메뉴 건너뛰기




Volumn 37, Issue 1, 2014, Pages 20-29

New insights into the therapeutic potential of Girk channels

Author keywords

[No Author keywords available]

Indexed keywords

G PROTEIN COUPLED INWARDLY RECTIFYING POTASSIUM CHANNEL; G PROTEIN COUPLED RECEPTOR; RGS PROTEIN; SORTING NEXIN; SORTING NEXIN 27; UNCLASSIFIED DRUG;

EID: 84891356685     PISSN: 01662236     EISSN: 1878108X     Source Type: Journal    
DOI: 10.1016/j.tins.2013.10.006     Document Type: Review
Times cited : (97)

References (125)
  • 1
    • 77951498231 scopus 로고    scopus 로고
    • Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease
    • Luscher C., Slesinger P.A. Emerging roles for G protein-gated inwardly rectifying potassium (GIRK) channels in health and disease. Nat. Rev. Neurosci. 2010, 11:301-315.
    • (2010) Nat. Rev. Neurosci. , vol.11 , pp. 301-315
    • Luscher, C.1    Slesinger, P.A.2
  • 2
    • 74949143771 scopus 로고    scopus 로고
    • Inwardly rectifying potassium channels: their structure, function, and physiological roles
    • Hibino H., et al. Inwardly rectifying potassium channels: their structure, function, and physiological roles. Physiol. Rev. 2010, 90:291-366.
    • (2010) Physiol. Rev. , vol.90 , pp. 291-366
    • Hibino, H.1
  • 3
    • 0032142923 scopus 로고    scopus 로고
    • Characterization of murine Girk2 transcript isoforms: structure and differential expression
    • Wei J., et al. Characterization of murine Girk2 transcript isoforms: structure and differential expression. Genomics 1998, 51:379-390.
    • (1998) Genomics , vol.51 , pp. 379-390
    • Wei, J.1
  • 4
    • 0035030701 scopus 로고    scopus 로고
    • Cloning and characterization of G protein-gated inward rectifier K+ channel (GIRK1) isoforms from heart and brain
    • Zhu L., et al. Cloning and characterization of G protein-gated inward rectifier K+ channel (GIRK1) isoforms from heart and brain. J. Mol. Neurosci. 2001, 16:21-32.
    • (2001) J. Mol. Neurosci. , vol.16 , pp. 21-32
    • Zhu, L.1
  • 5
    • 0028934859 scopus 로고
    • The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K+-channel proteins
    • Krapivinsky G., et al. The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K+-channel proteins. Nature 1995, 374:135-141.
    • (1995) Nature , vol.374 , pp. 135-141
    • Krapivinsky, G.1
  • 6
    • 0033593226 scopus 로고    scopus 로고
    • GIRK4 confers appropriate processing and cell surface localization to G-protein-gated potassium channels
    • Kennedy M.E., et al. GIRK4 confers appropriate processing and cell surface localization to G-protein-gated potassium channels. J. Biol. Chem. 1999, 274:2571-2582.
    • (1999) J. Biol. Chem. , vol.274 , pp. 2571-2582
    • Kennedy, M.E.1
  • 7
    • 0037186091 scopus 로고    scopus 로고
    • Diverse trafficking patterns due to multiple traffic motifs in G protein-activated inwardly rectifying potassium channels from brain and heart
    • Ma D., et al. Diverse trafficking patterns due to multiple traffic motifs in G protein-activated inwardly rectifying potassium channels from brain and heart. Neuron 2002, 33:715-729.
    • (2002) Neuron , vol.33 , pp. 715-729
    • Ma, D.1
  • 8
    • 0030462237 scopus 로고    scopus 로고
    • Control of channel activity through a unique amino acid residue of a G protein-gated inwardly rectifying K+ channel subunit
    • Chan K.W., et al. Control of channel activity through a unique amino acid residue of a G protein-gated inwardly rectifying K+ channel subunit. Proc. Natl. Acad. Sci. U.S.A. 1996, 93:14193-14198.
    • (1996) Proc. Natl. Acad. Sci. U.S.A. , vol.93 , pp. 14193-14198
    • Chan, K.W.1
  • 9
    • 0029944453 scopus 로고    scopus 로고
    • IRK(1-3) and GIRK(1-4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain
    • Karschin C., et al. IRK(1-3) and GIRK(1-4) inwardly rectifying K+ channel mRNAs are differentially expressed in the adult rat brain. J. Neurosci. 1996, 16:3559-3570.
    • (1996) J. Neurosci. , vol.16 , pp. 3559-3570
    • Karschin, C.1
  • 10
    • 82455210759 scopus 로고    scopus 로고
    • Developmental regulation of G protein-gated inwardly-rectifying K+ (GIRK/Kir3) channel subunits in the brain
    • Fernandez-Alacid L., et al. Developmental regulation of G protein-gated inwardly-rectifying K+ (GIRK/Kir3) channel subunits in the brain. Eur. J. Neurosci. 2011, 34:1724-1736.
    • (2011) Eur. J. Neurosci. , vol.34 , pp. 1724-1736
    • Fernandez-Alacid, L.1
  • 11
    • 0037184996 scopus 로고    scopus 로고
    • Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8A resolution
    • Nishida M., MacKinnon R. Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8A resolution. Cell 2002, 111:957-965.
    • (2002) Cell , vol.111 , pp. 957-965
    • Nishida, M.1    MacKinnon, R.2
  • 12
    • 34547130933 scopus 로고    scopus 로고
    • Structural diversity in the cytoplasmic region of G protein-gated inward rectifier K+ channels
    • Inanobe A., et al. Structural diversity in the cytoplasmic region of G protein-gated inward rectifier K+ channels. Channels 2007, 1:39-45.
    • (2007) Channels , vol.1 , pp. 39-45
    • Inanobe, A.1
  • 13
    • 34548386717 scopus 로고    scopus 로고
    • Crystal structure of a Kir3.1-prokaryotic Kir channel chimera
    • Nishida M., et al. Crystal structure of a Kir3.1-prokaryotic Kir channel chimera. EMBO J. 2007, 26:4005-4015.
    • (2007) EMBO J. , vol.26 , pp. 4005-4015
    • Nishida, M.1
  • 14
    • 78649641632 scopus 로고    scopus 로고
    • A structural determinant for the control of PIP2 sensitivity in G protein-gated inward rectifier K+ channels
    • Inanobe A., et al. A structural determinant for the control of PIP2 sensitivity in G protein-gated inward rectifier K+ channels. J. Biol. Chem. 2010, 285:38517-38523.
    • (2010) J. Biol. Chem. , vol.285 , pp. 38517-38523
    • Inanobe, A.1
  • 15
    • 80053485088 scopus 로고    scopus 로고
    • Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium
    • Whorton M.R., MacKinnon R. Crystal structure of the mammalian GIRK2 K+ channel and gating regulation by G proteins, PIP2, and sodium. Cell 2011, 147:199-208.
    • (2011) Cell , vol.147 , pp. 199-208
    • Whorton, M.R.1    MacKinnon, R.2
  • 16
    • 84878996278 scopus 로고    scopus 로고
    • X-ray structure of the mammalian GIRK2-betagamma G-protein complex
    • Whorton M.R., MacKinnon R. X-ray structure of the mammalian GIRK2-betagamma G-protein complex. Nature 2013, 498:190-197.
    • (2013) Nature , vol.498 , pp. 190-197
    • Whorton, M.R.1    MacKinnon, R.2
  • 17
    • 0342806880 scopus 로고    scopus 로고
    • Heteromultimerization of G-protein-gated inwardly rectifying K+ channel proteins GIRK1 and GIRK2 and their altered expression in weaver brain
    • Liao Y.J., et al. Heteromultimerization of G-protein-gated inwardly rectifying K+ channel proteins GIRK1 and GIRK2 and their altered expression in weaver brain. J. Neurosci. 1996, 16:7137-7150.
    • (1996) J. Neurosci. , vol.16 , pp. 7137-7150
    • Liao, Y.J.1
  • 18
    • 0028792376 scopus 로고
    • Identification of structural elements involved in G protein gating of the GIRK1 potassium channel
    • Slesinger P.A., et al. Identification of structural elements involved in G protein gating of the GIRK1 potassium channel. Neuron 1995, 15:1145-1156.
    • (1995) Neuron , vol.15 , pp. 1145-1156
    • Slesinger, P.A.1
  • 19
    • 0001310802 scopus 로고    scopus 로고
    • Specific regions of heteromeric subunits involved in enhancement of G protein-gated K+ channel activity
    • Chan K.W., et al. Specific regions of heteromeric subunits involved in enhancement of G protein-gated K+ channel activity. J. Biol. Chem. 1997, 272:6548-6555.
    • (1997) J. Biol. Chem. , vol.272 , pp. 6548-6555
    • Chan, K.W.1
  • 20
    • 84871836589 scopus 로고    scopus 로고
    • Structural elements in the Girk1 subunit that potentiate G protein-gated potassium channel activity
    • Wydeven N., et al. Structural elements in the Girk1 subunit that potentiate G protein-gated potassium channel activity. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:21492-21497.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 21492-21497
    • Wydeven, N.1
  • 21
    • 0034703064 scopus 로고    scopus 로고
    • A switch mechanism for G beta gamma activation of I(KACh)
    • Medina I., et al. A switch mechanism for G beta gamma activation of I(KACh). J. Biol. Chem. 2000, 275:29709-29716.
    • (2000) J. Biol. Chem. , vol.275 , pp. 29709-29716
    • Medina, I.1
  • 22
    • 0043237432 scopus 로고    scopus 로고
    • Mapping the Gbetagamma-binding sites in GIRK1 and GIRK2 subunits of the G protein-activated K+ channel
    • Ivanina T., et al. Mapping the Gbetagamma-binding sites in GIRK1 and GIRK2 subunits of the G protein-activated K+ channel. J. Biol. Chem. 2003, 278:29174-29183.
    • (2003) J. Biol. Chem. , vol.278 , pp. 29174-29183
    • Ivanina, T.1
  • 23
    • 33749182815 scopus 로고    scopus 로고
    • Differential phosphoinositide binding to components of the G protein-gated K+ channel
    • Thomas A.M., et al. Differential phosphoinositide binding to components of the G protein-gated K+ channel. J. Membr. Biol. 2006, 211:43-53.
    • (2006) J. Membr. Biol. , vol.211 , pp. 43-53
    • Thomas, A.M.1
  • 24
    • 67349200241 scopus 로고    scopus 로고
    • Mass spectrometric analysis reveals a functionally important PKA phosphorylation site in a Kir3 channel subunit
    • Rusinova R., et al. Mass spectrometric analysis reveals a functionally important PKA phosphorylation site in a Kir3 channel subunit. Pflugers Arch. 2009, 458:303-314.
    • (2009) Pflugers Arch. , vol.458 , pp. 303-314
    • Rusinova, R.1
  • 25
    • 67651094171 scopus 로고    scopus 로고
    • Divergent regulation of GIRK1 and GIRK2 subunits of the neuronal G protein gated K+ channel by GalphaiGDP and Gbetagamma
    • Rubinstein M., et al. Divergent regulation of GIRK1 and GIRK2 subunits of the neuronal G protein gated K+ channel by GalphaiGDP and Gbetagamma. J. Physiol. 2009, 587:3473-3491.
    • (2009) J. Physiol. , vol.587 , pp. 3473-3491
    • Rubinstein, M.1
  • 26
    • 77949893099 scopus 로고    scopus 로고
    • G alpha(i) and G betagamma jointly regulate the conformations of a G betagamma effector, the neuronal G protein-activated K+ channel (GIRK)
    • Berlin S., et al. G alpha(i) and G betagamma jointly regulate the conformations of a G betagamma effector, the neuronal G protein-activated K+ channel (GIRK). J. Biol. Chem. 2010, 285:6179-6185.
    • (2010) J. Biol. Chem. , vol.285 , pp. 6179-6185
    • Berlin, S.1
  • 27
    • 1642499473 scopus 로고    scopus 로고
    • Bi-directional effects of GABA(B) receptor agonists on the mesolimbic dopamine system
    • Cruz H.G., et al. Bi-directional effects of GABA(B) receptor agonists on the mesolimbic dopamine system. Nat. Neurosci. 2004, 7:153-159.
    • (2004) Nat. Neurosci. , vol.7 , pp. 153-159
    • Cruz, H.G.1
  • 28
    • 36448957260 scopus 로고    scopus 로고
    • RGS2 modulates coupling between GABAB receptors and GIRK channels in dopamine neurons of the ventral tegmental area
    • Labouebe G., et al. RGS2 modulates coupling between GABAB receptors and GIRK channels in dopamine neurons of the ventral tegmental area. Nat. Neurosci. 2007, 10:1559-1568.
    • (2007) Nat. Neurosci. , vol.10 , pp. 1559-1568
    • Labouebe, G.1
  • 29
    • 0034680849 scopus 로고    scopus 로고
    • Functional and biochemical evidence for G-protein-gated inwardly rectifying K+ (GIRK) channels composed of GIRK2 and GIRK3
    • Jelacic T.M., et al. Functional and biochemical evidence for G-protein-gated inwardly rectifying K+ (GIRK) channels composed of GIRK2 and GIRK3. J. Biol. Chem. 2000, 275:36211-36216.
    • (2000) J. Biol. Chem. , vol.275 , pp. 36211-36216
    • Jelacic, T.M.1
  • 30
    • 34748849547 scopus 로고    scopus 로고
    • A unique sorting nexin regulates trafficking of potassium channels via a PDZ domain interaction
    • Lunn M.L., et al. A unique sorting nexin regulates trafficking of potassium channels via a PDZ domain interaction. Nat. Neurosci. 2007, 10:1249-1259.
    • (2007) Nat. Neurosci. , vol.10 , pp. 1249-1259
    • Lunn, M.L.1
  • 31
    • 42549096638 scopus 로고    scopus 로고
    • GPCR-Kir channel signaling complexes: defining rules of engagement
    • Doupnik C.A. GPCR-Kir channel signaling complexes: defining rules of engagement. J. Recept. Signal Transduct. Res. 2008, 28:83-91.
    • (2008) J. Recept. Signal Transduct. Res. , vol.28 , pp. 83-91
    • Doupnik, C.A.1
  • 32
    • 0032546013 scopus 로고    scopus 로고
    • Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma
    • Huang C.L., et al. Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by Gbetagamma. Nature 1998, 391:803-806.
    • (1998) Nature , vol.391 , pp. 803-806
    • Huang, C.L.1
  • 33
    • 0032477641 scopus 로고    scopus 로고
    • Activation of the atrial KACh channel by the betagamma subunits of G proteins or intracellular Na+ ions depends on the presence of phosphatidylinositol phosphates
    • Sui J.L., et al. Activation of the atrial KACh channel by the betagamma subunits of G proteins or intracellular Na+ ions depends on the presence of phosphatidylinositol phosphates. Proc. Natl. Acad. Sci. U.S.A. 1998, 95:1307-1312.
    • (1998) Proc. Natl. Acad. Sci. U.S.A. , vol.95 , pp. 1307-1312
    • Sui, J.L.1
  • 34
    • 78751530099 scopus 로고    scopus 로고
    • NMR analyses of the Gbetagamma binding and conformational rearrangements of the cytoplasmic pore of G protein-activated inwardly rectifying potassium channel 1 (GIRK1)
    • Yokogawa M., et al. NMR analyses of the Gbetagamma binding and conformational rearrangements of the cytoplasmic pore of G protein-activated inwardly rectifying potassium channel 1 (GIRK1). J. Biol. Chem. 2011, 286:2215-2223.
    • (2011) J. Biol. Chem. , vol.286 , pp. 2215-2223
    • Yokogawa, M.1
  • 35
    • 0028792375 scopus 로고
    • Evidence that direct binding of G beta gamma to the GIRK1 G protein-gated inwardly rectifying K+ channel is important for channel activation
    • Huang C.L., et al. Evidence that direct binding of G beta gamma to the GIRK1 G protein-gated inwardly rectifying K+ channel is important for channel activation. Neuron 1995, 15:1133-1143.
    • (1995) Neuron , vol.15 , pp. 1133-1143
    • Huang, C.L.1
  • 36
    • 13444254031 scopus 로고    scopus 로고
    • Pertussis-toxin-sensitive Galpha subunits selectively bind to C-terminal domain of neuronal GIRK channels: evidence for a heterotrimeric G-protein-channel complex
    • Clancy S.M., et al. Pertussis-toxin-sensitive Galpha subunits selectively bind to C-terminal domain of neuronal GIRK channels: evidence for a heterotrimeric G-protein-channel complex. Mol. Cell. Neurosci. 2005, 28:375-389.
    • (2005) Mol. Cell. Neurosci. , vol.28 , pp. 375-389
    • Clancy, S.M.1
  • 37
    • 33746871075 scopus 로고    scopus 로고
    • Heterotrimeric G proteins form stable complexes with adenylyl cyclase and Kir3.1 channels in living cells
    • Rebois R.V., et al. Heterotrimeric G proteins form stable complexes with adenylyl cyclase and Kir3.1 channels in living cells. J. Cell Sci. 2006, 119:2807-2818.
    • (2006) J. Cell Sci. , vol.119 , pp. 2807-2818
    • Rebois, R.V.1
  • 38
    • 84861733224 scopus 로고    scopus 로고
    • Structural basis for modulation of gating property of G protein-gated inwardly rectifying potassium ion channel (GIRK) by i/o-family G protein alpha subunit (Galphai/o)
    • Mase Y., et al. Structural basis for modulation of gating property of G protein-gated inwardly rectifying potassium ion channel (GIRK) by i/o-family G protein alpha subunit (Galphai/o). J. Biol. Chem. 2012, 287:19537-19549.
    • (2012) J. Biol. Chem. , vol.287 , pp. 19537-19549
    • Mase, Y.1
  • 39
    • 0037012061 scopus 로고    scopus 로고
    • G(alpha)(i) controls the gating of the G protein-activated K+ channel, GIRK
    • Peleg S., et al. G(alpha)(i) controls the gating of the G protein-activated K+ channel, GIRK. Neuron 2002, 33:87-99.
    • (2002) Neuron , vol.33 , pp. 87-99
    • Peleg, S.1
  • 40
    • 34248162453 scopus 로고    scopus 로고
    • Galphai3 primes the G protein-activated K+ channels for activation by coexpressed Gbetagamma in intact Xenopus oocytes
    • Rubinstein M., et al. Galphai3 primes the G protein-activated K+ channels for activation by coexpressed Gbetagamma in intact Xenopus oocytes. J. Physiol. 2007, 581:17-32.
    • (2007) J. Physiol. , vol.581 , pp. 17-32
    • Rubinstein, M.1
  • 41
    • 36348984585 scopus 로고    scopus 로고
    • Specificity of Gbetagamma signaling to Kir3 channels depends on the helical domain of pertussis toxin-sensitive Galpha subunits
    • Rusinova R., et al. Specificity of Gbetagamma signaling to Kir3 channels depends on the helical domain of pertussis toxin-sensitive Galpha subunits. J. Biol. Chem. 2007, 282:34019-34030.
    • (2007) J. Biol. Chem. , vol.282 , pp. 34019-34030
    • Rusinova, R.1
  • 42
    • 29444446964 scopus 로고    scopus 로고
    • Heterotrimeric G proteins precouple with G protein-coupled receptors in living cells
    • Nobles M., et al. Heterotrimeric G proteins precouple with G protein-coupled receptors in living cells. Proc. Natl. Acad. Sci. U.S.A. 2005, 102:18706-18711.
    • (2005) Proc. Natl. Acad. Sci. U.S.A. , vol.102 , pp. 18706-18711
    • Nobles, M.1
  • 43
    • 77958465763 scopus 로고    scopus 로고
    • Evidence for oligomerization between GABAB receptors and GIRK channels containing the GIRK1 and GIRK3 subunits
    • Ciruela F., et al. Evidence for oligomerization between GABAB receptors and GIRK channels containing the GIRK1 and GIRK3 subunits. Eur. J. Neurosci. 2010, 32:1265-1277.
    • (2010) Eur. J. Neurosci. , vol.32 , pp. 1265-1277
    • Ciruela, F.1
  • 44
    • 84888129272 scopus 로고    scopus 로고
    • Association of Rgs7/Gbeta5 complexes with Girk channels and GABA receptors in hippocampal CA1 pyramidal neurons
    • Fajardo-Serrano A., et al. Association of Rgs7/Gbeta5 complexes with Girk channels and GABA receptors in hippocampal CA1 pyramidal neurons. Hippocampus 2013, 10.1002/hipo.22161.
    • (2013) Hippocampus
    • Fajardo-Serrano, A.1
  • 45
    • 70649114734 scopus 로고    scopus 로고
    • Elucidation of the gating of the GIRK channel using a spectroscopic approach
    • Raveh A., et al. Elucidation of the gating of the GIRK channel using a spectroscopic approach. J. Physiol. 2009, 587:5331-5335.
    • (2009) J. Physiol. , vol.587 , pp. 5331-5335
    • Raveh, A.1
  • 46
    • 84877253627 scopus 로고    scopus 로고
    • A nexus for receptor recycling
    • Pfeffer S.R. A nexus for receptor recycling. Nat. Cell Biol. 2013, 15:446-448.
    • (2013) Nat. Cell Biol. , vol.15 , pp. 446-448
    • Pfeffer, S.R.1
  • 47
    • 0038025375 scopus 로고    scopus 로고
    • A developmentally regulated and psychostimulant-inducible novel rat gene mrt1 encoding PDZ-PX proteins isolated in the neocortex
    • Kajii Y., et al. A developmentally regulated and psychostimulant-inducible novel rat gene mrt1 encoding PDZ-PX proteins isolated in the neocortex. Mol. Psychiatry 2003, 8:434-444.
    • (2003) Mol. Psychiatry , vol.8 , pp. 434-444
    • Kajii, Y.1
  • 48
    • 84877254679 scopus 로고    scopus 로고
    • Loss of sorting nexin 27 contributes to excitatory synaptic dysfunction by modulating glutamate receptor recycling in Down's syndrome
    • Wang X., et al. Loss of sorting nexin 27 contributes to excitatory synaptic dysfunction by modulating glutamate receptor recycling in Down's syndrome. Nat. Med. 2013, 19:473-480.
    • (2013) Nat. Med. , vol.19 , pp. 473-480
    • Wang, X.1
  • 50
    • 79954992086 scopus 로고    scopus 로고
    • Mechanism underlying selective regulation of G protein-gated inwardly rectifying potassium channels by the psychostimulant-sensitive sorting nexin 27
    • Balana B., et al. Mechanism underlying selective regulation of G protein-gated inwardly rectifying potassium channels by the psychostimulant-sensitive sorting nexin 27. Proc. Natl. Acad. Sci. U.S.A. 2011, 108:5831-5836.
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 5831-5836
    • Balana, B.1
  • 51
    • 84875457625 scopus 로고    scopus 로고
    • Ras-association domain of sorting Nexin 27 is critical for regulating expression of GIRK potassium channels
    • Balana B., et al. Ras-association domain of sorting Nexin 27 is critical for regulating expression of GIRK potassium channels. PLoS ONE 2013, 8:e59800.
    • (2013) PLoS ONE , vol.8
    • Balana, B.1
  • 52
    • 55749087186 scopus 로고    scopus 로고
    • Subunit-specific regulation of Kir3 channels by sorting nexin 27
    • Nassirpour R., Slesinger P.A. Subunit-specific regulation of Kir3 channels by sorting nexin 27. Channels 2007, 1:331-333.
    • (2007) Channels , vol.1 , pp. 331-333
    • Nassirpour, R.1    Slesinger, P.A.2
  • 53
    • 80052170030 scopus 로고    scopus 로고
    • Acute cocaine exposure weakens GABA(B) receptor-dependent G-protein-gated inwardly rectifying K+ signaling in dopamine neurons of the ventral tegmental area
    • Arora D., et al. Acute cocaine exposure weakens GABA(B) receptor-dependent G-protein-gated inwardly rectifying K+ signaling in dopamine neurons of the ventral tegmental area. J. Neurosci. 2011, 31:12251-12257.
    • (2011) J. Neurosci. , vol.31 , pp. 12251-12257
    • Arora, D.1
  • 54
    • 84858042525 scopus 로고    scopus 로고
    • Methamphetamine-evoked depression of GABA(B) receptor signaling in GABA neurons of the VTA
    • Padgett C.L., et al. Methamphetamine-evoked depression of GABA(B) receptor signaling in GABA neurons of the VTA. Neuron 2012, 73:978-989.
    • (2012) Neuron , vol.73 , pp. 978-989
    • Padgett, C.L.1
  • 55
    • 84884808809 scopus 로고    scopus 로고
    • Repeated cocaine weakens GABA-Girk signaling in layer 5/6 pyramidal neurons in the prelimbic cortex
    • Hearing M., et al. Repeated cocaine weakens GABA-Girk signaling in layer 5/6 pyramidal neurons in the prelimbic cortex. Neuron 2013, 80:159-170.
    • (2013) Neuron , vol.80 , pp. 159-170
    • Hearing, M.1
  • 56
    • 30144433373 scopus 로고    scopus 로고
    • Abnormal expression of the G-protein-activated inwardly rectifying potassium channel 2 (GIRK2) in hippocampus, frontal cortex, and substantia nigra of Ts65Dn mouse: a model of Down syndrome
    • Harashima C., et al. Abnormal expression of the G-protein-activated inwardly rectifying potassium channel 2 (GIRK2) in hippocampus, frontal cortex, and substantia nigra of Ts65Dn mouse: a model of Down syndrome. J. Comp. Neurol. 2006, 494:815-833.
    • (2006) J. Comp. Neurol. , vol.494 , pp. 815-833
    • Harashima, C.1
  • 57
    • 33846404179 scopus 로고    scopus 로고
    • Ts65Dn, a mouse model of Down syndrome, exhibits increased GABAB-induced potassium current
    • Best T.K., et al. Ts65Dn, a mouse model of Down syndrome, exhibits increased GABAB-induced potassium current. J. Neurophysiol. 2007, 97:892-900.
    • (2007) J. Neurophysiol. , vol.97 , pp. 892-900
    • Best, T.K.1
  • 58
    • 84857136099 scopus 로고    scopus 로고
    • Trisomy of the G protein-coupled K+ channel gene, Kcnj6, affects reward mechanisms, cognitive functions, and synaptic plasticity in mice
    • Cooper A., et al. Trisomy of the G protein-coupled K+ channel gene, Kcnj6, affects reward mechanisms, cognitive functions, and synaptic plasticity in mice. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:2642-2647.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 2642-2647
    • Cooper, A.1
  • 59
    • 80052649285 scopus 로고    scopus 로고
    • Regulator of G protein signaling proteins as drug targets: current state and future possibilities
    • Sjogren B. Regulator of G protein signaling proteins as drug targets: current state and future possibilities. Adv. Pharmacol. 2011, 62:315-347.
    • (2011) Adv. Pharmacol. , vol.62 , pp. 315-347
    • Sjogren, B.1
  • 60
    • 0030967899 scopus 로고    scopus 로고
    • RGS proteins reconstitute the rapid gating kinetics of gbetagamma-activated inwardly rectifying K+ channels
    • Doupnik C.A., et al. RGS proteins reconstitute the rapid gating kinetics of gbetagamma-activated inwardly rectifying K+ channels. Proc. Natl. Acad. Sci. U.S.A. 1997, 94:10461-10466.
    • (1997) Proc. Natl. Acad. Sci. U.S.A. , vol.94 , pp. 10461-10466
    • Doupnik, C.A.1
  • 61
    • 68549106027 scopus 로고    scopus 로고
    • The R7 RGS protein family: multi-subunit regulators of neuronal G protein signaling
    • Anderson G.R., et al. The R7 RGS protein family: multi-subunit regulators of neuronal G protein signaling. Cell Biochem. Biophys. 2009, 54:33-46.
    • (2009) Cell Biochem. Biophys. , vol.54 , pp. 33-46
    • Anderson, G.R.1
  • 62
    • 38949171016 scopus 로고    scopus 로고
    • Crystal structure of the multifunctional Gbeta5-RGS9 complex
    • Cheever M.L., et al. Crystal structure of the multifunctional Gbeta5-RGS9 complex. Nat. Struct. Mol. Biol. 2008, 15:155-162.
    • (2008) Nat. Struct. Mol. Biol. , vol.15 , pp. 155-162
    • Cheever, M.L.1
  • 63
    • 78650414238 scopus 로고    scopus 로고
    • RGS6/Gβ5 complex accelerates IKACh gating kinetics in atrial myocytes and modulates parasympathetic regulation of heart rate
    • Posokhova E., et al. RGS6/Gβ5 complex accelerates IKACh gating kinetics in atrial myocytes and modulates parasympathetic regulation of heart rate. Circ. Res. 2010, 107:1350-1354.
    • (2010) Circ. Res. , vol.107 , pp. 1350-1354
    • Posokhova, E.1
  • 64
    • 78650404484 scopus 로고    scopus 로고
    • RGS6, a modulator of parasympathetic activation in heart
    • Yang J., et al. RGS6, a modulator of parasympathetic activation in heart. Circ. Res. 2010, 107:1345-1349.
    • (2010) Circ. Res. , vol.107 , pp. 1345-1349
    • Yang, J.1
  • 65
    • 77952886365 scopus 로고    scopus 로고
    • Gbeta5 recruits R7 RGS proteins to GIRK channels to regulate the timing of neuronal inhibitory signaling
    • Xie K., et al. Gbeta5 recruits R7 RGS proteins to GIRK channels to regulate the timing of neuronal inhibitory signaling. Nat. Neurosci. 2010, 13:661-663.
    • (2010) Nat. Neurosci. , vol.13 , pp. 661-663
    • Xie, K.1
  • 66
    • 84863128980 scopus 로고    scopus 로고
    • Regulator of G protein signaling 6 (RGS6) protein ensures coordination of motor movement by modulating GABAB receptor signaling
    • Maity B., et al. Regulator of G protein signaling 6 (RGS6) protein ensures coordination of motor movement by modulating GABAB receptor signaling. J. Biol. Chem. 2012, 287:4972-4981.
    • (2012) J. Biol. Chem. , vol.287 , pp. 4972-4981
    • Maity, B.1
  • 67
    • 84870612519 scopus 로고    scopus 로고
    • GIRK channel modulation by assembly with allosterically regulated RGS proteins
    • Zhou H., et al. GIRK channel modulation by assembly with allosterically regulated RGS proteins. Proc. Natl. Acad. Sci. U.S.A. 2012, 109:19977-19982.
    • (2012) Proc. Natl. Acad. Sci. U.S.A. , vol.109 , pp. 19977-19982
    • Zhou, H.1
  • 68
    • 84866324022 scopus 로고    scopus 로고
    • RGS proteins in heart: brakes on the vagus
    • Stewart A., et al. RGS proteins in heart: brakes on the vagus. Front. Physiol. 2012, 3:95.
    • (2012) Front. Physiol. , vol.3 , pp. 95
    • Stewart, A.1
  • 69
    • 58849118419 scopus 로고    scopus 로고
    • G protein-activated inwardly rectifying potassium channels mediate depotentiation of long-term potentiation
    • Chung H.J., et al. G protein-activated inwardly rectifying potassium channels mediate depotentiation of long-term potentiation. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:635-640.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 635-640
    • Chung, H.J.1
  • 70
    • 26244435772 scopus 로고    scopus 로고
    • Common molecular pathways mediate long-term potentiation of synaptic excitation and slow synaptic inhibition
    • Huang C.S., et al. Common molecular pathways mediate long-term potentiation of synaptic excitation and slow synaptic inhibition. Cell 2005, 123:105-118.
    • (2005) Cell , vol.123 , pp. 105-118
    • Huang, C.S.1
  • 71
    • 58849165705 scopus 로고    scopus 로고
    • Neuronal activity regulates phosphorylation-dependent surface delivery of G protein-activated inwardly rectifying potassium channels
    • Chung H.J., et al. Neuronal activity regulates phosphorylation-dependent surface delivery of G protein-activated inwardly rectifying potassium channels. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:629-634.
    • (2009) Proc. Natl. Acad. Sci. U.S.A. , vol.106 , pp. 629-634
    • Chung, H.J.1
  • 72
    • 79951708994 scopus 로고    scopus 로고
    • Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling
    • Luscher C., Malenka R.C. Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 2011, 69:650-663.
    • (2011) Neuron , vol.69 , pp. 650-663
    • Luscher, C.1    Malenka, R.C.2
  • 73
    • 77957725000 scopus 로고    scopus 로고
    • Morphine- and CaMKII-dependent enhancement of GIRK channel signaling in hippocampal neurons
    • Nassirpour R., et al. Morphine- and CaMKII-dependent enhancement of GIRK channel signaling in hippocampal neurons. J. Neurosci. 2010, 30:13419-13430.
    • (2010) J. Neurosci. , vol.30 , pp. 13419-13430
    • Nassirpour, R.1
  • 74
    • 0031016163 scopus 로고    scopus 로고
    • Normal cerebellar development but susceptibility to seizures in mice lacking G protein-coupled, inwardly rectifying K+ channel GIRK2
    • Signorini S., et al. Normal cerebellar development but susceptibility to seizures in mice lacking G protein-coupled, inwardly rectifying K+ channel GIRK2. Proc. Natl. Acad. Sci. U.S.A. 1997, 94:923-927.
    • (1997) Proc. Natl. Acad. Sci. U.S.A. , vol.94 , pp. 923-927
    • Signorini, S.1
  • 75
    • 39749117495 scopus 로고    scopus 로고
    • Characterization of in vivo and in vitro electrophysiological and antiarrhythmic effects of a novel IKACh blocker, NIP-151: a comparison with an IKr-blocker dofetilide
    • Hashimoto N., et al. Characterization of in vivo and in vitro electrophysiological and antiarrhythmic effects of a novel IKACh blocker, NIP-151: a comparison with an IKr-blocker dofetilide. J. Cardiovasc. Pharmacol. 2008, 51:162-169.
    • (2008) J. Cardiovasc. Pharmacol. , vol.51 , pp. 162-169
    • Hashimoto, N.1
  • 76
    • 79953800977 scopus 로고    scopus 로고
    • Effects of a highly selective acetylcholine-activated K+ channel blocker on experimental atrial fibrillation
    • Machida T., et al. Effects of a highly selective acetylcholine-activated K+ channel blocker on experimental atrial fibrillation. Circ. Arrhythm. Electrophysiol. 2011, 4:94-102.
    • (2011) Circ. Arrhythm. Electrophysiol. , vol.4 , pp. 94-102
    • Machida, T.1
  • 77
    • 0033490103 scopus 로고    scopus 로고
    • Ethanol opens G-protein-activated inwardly rectifying K+ channels
    • Kobayashi T., et al. Ethanol opens G-protein-activated inwardly rectifying K+ channels. Nat. Neurosci. 1999, 2:1091-1097.
    • (1999) Nat. Neurosci. , vol.2 , pp. 1091-1097
    • Kobayashi, T.1
  • 78
    • 0033490206 scopus 로고    scopus 로고
    • G-protein-coupled inwardly rectifying potassium channels are targets of alcohol action
    • Lewohl J.M., et al. G-protein-coupled inwardly rectifying potassium channels are targets of alcohol action. Nat. Neurosci. 1999, 2:1084-1090.
    • (1999) Nat. Neurosci. , vol.2 , pp. 1084-1090
    • Lewohl, J.M.1
  • 79
    • 0034920164 scopus 로고    scopus 로고
    • G protein-gated inwardly rectifying potassium channels are targets for volatile anesthetics
    • Weigl L.G., Schreibmayer W. G protein-gated inwardly rectifying potassium channels are targets for volatile anesthetics. Mol. Pharmacol. 2001, 60:282-289.
    • (2001) Mol. Pharmacol. , vol.60 , pp. 282-289
    • Weigl, L.G.1    Schreibmayer, W.2
  • 80
    • 0034930531 scopus 로고    scopus 로고
    • Differential effects of general anesthetics on G protein-coupled inwardly rectifying and other potassium channels
    • Yamakura T., et al. Differential effects of general anesthetics on G protein-coupled inwardly rectifying and other potassium channels. Anesthesiology 2001, 95:144-153.
    • (2001) Anesthesiology , vol.95 , pp. 144-153
    • Yamakura, T.1
  • 81
    • 79958796157 scopus 로고    scopus 로고
    • Naringin directly activates inwardly rectifying potassium channels at an overlapping binding site to tertiapin-Q
    • Yow T.T., et al. Naringin directly activates inwardly rectifying potassium channels at an overlapping binding site to tertiapin-Q. Br. J. Pharmacol. 2011, 163:1017-1033.
    • (2011) Br. J. Pharmacol. , vol.163 , pp. 1017-1033
    • Yow, T.T.1
  • 82
    • 82555170634 scopus 로고    scopus 로고
    • Inhibition of G protein-activated inwardly rectifying K+ channels by different classes of antidepressants
    • Kobayashi T., et al. Inhibition of G protein-activated inwardly rectifying K+ channels by different classes of antidepressants. PLoS ONE 2011, 6:e28208.
    • (2011) PLoS ONE , vol.6
    • Kobayashi, T.1
  • 83
    • 84880574814 scopus 로고    scopus 로고
    • Discovery of 'molecular switches' within a GIRK activator scaffold that afford selective GIRK inhibitors
    • Wen W., et al. Discovery of 'molecular switches' within a GIRK activator scaffold that afford selective GIRK inhibitors. Bioorg. Med. Chem. Lett. 2013, 23:4562-4566.
    • (2013) Bioorg. Med. Chem. Lett. , vol.23 , pp. 4562-4566
    • Wen, W.1
  • 84
    • 84884362547 scopus 로고    scopus 로고
    • ML297 (VU0456810), the first potent and selective activator of the GIRK potassium channel, displays antiepileptic properties in mice
    • Kaufmann K., et al. ML297 (VU0456810), the first potent and selective activator of the GIRK potassium channel, displays antiepileptic properties in mice. ACS Chem. Neurosci. 2013, 4:1278-1286.
    • (2013) ACS Chem. Neurosci. , vol.4 , pp. 1278-1286
    • Kaufmann, K.1
  • 85
    • 84882667740 scopus 로고    scopus 로고
    • Discovery and SAR of a novel series of GIRK1/2 and GIRK1/4 activators
    • Ramos-Hunter S.J., et al. Discovery and SAR of a novel series of GIRK1/2 and GIRK1/4 activators. Bioorg. Med. Chem. Lett. 2013, 23:5195-5198.
    • (2013) Bioorg. Med. Chem. Lett. , vol.23 , pp. 5195-5198
    • Ramos-Hunter, S.J.1
  • 86
    • 0031909974 scopus 로고    scopus 로고
    • Abnormal heart rate regulation in GIRK4 knockout mice
    • Wickman K., et al. Abnormal heart rate regulation in GIRK4 knockout mice. Neuron 1998, 20:103-114.
    • (1998) Neuron , vol.20 , pp. 103-114
    • Wickman, K.1
  • 87
    • 0037073803 scopus 로고    scopus 로고
    • Contribution of the Kir3.1 subunit to the muscarinic-gated atrial potassium channel IKACh
    • Bettahi I., et al. Contribution of the Kir3.1 subunit to the muscarinic-gated atrial potassium channel IKACh. J. Biol. Chem. 2002, 277:48282-48288.
    • (2002) J. Biol. Chem. , vol.277 , pp. 48282-48288
    • Bettahi, I.1
  • 88
    • 77953119778 scopus 로고    scopus 로고
    • Identification of a Kir3.4 mutation in congenital long QT syndrome
    • Yang Y., et al. Identification of a Kir3.4 mutation in congenital long QT syndrome. Am. J. Hum. Genet. 2010, 86:872-880.
    • (2010) Am. J. Hum. Genet. , vol.86 , pp. 872-880
    • Yang, Y.1
  • 89
    • 79955688385 scopus 로고    scopus 로고
    • Common polymorphisms in KCNJ5 are associated with early-onset lone atrial fibrillation in Caucasians
    • Jabbari J., et al. Common polymorphisms in KCNJ5 are associated with early-onset lone atrial fibrillation in Caucasians. Cardiology 2011, 118:116-120.
    • (2011) Cardiology , vol.118 , pp. 116-120
    • Jabbari, J.1
  • 90
    • 84884672403 scopus 로고    scopus 로고
    • The phenotype characteristics of type-13 long QT syndrome with mutation in KCNJ5 (Kir3.4-G387R)
    • Wang F., et al. The phenotype characteristics of type-13 long QT syndrome with mutation in KCNJ5 (Kir3.4-G387R). Heart Rhythm 2013, 10:1500-1506.
    • (2013) Heart Rhythm , vol.10 , pp. 1500-1506
    • Wang, F.1
  • 91
    • 84873567626 scopus 로고    scopus 로고
    • New insights into aldosterone-producing adenomas and hereditary aldosteronism: mutations in the K+ channel KCNJ5
    • Scholl U.I., Lifton R.P. New insights into aldosterone-producing adenomas and hereditary aldosteronism: mutations in the K+ channel KCNJ5. Curr. Opin. Nephrol. Hypertens. 2013, 22:141-147.
    • (2013) Curr. Opin. Nephrol. Hypertens. , vol.22 , pp. 141-147
    • Scholl, U.I.1    Lifton, R.P.2
  • 92
    • 84872855630 scopus 로고    scopus 로고
    • Role of KCNJ5 in familial and sporadic primary aldosteronism
    • Mulatero P., et al. Role of KCNJ5 in familial and sporadic primary aldosteronism. Nat. Rev. Endocrinol. 2013, 9:104-112.
    • (2013) Nat. Rev. Endocrinol. , vol.9 , pp. 104-112
    • Mulatero, P.1
  • 93
    • 0037422558 scopus 로고    scopus 로고
    • Contribution of GIRK2-mediated postsynaptic signaling to opiate and alpha 2-adrenergic analgesia and analgesic sex differences
    • Mitrovic I., et al. Contribution of GIRK2-mediated postsynaptic signaling to opiate and alpha 2-adrenergic analgesia and analgesic sex differences. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:271-276.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 271-276
    • Mitrovic, I.1
  • 94
    • 1642290744 scopus 로고    scopus 로고
    • Spinal G-protein-gated K+ channels formed by GIRK1 and GIRK2 subunits modulate thermal nociception and contribute to morphine analgesia
    • Marker C.L., et al. Spinal G-protein-gated K+ channels formed by GIRK1 and GIRK2 subunits modulate thermal nociception and contribute to morphine analgesia. J. Neurosci. 2004, 24:2806-2812.
    • (2004) J. Neurosci. , vol.24 , pp. 2806-2812
    • Marker, C.L.1
  • 95
    • 0037422541 scopus 로고    scopus 로고
    • A pervasive mechanism for analgesia: activation of GIRK2 channels
    • Blednov Y.A., et al. A pervasive mechanism for analgesia: activation of GIRK2 channels. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:277-282.
    • (2003) Proc. Natl. Acad. Sci. U.S.A. , vol.100 , pp. 277-282
    • Blednov, Y.A.1
  • 96
    • 17044380501 scopus 로고    scopus 로고
    • Spinal G-protein-gated potassium channels contribute in a dose-dependent manner to the analgesic effect of mu- and delta- but not kappa-opioids
    • Marker C.L., et al. Spinal G-protein-gated potassium channels contribute in a dose-dependent manner to the analgesic effect of mu- and delta- but not kappa-opioids. J. Neurosci. 2005, 25:3551-3559.
    • (2005) J. Neurosci. , vol.25 , pp. 3551-3559
    • Marker, C.L.1
  • 97
    • 43049170426 scopus 로고    scopus 로고
    • Absence and rescue of morphine withdrawal in GIRK/Kir3 knock-out mice
    • Cruz H.G., et al. Absence and rescue of morphine withdrawal in GIRK/Kir3 knock-out mice. J. Neurosci. 2008, 28:4069-4077.
    • (2008) J. Neurosci. , vol.28 , pp. 4069-4077
    • Cruz, H.G.1
  • 98
    • 40049112243 scopus 로고    scopus 로고
    • Quantitative trait locus and computational mapping identifies Kcnj9 (GIRK3) as a candidate gene affecting analgesia from multiple drug classes
    • Smith S.B., et al. Quantitative trait locus and computational mapping identifies Kcnj9 (GIRK3) as a candidate gene affecting analgesia from multiple drug classes. Pharmacogenet. Genomics 2008, 18:231-241.
    • (2008) Pharmacogenet. Genomics , vol.18 , pp. 231-241
    • Smith, S.B.1
  • 99
    • 70349513051 scopus 로고    scopus 로고
    • Association between KCNJ6 (GIRK2) gene polymorphisms and postoperative analgesic requirements after major abdominal surgery
    • Nishizawa D., et al. Association between KCNJ6 (GIRK2) gene polymorphisms and postoperative analgesic requirements after major abdominal surgery. PLoS ONE 2009, 4:e7060.
    • (2009) PLoS ONE , vol.4
    • Nishizawa, D.1
  • 100
    • 77951498644 scopus 로고    scopus 로고
    • A KCNJ6 (Kir3.2, GIRK2) gene polymorphism modulates opioid effects on analgesia and addiction but not on pupil size
    • Lotsch J., et al. A KCNJ6 (Kir3.2, GIRK2) gene polymorphism modulates opioid effects on analgesia and addiction but not on pupil size. Pharmacogenet. Genomics 2010, 20:291-297.
    • (2010) Pharmacogenet. Genomics , vol.20 , pp. 291-297
    • Lotsch, J.1
  • 101
    • 0036007938 scopus 로고    scopus 로고
    • Hyperactivity and dopamine D1 receptor activation in mice lacking Girk2 channels
    • Blednov Y.A., et al. Hyperactivity and dopamine D1 receptor activation in mice lacking Girk2 channels. Psychopharmacology 2002, 159:370-378.
    • (2002) Psychopharmacology , vol.159 , pp. 370-378
    • Blednov, Y.A.1
  • 102
    • 0038389069 scopus 로고    scopus 로고
    • Decreased cocaine self-administration in Kir3 potassium channel subunit knockout mice
    • Morgan A.D., et al. Decreased cocaine self-administration in Kir3 potassium channel subunit knockout mice. Neuropsychopharmacology 2003, 28:932-938.
    • (2003) Neuropsychopharmacology , vol.28 , pp. 932-938
    • Morgan, A.D.1
  • 103
    • 77955150592 scopus 로고    scopus 로고
    • Altered neurotransmission in the mesolimbic reward system of Girk mice
    • Arora D., et al. Altered neurotransmission in the mesolimbic reward system of Girk mice. J. Neurochem. 2010, 114:1487-1497.
    • (2010) J. Neurochem. , vol.114 , pp. 1487-1497
    • Arora, D.1
  • 104
    • 46149084039 scopus 로고    scopus 로고
    • Behavioral characterization of mice lacking GIRK/Kir3 channel subunits
    • Pravetoni M., Wickman K. Behavioral characterization of mice lacking GIRK/Kir3 channel subunits. Genes Brain Behav. 2008, 7:523-531.
    • (2008) Genes Brain Behav. , vol.7 , pp. 523-531
    • Pravetoni, M.1    Wickman, K.2
  • 105
    • 45849107222 scopus 로고    scopus 로고
    • Predisposition to late-onset obesity in GIRK4 knockout mice
    • Perry C.A., et al. Predisposition to late-onset obesity in GIRK4 knockout mice. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:8148-8153.
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 8148-8153
    • Perry, C.A.1
  • 106
    • 0034920540 scopus 로고    scopus 로고
    • Potassium channels as targets for ethanol: studies of G-protein-coupled inwardly rectifying potassium channel 2 (GIRK2) null mutant mice
    • Blednov Y.A., et al. Potassium channels as targets for ethanol: studies of G-protein-coupled inwardly rectifying potassium channel 2 (GIRK2) null mutant mice. J. Pharmacol. Exp. Ther. 2001, 298:521-530.
    • (2001) J. Pharmacol. Exp. Ther. , vol.298 , pp. 521-530
    • Blednov, Y.A.1
  • 107
    • 70349126720 scopus 로고    scopus 로고
    • Mapping a barbiturate withdrawal locus to a 0.44Mb interval and analysis of a novel null mutant identify a role for Kcnj9 (GIRK3) in withdrawal from pentobarbital, zolpidem, and ethanol
    • Kozell L.B., et al. Mapping a barbiturate withdrawal locus to a 0.44Mb interval and analysis of a novel null mutant identify a role for Kcnj9 (GIRK3) in withdrawal from pentobarbital, zolpidem, and ethanol. J. Neurosci. 2009, 29:11662-11673.
    • (2009) J. Neurosci. , vol.29 , pp. 11662-11673
    • Kozell, L.B.1
  • 108
    • 79954583924 scopus 로고    scopus 로고
    • KCNJ6 is associated with adult alcohol dependence and involved in gene × early life stress interactions in adolescent alcohol drinking
    • Clarke T.K., et al. KCNJ6 is associated with adult alcohol dependence and involved in gene × early life stress interactions in adolescent alcohol drinking. Neuropsychopharmacology 2011, 36:1142-1148.
    • (2011) Neuropsychopharmacology , vol.36 , pp. 1142-1148
    • Clarke, T.K.1
  • 109
    • 0034255267 scopus 로고    scopus 로고
    • Brain localization and behavioral impact of the G-protein-gated K+ channel subunit GIRK4
    • Wickman K., et al. Brain localization and behavioral impact of the G-protein-gated K+ channel subunit GIRK4. J. Neurosci. 2000, 20:5608-5615.
    • (2000) J. Neurosci. , vol.20 , pp. 5608-5615
    • Wickman, K.1
  • 110
    • 0034823045 scopus 로고    scopus 로고
    • GIRK2 deficient mice. Evidence for hyperactivity and reduced anxiety
    • Blednov Y.A., et al. GIRK2 deficient mice. Evidence for hyperactivity and reduced anxiety. Physiol. Behav. 2001, 74:109-117.
    • (2001) Physiol. Behav. , vol.74 , pp. 109-117
    • Blednov, Y.A.1
  • 111
    • 84859495245 scopus 로고    scopus 로고
    • Association study of the KCNJ3 gene as a susceptibility candidate for schizophrenia in the Chinese population
    • Yamada K., et al. Association study of the KCNJ3 gene as a susceptibility candidate for schizophrenia in the Chinese population. Hum. Genet. 2012, 131:443-451.
    • (2012) Hum. Genet. , vol.131 , pp. 443-451
    • Yamada, K.1
  • 112
    • 23944500350 scopus 로고    scopus 로고
    • G-protein-gated potassium (GIRK) channels containing the GIRK2 subunit are control hubs for pharmacologically induced hypothermic responses
    • Costa A.C., et al. G-protein-gated potassium (GIRK) channels containing the GIRK2 subunit are control hubs for pharmacologically induced hypothermic responses. J. Neurosci. 2005, 25:7801-7804.
    • (2005) J. Neurosci. , vol.25 , pp. 7801-7804
    • Costa, A.C.1
  • 113
    • 0029115971 scopus 로고
    • A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation
    • Patil N., et al. A potassium channel mutation in weaver mice implicates membrane excitability in granule cell differentiation. Nat. Genet. 1995, 11:126-129.
    • (1995) Nat. Genet. , vol.11 , pp. 126-129
    • Patil, N.1
  • 114
    • 0034983845 scopus 로고    scopus 로고
    • Identification of G protein-coupled, inward rectifier potassium channel gene products from the rat anterior pituitary gland
    • Gregerson K.A., et al. Identification of G protein-coupled, inward rectifier potassium channel gene products from the rat anterior pituitary gland. Endocrinology 2001, 142:2820-2832.
    • (2001) Endocrinology , vol.142 , pp. 2820-2832
    • Gregerson, K.A.1
  • 115
    • 26844456493 scopus 로고    scopus 로고
    • Expression of G-protein inwardly rectifying potassium channels (GIRKs) in lung cancer cell lines
    • Plummer H.K., et al. Expression of G-protein inwardly rectifying potassium channels (GIRKs) in lung cancer cell lines. BMC Cancer 2005, 5:104.
    • (2005) BMC Cancer , vol.5 , pp. 104
    • Plummer, H.K.1
  • 116
    • 50049116943 scopus 로고    scopus 로고
    • Adrenaline-induced hyperpolarization of mouse pancreatic islet cells is mediated by G protein-gated inwardly rectifying potassium (GIRK) channels
    • Iwanir S., Reuveny E. Adrenaline-induced hyperpolarization of mouse pancreatic islet cells is mediated by G protein-gated inwardly rectifying potassium (GIRK) channels. Pflugers Arch. 2008, 456:1097-1108.
    • (2008) Pflugers Arch. , vol.456 , pp. 1097-1108
    • Iwanir, S.1    Reuveny, E.2
  • 117
    • 77952678961 scopus 로고    scopus 로고
    • Cloning and characterisation of GIRK1 variants resulting from alternative RNA editing of the KCNJ3 gene transcript in a human breast cancer cell line
    • Wagner V., et al. Cloning and characterisation of GIRK1 variants resulting from alternative RNA editing of the KCNJ3 gene transcript in a human breast cancer cell line. J. Cell. Biochem. 2010, 110:598-608.
    • (2010) J. Cell. Biochem. , vol.110 , pp. 598-608
    • Wagner, V.1
  • 118
    • 41749091110 scopus 로고    scopus 로고
    • Cell type-specific subunit composition of G protein-gated potassium channels in the cerebellum
    • Aguado C., et al. Cell type-specific subunit composition of G protein-gated potassium channels in the cerebellum. J. Neurochem. 2008, 105:497-511.
    • (2008) J. Neurochem. , vol.105 , pp. 497-511
    • Aguado, C.1
  • 119
    • 0033081897 scopus 로고    scopus 로고
    • Characterization of G-protein-gated K+ channels composed of Kir3.2 subunits in dopaminergic neurons of the substantia nigra
    • Inanobe A., et al. Characterization of G-protein-gated K+ channels composed of Kir3.2 subunits in dopaminergic neurons of the substantia nigra. J. Neurosci. 1999, 19:1006-1017.
    • (1999) J. Neurosci. , vol.19 , pp. 1006-1017
    • Inanobe, A.1
  • 120
    • 30544431963 scopus 로고    scopus 로고
    • Molecular and cellular diversity of neuronal G-protein-gated potassium channels
    • Koyrakh L., et al. Molecular and cellular diversity of neuronal G-protein-gated potassium channels. J. Neurosci. 2005, 25:11468-11478.
    • (2005) J. Neurosci. , vol.25 , pp. 11468-11478
    • Koyrakh, L.1
  • 121
    • 0039357820 scopus 로고    scopus 로고
    • G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons
    • Luscher C., et al. G protein-coupled inwardly rectifying K+ channels (GIRKs) mediate postsynaptic but not presynaptic transmitter actions in hippocampal neurons. Neuron 1997, 19:687-695.
    • (1997) Neuron , vol.19 , pp. 687-695
    • Luscher, C.1
  • 122
    • 56749160443 scopus 로고    scopus 로고
    • Pre-synaptic GABA receptors inhibit glutamate release through GIRK channels in rat cerebral cortex
    • Ladera C., et al. Pre-synaptic GABA receptors inhibit glutamate release through GIRK channels in rat cerebral cortex. J. Neurochem. 2008, 107:1506-1517.
    • (2008) J. Neurochem. , vol.107 , pp. 1506-1517
    • Ladera, C.1
  • 123
    • 67651153038 scopus 로고    scopus 로고
    • Subcellular compartment-specific molecular diversity of pre- and post-synaptic GABA-activated GIRK channels in Purkinje cells
    • Fernandez-Alacid L., et al. Subcellular compartment-specific molecular diversity of pre- and post-synaptic GABA-activated GIRK channels in Purkinje cells. J. Neurochem. 2009, 110:1363-1376.
    • (2009) J. Neurochem. , vol.110 , pp. 1363-1376
    • Fernandez-Alacid, L.1
  • 124
    • 73649211098 scopus 로고    scopus 로고
    • Dopamine inhibits GABA(A) currents in ventral tegmental area dopamine neurons via activation of presynaptic G-protein coupled inwardly-rectifying potassium channels
    • Michaeli A., Yaka R. Dopamine inhibits GABA(A) currents in ventral tegmental area dopamine neurons via activation of presynaptic G-protein coupled inwardly-rectifying potassium channels. Neuroscience 2010, 165:1159-1169.
    • (2010) Neuroscience , vol.165 , pp. 1159-1169
    • Michaeli, A.1    Yaka, R.2
  • 125
    • 84877126238 scopus 로고    scopus 로고
    • Differential GABAB-receptor-mediated effects in perisomatic- and dendrite-targeting parvalbumin interneurons
    • Booker S.A., et al. Differential GABAB-receptor-mediated effects in perisomatic- and dendrite-targeting parvalbumin interneurons. J. Neurosci. 2013, 33:7961-7974.
    • (2013) J. Neurosci. , vol.33 , pp. 7961-7974
    • Booker, S.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.