메뉴 건너뛰기




Volumn 7, Issue , 2006, Pages 343-378

Using machine learning to guide architecture simulation

Author keywords

Bayesian information criterion; K means; Random projection; SimPoint; Simulation

Indexed keywords

ADAPTIVE ALGORITHMS; BENCHMARKING; COMPUTER AIDED SOFTWARE ENGINEERING; COMPUTER ARCHITECTURE; COMPUTER HARDWARE; COMPUTER PROGRAMMING; COMPUTER SIMULATION; MATHEMATICAL MODELS; PRODUCT DESIGN; PROGRAM PROCESSORS; RESEARCH AND DEVELOPMENT MANAGEMENT; SIMULATORS;

EID: 33646355951     PISSN: 15337928     EISSN: 15337928     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (23)

References (38)
  • 2
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • H. Akaike. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19: 716-723, 1974.
    • (1974) IEEE Transactions on Automatic Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 7
    • 0003465202 scopus 로고    scopus 로고
    • The SimpleScalar tool set, version 2.0
    • University of Wisconsin, Madison, June
    • D. C. Burger and T. M. Austin. The SimpleScalar tool set, version 2.0. Technical Report CS-TR-97-1342, University of Wisconsin, Madison, June 1997.
    • (1997) Technical Report CS-TR-97-1342
    • Burger, D.C.1    Austin, T.M.2
  • 10
    • 9444237880 scopus 로고    scopus 로고
    • How fast is k-means?
    • S. Dasgupta. How fast is k-means? In COLT, page 735, 2003.
    • (2003) COLT , pp. 735
    • Dasgupta, S.1
  • 11
    • 1942485278 scopus 로고    scopus 로고
    • Using the triangle inequality to accelerate k-means
    • C. Elkan. Using the triangle inequality to accelerate k-means. In ICML, pages 147-153, 2003.
    • (2003) ICML , pp. 147-153
    • Elkan, C.1
  • 12
    • 0002679222 scopus 로고    scopus 로고
    • Scalability for clustering algorithms revisited
    • F. Farnstrom, J. Lewis, and C. Elkan. Scalability for clustering algorithms revisited. SIGKDD Explor. Newsl., 2(1):51-57, 2000.
    • (2000) SIGKDD Explor. Newsl , vol.2 , Issue.1 , pp. 51-57
    • Farnstrom, F.1    Lewis, J.2    Elkan, C.3
  • 14
    • 0021938963 scopus 로고
    • Clustering to minimize the maximum intercluster distance
    • T. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science, 38: 293-306, 1985.
    • (1985) Theoretical Computer Science , vol.38 , pp. 293-306
    • Gonzalez, T.1
  • 17
    • 0022064511 scopus 로고
    • A best possible heuristic for the k:-center problem
    • D. Hochbaum and D. Shmoys. A best possible heuristic for the k:-center problem. Mathematics of Operations Research, 10(2): 180-184, 1985.
    • (1985) Mathematics of Operations Research , vol.10 , Issue.2 , pp. 180-184
    • Hochbaum, D.1    Shmoys, D.2
  • 24
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • L. M. LeCam and J. Neyman, editors, Berkeley, CA. University of California Press
    • J. MacQueen. Some methods for classification and analysis of multivariate observations. In L. M. LeCam and J. Neyman, editors, Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, volume 1, pages 281-297, Berkeley, CA, 1967. University of California Press.
    • (1967) Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability , vol.1 , pp. 281-297
    • MacQueen, J.1
  • 25
    • 0034259565 scopus 로고    scopus 로고
    • Rotated partial distance search for faster vector quantization encoding
    • J. McNames. Rotated partial distance search for faster vector quantization encoding. IEEE Signal Processing Letters, 7(9), 2000.
    • (2000) IEEE Signal Processing Letters , vol.7 , Issue.9
    • McNames, J.1
  • 30
    • 0141771188 scopus 로고    scopus 로고
    • A survey of methods for scaling up inductive algorithms
    • F. J. Provost and V. Kolluri. A survey of methods for scaling up inductive algorithms. Data Mining and Knowledge Discovery, 3(2): 131-169, 1999.
    • (1999) Data Mining and Knowledge Discovery , vol.3 , Issue.2 , pp. 131-169
    • Provost, F.J.1    Kolluri, V.2
  • 31
    • 0018015137 scopus 로고
    • Modeling by shortest data description
    • J. Rissanen. Modeling by shortest data description. Automatica, 14:465-471, 1978.
    • (1978) Automatica , vol.14 , pp. 465-471
    • Rissanen, J.1
  • 32
    • 32344436208 scopus 로고    scopus 로고
    • A multinomial clustering model for fast simulation of computer architecture designs
    • K. Sanghai, T. Su, J. Dy, and D. Kaeli. A multinomial clustering model for fast simulation of computer architecture designs. In KDD, pages 808-813, 2005.
    • (2005) KDD , pp. 808-813
    • Sanghai, K.1    Su, T.2    Dy, J.3    Kaeli, D.4
  • 33
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • G. Schwarz. Estimating the dimension of a model. The Annnals of Statistics, 6(2):461-464, 1978.
    • (1978) The Annnals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.