture-centric approach to microarchitectural design space exploration. IEEE Trans. Comput. 60, 10, 1445-1458.
    • (2011) IEEE Trans. Comput. , vol.60 , Issue.10 , pp. 1445-1458
    • Dubach, C.1    Jones, T.2    O'boyle, M.3
  • 11
    • 0031209604 scopus 로고    scopus 로고
    • Selective sampling using the query by committee algorithm
    • FREUND, Y., SEUNG, H. S., SHAMIR, E., AND TISHBY, N. 1997. Selective sampling using the query by committee algorithm. Machine Learn. 28, 2-3, 133-168. (Pubitemid 127506338)
    • (1997) Machine Learning , vol.28 , Issue.2-3 , pp. 133-168
    • Freund, Y.1    Seung, H.S.2    Shamir, E.3    Tishby, N.4
  • 12
    • 29344468051 scopus 로고    scopus 로고
    • A hybrid generative/discriminative approach to semi-supervised classifier design
    • Proceedings of the 20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, AAAI-05/IAAI-05
    • FUJINO, A., UEDA, N., AND SAITO, K. 2005. A hybrid generative/ discriminative approach to semisupervised classifier design. In Proceedings of the 20th National Conference on Artificial Intelligence. 764- 769. (Pubitemid 43006701)
    • (2005) Proceedings of the National Conference on Artificial Intelligence , vol.2 , pp. 764-769
    • Fujino, A.1    Ueda, N.2    Saito, K.3
  • 13
    • 74549142310 scopus 로고    scopus 로고
    • Chip multiprocessor design space exploration through statistical simulation
    • GENBRUGGE, D. AND EECKHOUT, L. 2009. Chip multiprocessor design space exploration through statistical simulation. IEEE Trans. Comput. 58, 12, 1668-1681.
    • (2009) IEEE Trans. Comput. , vol.58 , Issue.12 , pp. 1668-1681
    • Genbrugge, D.1    Eeckhout, L.2
  • 18
    • 65549117937 scopus 로고    scopus 로고
    • Godson-3: A scalable multicore RISC processor with X86 emulation
    • HU, W.,WANG, J., GAO, X., CHEN, Y., LIU, Q., AND LI, G. 2009. Godson-3: A scalable multicore RISC processor with X86 emulation. IEEE Micro 29, 2, 17-29.
    • (2009) IEEE Micro , vol.29 , Issue.2 , pp. 17-29
    • Hu, W.1    Wang, J.2    Gao, X.3    Chen, Y.4    Liu, Q.5    Li, G.6
  • 22
    • 33748863916 scopus 로고    scopus 로고
    • Construction and use of linear regression models for processor performance analysis
    • DOI 10.1109/HPCA.2006.1598116, 1598116, Proceedings - Twelfth International Symposium on High-Performance Computer Architecture, 2006
    • JOSEPH, P.,KAPIL, V., AND THAZHUTHAVEETIL, M. 2006. Construction and use of linear regression models for processor performance analysis. In Proceedings of the 12th International Symposium on High Performance Computer Architecture. 99-108. (Pubitemid 44418381)
    • (2006) Proceedings - International Symposium on High-Performance Computer Architecture , vol.2006 , pp. 99-108
    • Joseph, P.J.1    Vaswani, K.2    Thazhuthaveetil, M.J.3
  • 23
    • 33646486530 scopus 로고    scopus 로고
    • Measuring benchmark similarity using inherent program characteristics
    • JOSHI, A.,PHANSALKAR, A.,EECKHOUT, L., AND JOHN, L. K. 2006. Measuring benchmark similarity using inherent program characteristics. IEEE Trans. Comput. 55, 6, 769-782.
    • (2006) IEEE Trans. Comput. , vol.55 , Issue.6 , pp. 769-782
    • Joshi, A.1    Phansalkar, A.2    Eeckhout, L.3    John, L.K.4
  • 27
    • 36249007597 scopus 로고    scopus 로고
    • Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples
    • DOI 10.1109/TSMCA.2007.904745
    • LI, M. AND ZHOU, Z.-H. 2007. Improve computer-aided diagnosis with machine learning techniques using undiagnosed samples. IEEE Trans. Syst. Man Cybern. Part A Syst. Humans 37, 6, 1088-1098. (Pubitemid 350130846)
    • (2007) IEEE Transactions on Systems, Man, and Cybernetics Part A:Systems and Humans , vol.37 , Issue.6 , pp. 1088-1098
    • Li, M.1    Zhou, Z.-H.2
  • 29
    • 84898980291 scopus 로고    scopus 로고
    • A mixture of experts classifier with learning based on both labelled and unlabelled data
    • MILLER, D. J. AND UYAR, H. S. 1997. A mixture of experts classifier with learning based on both labelled and unlabelled data. In Advances in Neural Information Processing Systems 9, 571-577.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 571-577
    • Miller, D.J.1    Uyar, H.S.2
  • 32
    • 0033886806 scopus 로고    scopus 로고
    • Text classification from labeled and unlabeled documents using EM
    • NIGAM, K.,MCCALLUM, A. K., THRUN, S., AND MITCHELL, T. 2000. Text classification from labeled and unlabeled documents using em. Machine Learn. 39, 2-3, 103-134. (Pubitemid 30594822)
    • (2000) Machine Learning , vol.39 , Issue.2 , pp. 103-134
    • Nigam, K.1    Mccallum, A.K.2    Thrun, S.3    Mitchell, T.4
  • 34
    • 33845437061 scopus 로고    scopus 로고
    • Automatically characterizing large scale program behavior
    • DOI 10.1145/635508.605403
    • SHERWOOD, T., PERELMAN, E., HAMERLY, G., AND CALDER, B. 2002. Automatically characterizing large scale program behavior. In Proceedings of the 10th International Conference on Architectural Support for Programming Languages and Operating Systems. 45-57. (Pubitemid 44892222)
    • (2002) Operating Systems Review (ACM) , vol.36 , Issue.5 , pp. 45-57
    • Sherwood, T.1    Perelman, E.2    Hamerly, G.3    Calder, B.4
  • 40
    • 29344456217 scopus 로고    scopus 로고
    • Unsupervised and semi-supervised multi-class support vector machines
    • Proceedings of the 20th National Conference on Artificial Intelligence and the 17th Innovative Applications of Artificial Intelligence Conference, AAAI-05/IAAI-05
    • XU, L. AND SCHUURMANS, D. 2005. Unsupervised and semi-supervised multi-class support vector machines. In Proceedings of the 20th National Conference on Artificial Intelligence. 904-910. (Pubitemid 43006723)
    • (2005) Proceedings of the National Conference on Artificial Intelligence , vol.2 , pp. 904-910
    • Xu, L.1    Schuurmans, D.2
  • 42
    • 33746834100 scopus 로고    scopus 로고
    • Enhancing relevance feedback in image retrieval using unlabeled data
    • DOI 10.1145/1148020.1148023
    • ZHOU, Z.-H., CHEN, K.-J., ANDDAI,H.-B. 2006. Enhancing relevance feedback in image retrieval using unlabeled data. ACM Trans Inf. Syst. 24, 2, 219-244. (Pubitemid 44180738)
    • (2006) ACM Transactions on Information Systems , vol.24 , Issue.2 , pp. 219-244
    • Zhou, Z.-H.1    Chen, K.E.-J.2    Dai, H.-B.3
  • 44
    • 28244448186 scopus 로고    scopus 로고
    • Tri-training: Exploiting unlabeled data using three classifiers
    • DOI 10.1109/TKDE.2005.186
    • ZHOU, Z.-H. AND LI, M. 2005b. Tri-training: Exploiting unlabeled data using three classifiers. IEEE Trans. Knowl. Data Engin. 17, 11, 1529-1541. (Pubitemid 41704840)
    • (2005) IEEE Transactions on Knowledge and Data Engineering , vol.17 , Issue.11 , pp. 1529-1541
    • Zhou, Z.-H.1    Li, M.2
  • 45
    • 77956708689 scopus 로고    scopus 로고
    • Semi-supervised learning by disagreement
    • ZHOU, Z.-H. AND LI, M. 2010. Semi-supervised learning by disagreement. Knowledge Inf. Syst. 24, 3, 415-439.
    • (2010) Knowledge Inf. Syst. , vol.24 , Issue.3 , pp. 415-439
    • Zhou, Z.-H.1    Li, M.2
  • 46
    • 36348938695 scopus 로고    scopus 로고
    • Semi-supervised learning with very few labeled training examples
    • AAAI-07/IAAI-07 Proceedings: 22nd AAAI Conference on Artificial Intelligence and the 19th Innovative Applications of Artificial Intelligence Conference
    • ZHOU, Z.-H., ZHAN, D.-C., AND YANG, Q. 2007. Semi-supervised learning with very few labeled training examples. In Proceedings of the 22nd National Conference on Artificial Intelligence. 675-680. (Pubitemid 350149648)
    • (2007) Proceedings of the National Conference on Artificial Intelligence , vol.1 , pp. 675-680
    • Zhou, Z.-H.1    Zhan, D.-C.2    Yang, Q.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.