메뉴 건너뛰기




Volumn 69, Issue 5-8, 2013, Pages 1137-1151

Classification-driven model selection approach of genetic programming in modelling of turning process

Author keywords

Artificial neural network; Classification; Genetic programming; Model selection; Support vector machines

Indexed keywords

CLASSIFICATION (OF INFORMATION); DECISION TREES; FORESTRY; FUZZY LOGIC; GENETIC ALGORITHMS; NEURAL NETWORKS; POPULATION STATISTICS; SUPPORT VECTOR MACHINES; SUPPORT VECTOR REGRESSION; TURNING; UNCERTAINTY ANALYSIS; WELL TESTING;

EID: 84887621431     PISSN: 02683768     EISSN: 14333015     Source Type: Journal    
DOI: 10.1007/s00170-013-5103-x     Document Type: Article
Times cited : (31)

References (105)
  • 1
    • 84862696708 scopus 로고    scopus 로고
    • A comparative study of population-based optimization algorithms for turning operations
    • 2869866
    • Yildiz AR (2012) A comparative study of population-based optimization algorithms for turning operations. Inform Sci 210:81-88
    • (2012) Inform Sci , vol.210 , pp. 81-88
    • Yildiz, A.R.1
  • 2
    • 84881668314 scopus 로고    scopus 로고
    • A new hybrid differential evolution algorithm for the selection of optimal machining parameters in milling operations
    • Yildiz AR (2013) A new hybrid differential evolution algorithm for the selection of optimal machining parameters in milling operations. Appl Soft Comput 13(3):1561-1566
    • (2013) Appl Soft Comput , vol.13 , Issue.3 , pp. 1561-1566
    • Yildiz, A.R.1
  • 3
    • 84883213159 scopus 로고    scopus 로고
    • A new hybrid artificial bee colony algorithm for robust optimal design and manufacturing
    • Yildiz AR (2013) A new hybrid artificial bee colony algorithm for robust optimal design and manufacturing. Appl Soft Comput 13(5):2906-2912
    • (2013) Appl Soft Comput , vol.13 , Issue.5 , pp. 2906-2912
    • Yildiz, A.R.1
  • 4
    • 84868506920 scopus 로고    scopus 로고
    • Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach
    • 2993692
    • Yildiz AR (2013) Optimization of cutting parameters in multi-pass turning using artificial bee colony-based approach. Inform Sci 220:399-407
    • (2013) Inform Sci , vol.220 , pp. 399-407
    • Yildiz, A.R.1
  • 5
    • 84881660978 scopus 로고    scopus 로고
    • Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations
    • Yildiz AR (2013) Hybrid Taguchi-differential evolution algorithm for optimization of multi-pass turning operations. Appl Soft Comput 13(3):1433-1439
    • (2013) Appl Soft Comput , vol.13 , Issue.3 , pp. 1433-1439
    • Yildiz, A.R.1
  • 6
    • 84872494306 scopus 로고    scopus 로고
    • Cuckoo search algorithm for the selection of optimal machining parameters in milling operations
    • Yildiz AR (2013) Cuckoo search algorithm for the selection of optimal machining parameters in milling operations. Int J Adv Manuf Technol 64(1-4):55-61
    • (2013) Int J Adv Manuf Technol , vol.64 , Issue.1-4 , pp. 55-61
    • Yildiz, A.R.1
  • 7
    • 63749123634 scopus 로고    scopus 로고
    • A novel hybrid immune algorithm for global optimization in design and manufacturing
    • YIldIz AR (2009) A novel hybrid immune algorithm for global optimization in design and manufacturing. Robotics and Computer-Integrated Manufacturing 25(2):261-270
    • (2009) Robotics and Computer-Integrated Manufacturing , vol.25 , Issue.2 , pp. 261-270
    • Yildiz, A.R.1
  • 8
    • 61349105239 scopus 로고    scopus 로고
    • An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry
    • YIldIz AR (2009) An effective hybrid immune-hill climbing optimization approach for solving design and manufacturing optimization problems in industry. J Mat Processing Technol 209(6):2773-2780
    • (2009) J Mat Processing Technol , vol.209 , Issue.6 , pp. 2773-2780
    • Yildiz, A.R.1
  • 9
    • 74249115778 scopus 로고    scopus 로고
    • Application of soft computing techniques in machining performance prediction and optimization: A literature review
    • Chandrasekaran M, Muralidhar M, Krishna CM, Dixit U (2010) Application of soft computing techniques in machining performance prediction and optimization: a literature review. Int J Adv Manuf Technol 46:445-464
    • (2010) Int J Adv Manuf Technol , vol.46 , pp. 445-464
    • Chandrasekaran, M.1    Muralidhar, M.2    Krishna, C.M.3    Dixit, U.4
  • 10
    • 84864838548 scopus 로고    scopus 로고
    • Identification of machining features based on available resources of cutting tools
    • Chu X, Tang C, Xue D, Su Y, Sun X (2012) Identification of machining features based on available resources of cutting tools. Int J Prod Res 50:4141-4157
    • (2012) Int J Prod Res , vol.50 , pp. 4141-4157
    • Chu, X.1    Tang, C.2    Xue, D.3    Su, Y.4    Sun, X.5
  • 11
    • 84868231126 scopus 로고    scopus 로고
    • Development of a component-based machining centre selection model using AHP
    • Ic YT, Yurdakul M, Eraslan E (2012) Development of a component-based machining centre selection model using AHP. Int J Prod Res 50:6489-6498
    • (2012) Int J Prod Res , vol.50 , pp. 6489-6498
    • Ic, Y.T.1    Yurdakul, M.2    Eraslan, E.3
  • 12
    • 84860495884 scopus 로고    scopus 로고
    • An integrated setup/fixture planning approach for machining prismatic parts
    • Sun X, Chu X, Xue D, Su Y, Tang C (2012) An integrated setup/fixture planning approach for machining prismatic parts. Int J Prod Res 50:1009-1027
    • (2012) Int J Prod Res , vol.50 , pp. 1009-1027
    • Sun, X.1    Chu, X.2    Xue, D.3    Su, Y.4    Tang, C.5
  • 13
    • 84887620164 scopus 로고    scopus 로고
    • Review of empirical modeling techniques for modeling of turning process
    • (in press)
    • Garg A, Bhalerao Y, Tai K (in press) Review of empirical modeling techniques for modeling of turning process. Int J Model Ident Control
    • Int J Model Ident Control
    • Garg, A.1    Bhalerao, Y.2    Tai, K.3
  • 14
    • 0024631951 scopus 로고
    • Learning and optimization of machining operations using computing abilities of neural networks
    • Rangwala SS, Dornfeld DA (1989) Learning and optimization of machining operations using computing abilities of neural networks. Systems, Man and Cybernetics, IEEE Transactions on 19:299-314
    • (1989) Systems, Man and Cybernetics, IEEE Transactions on , vol.19 , pp. 299-314
    • Rangwala, S.S.1    Dornfeld, D.A.2
  • 15
    • 0031233460 scopus 로고    scopus 로고
    • On-line prediction of surface finish and dimensional deviation in turning using neural network based sensor fusion
    • Azouzi R, Guillot M (1997) On-line prediction of surface finish and dimensional deviation in turning using neural network based sensor fusion. Int J Mach Tool Manuf 37:1201-1217
    • (1997) Int J Mach Tool Manuf , vol.37 , pp. 1201-1217
    • Azouzi, R.1    Guillot, M.2
  • 16
    • 11144328104 scopus 로고    scopus 로고
    • A neural-network-based methodology for the prediction of surface roughness in a turning process
    • Kohli A, Dixit US (2005) A neural-network-based methodology for the prediction of surface roughness in a turning process. Int J Adv Manuf Technol 25:118-129
    • (2005) Int J Adv Manuf Technol , vol.25 , pp. 118-129
    • Kohli, A.1    Dixit, U.S.2
  • 17
    • 27744485019 scopus 로고    scopus 로고
    • Surface roughness prediction in turning using artificial neural network
    • Pal SK, Chakraborty D (2005) Surface roughness prediction in turning using artificial neural network. Neural Computing & Applications 14:319-324
    • (2005) Neural Computing & Applications , vol.14 , pp. 319-324
    • Pal, S.K.1    Chakraborty, D.2
  • 19
    • 33746192237 scopus 로고    scopus 로고
    • Comparison of experimental results obtained by designed dynamometer to fuzzy model for predicting cutting forces in turning
    • Yaldiz S, Unsacar F, Saglam H (2006) Comparison of experimental results obtained by designed dynamometer to fuzzy model for predicting cutting forces in turning. Mater Des 27:1139-1147
    • (2006) Mater des , vol.27 , pp. 1139-1147
    • Yaldiz, S.1    Unsacar, F.2    Saglam, H.3
  • 20
    • 34447256059 scopus 로고    scopus 로고
    • Development of a fuzzy-nets-based surface roughness prediction system in turning operations
    • Kirby ED, Chen JC (2007) Development of a fuzzy-nets-based surface roughness prediction system in turning operations. Comput Ind Eng 53:30-42
    • (2007) Comput Ind Eng , vol.53 , pp. 30-42
    • Kirby, E.D.1    Chen, J.C.2
  • 21
    • 34548361987 scopus 로고    scopus 로고
    • An approach based on current and sound signals for in-process tool wear monitoring
    • Salgado DR, Alonso FJ (2007) An approach based on current and sound signals for in-process tool wear monitoring. Int J Mach Tool Manuf 47:2140-2152
    • (2007) Int J Mach Tool Manuf , vol.47 , pp. 2140-2152
    • Salgado, D.R.1    Alonso, F.J.2
  • 22
    • 44749086674 scopus 로고    scopus 로고
    • Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models
    • Davim JP, Gaitonde VN, Karnik SR (2008) Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models. J Mater Process Technol 205:16-23
    • (2008) J Mater Process Technol , vol.205 , pp. 16-23
    • Davim, J.P.1    Gaitonde, V.N.2    Karnik, S.R.3
  • 24
    • 56049106112 scopus 로고    scopus 로고
    • The experimental investigation of the effects of uncoated, PVD- and CVD-coated cemented carbide inserts and cutting parameters on surface roughness in CNC turning and its prediction using artificial neural networks
    • Nalbant M, Gokkaya H, Toktas I, Sur G (2009) The experimental investigation of the effects of uncoated, PVD- and CVD-coated cemented carbide inserts and cutting parameters on surface roughness in CNC turning and its prediction using artificial neural networks. Robotics and Computer-Integrated Manufacturing 25:211-223
    • (2009) Robotics and Computer-Integrated Manufacturing , vol.25 , pp. 211-223
    • Nalbant, M.1    Gokkaya, H.2    Toktas, I.3    Sur, G.4
  • 25
    • 67349237442 scopus 로고    scopus 로고
    • An experimental analysis of effective high speed turning of superalloy Inconel 718
    • Thakur DG, Ramamoorthy B, Vijayaraghavan L (2009) An experimental analysis of effective high speed turning of superalloy Inconel 718. J Mater Sci 44:3296-3304
    • (2009) J Mater Sci , vol.44 , pp. 3296-3304
    • Thakur, D.G.1    Ramamoorthy, B.2    Vijayaraghavan, L.3
  • 29
    • 81455135143 scopus 로고    scopus 로고
    • Modeling and optimization of hard turning of X38CrMoV5-1 steel with CBN tool: Machining parameters effects on flank wear and surface roughness
    • Aouici H, Yallese MA, Fnides B, Chaoui K, Mabrouki T (2011) Modeling and optimization of hard turning of X38CrMoV5-1 steel with CBN tool: Machining parameters effects on flank wear and surface roughness. J Mech Sci Technol 25:2843-2851
    • (2011) J Mech Sci Technol , vol.25 , pp. 2843-2851
    • Aouici, H.1    Yallese, M.A.2    Fnides, B.3    Chaoui, K.4    Mabrouki, T.5
  • 30
    • 78751647892 scopus 로고    scopus 로고
    • Tool flank wear prediction in CNC turning of 7075 AL alloy SiC composite
    • Chavoshi SZ (2011) Tool flank wear prediction in CNC turning of 7075 AL alloy SiC composite. Prod Eng 5:37-47
    • (2011) Prod Eng , vol.5 , pp. 37-47
    • Chavoshi, S.Z.1
  • 31
    • 83655190741 scopus 로고    scopus 로고
    • Fuzzy parametric deduction for material removal rate optimization
    • Lan TS (2011) Fuzzy parametric deduction for material removal rate optimization. J Math Stat 7:51-56
    • (2011) J Math Stat , vol.7 , pp. 51-56
    • Lan, T.S.1
  • 32
    • 79953705955 scopus 로고    scopus 로고
    • Application of fuzzy logic for modeling surface roughness in turning CFRP composites using CBN tool
    • Rajasekaran T, Palanikumar K, Vinayagam BK (2011) Application of fuzzy logic for modeling surface roughness in turning CFRP composites using CBN tool. Prod Eng 5:191-199
    • (2011) Prod Eng , vol.5 , pp. 191-199
    • Rajasekaran, T.1    Palanikumar, K.2    Vinayagam, B.K.3
  • 33
    • 84858068372 scopus 로고    scopus 로고
    • Integrated ANN-GA for estimating the minimum value for machining performance
    • Zain AM, Haron H, Sharif S (2012) Integrated ANN-GA for estimating the minimum value for machining performance. Int J Prod Res 50:191-213
    • (2012) Int J Prod Res , vol.50 , pp. 191-213
    • Zain, A.M.1    Haron, H.2    Sharif, S.3
  • 36
    • 0033887646 scopus 로고    scopus 로고
    • Applicability of the modified back-propagation algorithm in tool condition monitoring for faster convergence
    • Dutta RK, Paul S, Chattopadhyay AB (2000) Applicability of the modified back-propagation algorithm in tool condition monitoring for faster convergence. J Mater Process Technol 98:299-309
    • (2000) J Mater Process Technol , vol.98 , pp. 299-309
    • Dutta, R.K.1    Paul, S.2    Chattopadhyay, A.B.3
  • 37
    • 1642335673 scopus 로고    scopus 로고
    • A study of tool life in hot machining using artificial neural networks and regression analysis method
    • Tosun N, Özler L (2002) A study of tool life in hot machining using artificial neural networks and regression analysis method. J Mater Process Technol 124:99-104
    • (2002) J Mater Process Technol , vol.124 , pp. 99-104
    • Tosun, N.1    Özler, L.2
  • 38
    • 0037233403 scopus 로고    scopus 로고
    • Surface roughness predictive modeling: Neural networks versus regression
    • Feng C-X, Wang X-F (2003) Surface roughness predictive modeling: neural networks versus regression. IIE Trans 35:11-27
    • (2003) IIE Trans , vol.35 , pp. 11-27
    • Feng, C.-X.1    Wang, X.-F.2
  • 39
    • 0037427589 scopus 로고    scopus 로고
    • Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process
    • Risbood K, Dixit U, Sahasrabudhe A (2003) Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process. J Mater Process Technol 132:203-214
    • (2003) J Mater Process Technol , vol.132 , pp. 203-214
    • Risbood, K.1    Dixit, U.2    Sahasrabudhe, A.3
  • 40
    • 6344233670 scopus 로고    scopus 로고
    • Fuzzy adaptive networks in machining process modeling: Surface roughness prediction for turning operations
    • Jiao Y, Lei S, Pei Z, Lee E (2004) Fuzzy adaptive networks in machining process modeling: surface roughness prediction for turning operations. Int J Mach Tool Manuf 44:1643-1651
    • (2004) Int J Mach Tool Manuf , vol.44 , pp. 1643-1651
    • Jiao, Y.1    Lei, S.2    Pei, Z.3    Lee, E.4
  • 41
    • 10044288212 scopus 로고    scopus 로고
    • An expert system based on FBFN using a GA to predict surface finish in ultra-precision turning
    • Nandi AK, Pratihar DK (2004) An expert system based on FBFN using a GA to predict surface finish in ultra-precision turning. J Mater Process Technol 155-156:1150-1156
    • (2004) J Mater Process Technol , vol.155-156 , pp. 1150-1156
    • Nandi, A.K.1    Pratihar, D.K.2
  • 42
    • 12444249998 scopus 로고    scopus 로고
    • Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks
    • Özel T, Karpat Y (2005) Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks. Int J Mach Tool Manuf 45:467-479
    • (2005) Int J Mach Tool Manuf , vol.45 , pp. 467-479
    • Özel, T.1    Karpat, Y.2
  • 43
    • 33748081789 scopus 로고    scopus 로고
    • Prediction of cutting force for self-propelled rotary tool using artificial neural networks
    • Hao W, Zhu X, Li X, Turyagyenda G (2006) Prediction of cutting force for self-propelled rotary tool using artificial neural networks. J Mater Process Technol 180:23-29
    • (2006) J Mater Process Technol , vol.180 , pp. 23-29
    • Hao, W.1    Zhu, X.2    Li, X.3    Turyagyenda, G.4
  • 44
    • 34248198328 scopus 로고    scopus 로고
    • Predictive machinability models for a selected hard material in turning operations
    • Al-Ahmari A (2007) Predictive machinability models for a selected hard material in turning operations. J Mater Process Technol 190:305-311
    • (2007) J Mater Process Technol , vol.190 , pp. 305-311
    • Al-Ahmari, A.1
  • 45
    • 34748885549 scopus 로고    scopus 로고
    • Application of radial basis function neural networks in optimization of hard turning of AISI D2 cold-worked tool steel with a ceramic tool
    • Basak S, Dixit U, Davim J (2007) Application of radial basis function neural networks in optimization of hard turning of AISI D2 cold-worked tool steel with a ceramic tool. Proc Inst Mechanical Eng Part B: J Eng Manufact 221:987-998
    • (2007) Proc Inst Mechanical Eng Part B: J Eng Manufact , vol.221 , pp. 987-998
    • Basak, S.1    Dixit, U.2    Davim, J.3
  • 46
    • 33750356120 scopus 로고    scopus 로고
    • Comparison of response surface model with neural network in determining the surface quality of moulded parts
    • Erzurumulu T, Oktem H (2007) Comparison of response surface model with neural network in determining the surface quality of moulded parts. Mater Des 28:459-465
    • (2007) Mater des , vol.28 , pp. 459-465
    • Erzurumulu, T.1    Oktem, H.2
  • 47
    • 34248214598 scopus 로고    scopus 로고
    • A comparison of dry and air-cooled turning of grey cast iron with mixed oxide ceramic tool
    • Sarma D, Dixit U (2007) A comparison of dry and air-cooled turning of grey cast iron with mixed oxide ceramic tool. J Mater Process Technol 190:160-172
    • (2007) J Mater Process Technol , vol.190 , pp. 160-172
    • Sarma, D.1    Dixit, U.2
  • 48
    • 0028407979 scopus 로고
    • Predicting total machining performance in finish turning using integrated fuzzy-set models of the machinability parameters
    • Fang X, Jawahir I (1994) Predicting total machining performance in finish turning using integrated fuzzy-set models of the machinability parameters. Int J Prod Res 32:833-849
    • (1994) Int J Prod Res , vol.32 , pp. 833-849
    • Fang, X.1    Jawahir, I.2
  • 49
    • 10044288212 scopus 로고    scopus 로고
    • An expert system based on FBFN using a GA to predict surface finish in ultra-precision turning
    • Nandi A, Pratihar D (2004) An expert system based on FBFN using a GA to predict surface finish in ultra-precision turning. J Mater Process Technol 155:1150-1156
    • (2004) J Mater Process Technol , vol.155 , pp. 1150-1156
    • Nandi, A.1    Pratihar, D.2
  • 50
    • 33644780712 scopus 로고    scopus 로고
    • A knowledge-based system for the prediction of surface roughness in turning process
    • Abburi N, Dixit U (2006) A knowledge-based system for the prediction of surface roughness in turning process. Robotics and Computer-Integrated Manufacturing 22:363-372
    • (2006) Robotics and Computer-Integrated Manufacturing , vol.22 , pp. 363-372
    • Abburi, N.1    Dixit, U.2
  • 51
    • 84862296569 scopus 로고    scopus 로고
    • Tool wear monitoring using neuro-fuzzy techniques: A comparative study in a turning process
    • Gajate A, Haber R, Deltoro R, Vega P, Bustillo A (2010) Tool wear monitoring using neuro-fuzzy techniques: a comparative study in a turning process. J Intell Manuf 23:869-882
    • (2010) J Intell Manuf , vol.23 , pp. 869-882
    • Gajate, A.1    Haber, R.2    Deltoro, R.3    Vega, P.4    Bustillo, A.5
  • 53
    • 82255175702 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system modeling of cryogenically treated AISI M2 HSS turning tool for estimation of flank wear
    • Gill SS, Singh R, Singh J, Singh H (2012) Adaptive neuro-fuzzy inference system modeling of cryogenically treated AISI M2 HSS turning tool for estimation of flank wear. Expert Syst Appl 39:4171-4180
    • (2012) Expert Syst Appl , vol.39 , pp. 4171-4180
    • Gill, S.S.1    Singh, R.2    Singh, J.3    Singh, H.4
  • 54
    • 27844509608 scopus 로고    scopus 로고
    • Comparison of computational intelligence and statistical methods in condition monitoring for hard turning
    • Kothamasu R, Huang SH, Verduin WH (2005) Comparison of computational intelligence and statistical methods in condition monitoring for hard turning. Int J Prod Res 43:597-610
    • (2005) Int J Prod Res , vol.43 , pp. 597-610
    • Kothamasu, R.1    Huang, S.H.2    Verduin, W.H.3
  • 55
    • 34047132833 scopus 로고    scopus 로고
    • Modelling of surface finish and tool flank wear in turning of AISI D2 steel with ceramic wiper inserts
    • Özel T, Karpat Y, Figueira L, Davim JP (2007) Modelling of surface finish and tool flank wear in turning of AISI D2 steel with ceramic wiper inserts. J Mater Process Technol 189:192-198
    • (2007) J Mater Process Technol , vol.189 , pp. 192-198
    • Özel, T.1    Karpat, Y.2    Figueira, L.3    Davim, J.P.4
  • 56
    • 77957845121 scopus 로고    scopus 로고
    • Multiple regression prediction model for cutting forces in turning carbon-reinforced PEEK CF30
    • Mata F, Beamud E, Hanafi I, Khamlichi A, Jabbouri A, Bezzazi M (2010) Multiple regression prediction model for cutting forces in turning carbon-reinforced PEEK CF30. Adv Mater Sci Eng 2010:1-7
    • (2010) Adv Mater Sci Eng , vol.2010 , pp. 1-7
    • Mata, F.1    Beamud, E.2    Hanafi, I.3    Khamlichi, A.4    Jabbouri, A.5    Bezzazi, M.6
  • 58
    • 29744469780 scopus 로고    scopus 로고
    • Modeling of residual stress profile in finish hard turning
    • Zhang JY, Liang SY, Zhang G, Yen D (2006) Modeling of residual stress profile in finish hard turning. Mater Manuf Process 21:39-45
    • (2006) Mater Manuf Process , vol.21 , pp. 39-45
    • Zhang, J.Y.1    Liang, S.Y.2    Zhang, G.3    Yen, D.4
  • 59
    • 74549139703 scopus 로고    scopus 로고
    • Predictive modelling of turning operations using response surface methodology, artificial neural networks and support vector regression
    • Gupta AK (2008) Predictive modelling of turning operations using response surface methodology, artificial neural networks and support vector regression. Int J Prod Res 48:763-778
    • (2008) Int J Prod Res , vol.48 , pp. 763-778
    • Gupta, A.K.1
  • 60
    • 67650000504 scopus 로고    scopus 로고
    • In-process surface roughness prediction system using cutting vibrations in turning
    • Salgado DR, Alonso FJ, Cambero I, Marcelo A (2009) In-process surface roughness prediction system using cutting vibrations in turning. Int J Adv Manuf Technol 43:40-51
    • (2009) Int J Adv Manuf Technol , vol.43 , pp. 40-51
    • Salgado, D.R.1    Alonso, F.J.2    Cambero, I.3    Marcelo, A.4
  • 61
    • 84862283893 scopus 로고    scopus 로고
    • Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel
    • Çaydas U, Ekici S (2010) Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. J Intell Manuf 23:639-650
    • (2010) J Intell Manuf , vol.23 , pp. 639-650
    • Çaydas, U.1    Ekici, S.2
  • 63
    • 0000674495 scopus 로고    scopus 로고
    • Confidence bounds for neural network representations
    • Shao R, Martin E, Zhang J, Morris A (1997) Confidence bounds for neural network representations. Comput Chem Eng 21:S1173-S1178
    • (1997) Comput Chem Eng , vol.21
    • Shao, R.1    Martin, E.2    Zhang, J.3    Morris, A.4
  • 65
    • 16744364998 scopus 로고    scopus 로고
    • Genetic programming approach for surface quality prediction
    • Kovacic M, Brezocnik M (2003) Genetic programming approach for surface quality prediction. Tehnicki Vjesnik 10:19-24
    • (2003) Tehnicki Vjesnik , vol.10 , pp. 19-24
    • Kovacic, M.1    Brezocnik, M.2
  • 66
    • 10044242354 scopus 로고    scopus 로고
    • Evolutionary approach for cutting forces prediction in milling
    • Kovacic M, Balic J, Brezocnik M (2004) Evolutionary approach for cutting forces prediction in milling. J Mater Process Technol 155:1647-1652
    • (2004) J Mater Process Technol , vol.155 , pp. 1647-1652
    • Kovacic, M.1    Balic, J.2    Brezocnik, M.3
  • 67
    • 80054890052 scopus 로고    scopus 로고
    • Prediction of strain energy-based liquefaction resistance of sand-silt mixtures: An evolutionary approach
    • Baziar MH, Jafarian Y, Shahnazari H, Movahed V, Amin Tutunchian M (2011) Prediction of strain energy-based liquefaction resistance of sand-silt mixtures: an evolutionary approach. Comput Geosci 37:1883-1893
    • (2011) Comput Geosci , vol.37 , pp. 1883-1893
    • Baziar, M.H.1    Jafarian, Y.2    Shahnazari, H.3    Movahed, V.4    Amin Tutunchian, M.5
  • 68
    • 84891492327 scopus 로고    scopus 로고
    • A hybrid genetic programming - Artificial neural network approach for modeling of vibratory finishing process
    • Garg A, Tai K (2011) A hybrid genetic programming - artificial neural network approach for modeling of vibratory finishing process. Int Proc Comput Sci Inform Technol (IPCSIT) 18:14-19
    • (2011) Int Proc Comput Sci Inform Technol (IPCSIT) , vol.18 , pp. 14-19
    • Garg, A.1    Tai, K.2
  • 69
    • 84866948628 scopus 로고    scopus 로고
    • Comparison of regression analysis, artificial neural network and genetic programming in Handling the multicollinearity problem
    • Wuhan, China, IEEE
    • Garg A, Tai K (2012). Comparison of regression analysis, artificial neural network and genetic programming in Handling the multicollinearity problem. 2012 Proceedings of International Conference on Modelling, Identification and Control (ICMIC), Wuhan, China, IEEE, pp 353-358
    • (2012) 2012 Proceedings of International Conference on Modelling, Identification and Control (ICMIC) , pp. 353-358
    • Garg, A.1    Tai, K.2
  • 71
    • 84876995897 scopus 로고    scopus 로고
    • Comparison of statistical and machine learning methods in modelling of data with multicollinearity
    • Garg A, Tai K (2013) Comparison of statistical and machine learning methods in modelling of data with multicollinearity. Int J Model Ident Control 18(4):295-312
    • (2013) Int J Model Ident Control , vol.18 , Issue.4 , pp. 295-312
    • Garg, A.1    Tai, K.2
  • 72
    • 84911997374 scopus 로고    scopus 로고
    • A Hybrid M5'-genetic programming approach for ensuring greater trustworthiness of prediction ability in modelling of FDM process
    • (in press). doi: 10.1007/s10845-013-0734-1
    • Garg A, Tai K, Lee CH, Savalani MM. A Hybrid M5'-genetic programming approach for ensuring greater trustworthiness of prediction ability in modelling of FDM process, Journal of Intelligent Manufacturing (in press). doi: 10.1007/s10845-013-0734-1.
    • Journal of Intelligent Manufacturing
    • Garg, A.1    Tai, K.2    Lee, C.H.3    Savalani, M.M.4
  • 73
    • 84893219807 scopus 로고    scopus 로고
    • State-of-the-art in empirical modelling of rapid prototyping processes
    • (in press)
    • Garg A, Savalani MM, Tai K (in press) State-of-the-art in empirical modelling of rapid prototyping processes. Rapid Prototyping Journal
    • Rapid Prototyping Journal
    • Garg, A.1    Savalani, M.M.2    Tai, K.3
  • 76
    • 72749102343 scopus 로고    scopus 로고
    • Trustable symbolic regression models: Using ensembles, interval arithmetic and pareto fronts to develop robust and trust-aware models
    • Kotanchek M, Smits G, Vladislavleva E (2008) Trustable symbolic regression models: using ensembles, interval arithmetic and pareto fronts to develop robust and trust-aware models. Genetic Programming Theory and Practice V, pp 201-220
    • (2008) Genetic Programming Theory and Practice v , pp. 201-220
    • Kotanchek, M.1    Smits, G.2    Vladislavleva, E.3
  • 77
    • 0036808510 scopus 로고    scopus 로고
    • Genetic programming and evolutionary generalization
    • Kushchu I (2002) Genetic programming and evolutionary generalization. IEEE Trans Evol Comput 6:431-442
    • (2002) IEEE Trans Evol Comput , vol.6 , pp. 431-442
    • Kushchu, I.1
  • 78
    • 0344861965 scopus 로고    scopus 로고
    • Model selection methodology in supervised learning with evolutionary computation
    • Rowland J (2003) Model selection methodology in supervised learning with evolutionary computation. Biosystems 72:187-196
    • (2003) Biosystems , vol.72 , pp. 187-196
    • Rowland, J.1
  • 80
    • 79151476554 scopus 로고    scopus 로고
    • Optimization of tool geometry parameters for turning operations based on the response surface methodology
    • Neseli S, Yaldiz S, Turkes E (2011) Optimization of tool geometry parameters for turning operations based on the response surface methodology. Measurement: J Int Measure Confederation 44:580-587
    • (2011) Measurement: J Int Measure Confederation , vol.44 , pp. 580-587
    • Neseli, S.1    Yaldiz, S.2    Turkes, E.3
  • 81
    • 84894887900 scopus 로고
    • Computer aided design of experiments
    • Kennard RW, Stone LA (1969) Computer aided design of experiments. Technometrics 11:137-148
    • (1969) Technometrics , vol.11 , pp. 137-148
    • Kennard, R.W.1    Stone, L.A.2
  • 82
    • 74149090502 scopus 로고    scopus 로고
    • Data splitting for artificial neural networks using SOM-based stratified sampling
    • May R, Maier HR, Dandy GC (2010) Data splitting for artificial neural networks using SOM-based stratified sampling. Neural Networks 23:283-294
    • (2010) Neural Networks , vol.23 , pp. 283-294
    • May, R.1    Maier, H.R.2    Dandy, G.C.3
  • 83
    • 84887622153 scopus 로고    scopus 로고
    • A modified Kennard-Stone algorithm for optimal division of data for developing artificial neural network models
    • Saptoro A, Tade MO, Vuthaluru H (2012) A modified Kennard-Stone algorithm for optimal division of data for developing artificial neural network models. Chem Prod Process Model 7:13
    • (2012) Chem Prod Process Model , vol.7 , pp. 13
    • Saptoro, A.1    Tade, M.O.2    Vuthaluru, H.3
  • 85
    • 84863257812 scopus 로고    scopus 로고
    • Mathematical formulation of knitted fabric spirality using genetic programming
    • Chen ZH, Xu BG, Chi ZR (2012) Mathematical formulation of knitted fabric spirality using genetic programming. Text Res J 82:667-676
    • (2012) Text Res J , vol.82 , pp. 667-676
    • Chen, Z.H.1    Xu, B.G.2    Chi, Z.R.3
  • 86
    • 79952394160 scopus 로고    scopus 로고
    • GPTIPS: An open source genetic programming toolbox for multigene symbolic regression
    • Searson DP, Leahy DE, Willis MJ (2010) GPTIPS: an open source genetic programming toolbox for multigene symbolic regression. Int MultiConfer Eng Comput Sci 2010 1:77-80
    • (2010) Int MultiConfer Eng Comput Sci 2010 , vol.1 , pp. 77-80
    • Searson, D.P.1    Leahy, D.E.2    Willis, M.J.3
  • 87
    • 0013485092 scopus 로고    scopus 로고
    • PhD thesis, Department of Chemical and Process Engineering, University of Newcastle, UK
    • Hiden HG (1998) Data-based modelling using genetic programming. PhD thesis, Department of Chemical and Process Engineering, University of Newcastle, UK
    • (1998) Data-based Modelling Using Genetic Programming
    • Hiden, H.G.1
  • 89
    • 0345040882 scopus 로고    scopus 로고
    • Support vector machine applications in bioinformatics
    • Byvatov E, Schneider G (2003) Support vector machine applications in bioinformatics. Appl Bioinforma 2:67-77
    • (2003) Appl Bioinforma , vol.2 , pp. 67-77
    • Byvatov, E.1    Schneider, G.2
  • 90
    • 0004291150 scopus 로고    scopus 로고
    • Learning and soft computing: Support vector machines, neural networks, and fuzzy logicmodels
    • Cambridge
    • Kecman V (2001) Learning and soft computing: support vector machines, neural networks, and fuzzy logicmodels. MIT Press, Cambridge
    • (2001) MIT Press
    • Kecman, V.1
  • 94
    • 83555163643 scopus 로고    scopus 로고
    • Avoiding neural network fine tuning by using ensemble learning: Application to ball-end milling operations
    • Bustillo A et al (2011) Avoiding neural network fine tuning by using ensemble learning: application to ball-end milling operations. Int J Adv Manuf Technol 57(5-8):521-532
    • (2011) Int J Adv Manuf Technol , vol.57 , Issue.5-8 , pp. 521-532
    • Bustillo, A.1
  • 95
    • 80053573850 scopus 로고    scopus 로고
    • The selection of milling parameters by the PSO-based neural network modeling method
    • Farahnakian M et al (2011) The selection of milling parameters by the PSO-based neural network modeling method. Int J Adv Manuf Technol 57(1-4):49-60
    • (2011) Int J Adv Manuf Technol , vol.57 , Issue.1-4 , pp. 49-60
    • Farahnakian, M.1
  • 97
    • 84866922005 scopus 로고    scopus 로고
    • Machine tool thermal error modeling and prediction by grey neural network
    • Zhang Y, Yang J, Jiang H (2012) Machine tool thermal error modeling and prediction by grey neural network. Int J Adv Manuf Technol 59(9-12):1065-1072
    • (2012) Int J Adv Manuf Technol , vol.59 , Issue.9-12 , pp. 1065-1072
    • Zhang, Y.1    Yang, J.2    Jiang, H.3
  • 98
    • 84855704742 scopus 로고    scopus 로고
    • Constrained optimum surface roughness prediction in turning of X20Cr13 by coupling novel modified harmony search-based neural network and modified harmony search algorithm
    • Zinati RF, Razfar MR (2012) Constrained optimum surface roughness prediction in turning of X20Cr13 by coupling novel modified harmony search-based neural network and modified harmony search algorithm. Int J Adv Manuf Technol 58(1-4):93-107
    • (2012) Int J Adv Manuf Technol , vol.58 , Issue.1-4 , pp. 93-107
    • Zinati, R.F.1    Razfar, M.R.2
  • 99
    • 79751524432 scopus 로고    scopus 로고
    • Performance comparison of conventional and wiper ceramic inserts in hard turning through artificial neural network modeling
    • Gaitonde VN, Karnik SR, Figueira L, Davim JP (2011) Performance comparison of conventional and wiper ceramic inserts in hard turning through artificial neural network modeling. Int J Adv Manuf Technol 52:101-114
    • (2011) Int J Adv Manuf Technol , vol.52 , pp. 101-114
    • Gaitonde, V.N.1    Karnik, S.R.2    Figueira, L.3    Davim, J.P.4
  • 100
    • 80053560404 scopus 로고    scopus 로고
    • A hybrid method of artificial neural networks and simulated annealing in monitoring auto-correlated multi-attribute processes
    • Niaki STA, Akbari-Nasaji S (2011) A hybrid method of artificial neural networks and simulated annealing in monitoring auto-correlated multi-attribute processes. Int J Adv Manuf Technol 56:777-788
    • (2011) Int J Adv Manuf Technol , vol.56 , pp. 777-788
    • Niaki, S.T.A.1    Akbari-Nasaji, S.2
  • 102
    • 0346250790 scopus 로고    scopus 로고
    • Practical selection of SVM parameters and noise estimation for SVM regression
    • Cherkassky V, Ma Y (2004) Practical selection of SVM parameters and noise estimation for SVM regression. Neural networks 17:113-126
    • (2004) Neural Networks , vol.17 , pp. 113-126
    • Cherkassky, V.1    Ma, Y.2
  • 104
    • 84868484942 scopus 로고    scopus 로고
    • Comparison of evolutionary-based optimization algorithms for structural design optimization
    • YIldIz AR (2013) Comparison of evolutionary-based optimization algorithms for structural design optimization. Eng Appl Artif Intel 26(1):327-333
    • (2013) Eng Appl Artif Intel , vol.26 , Issue.1 , pp. 327-333
    • Yildiz, A.R.1
  • 105
    • 84868476893 scopus 로고    scopus 로고
    • A new hybrid particle swarm optimization approach for structural design optimization in automotive industry
    • YIldIz AR (2012) A new hybrid particle swarm optimization approach for structural design optimization in automotive industry. Proc Inst Mechanical Eng, Part D: J Automobile Eng 226(10):1340-1351
    • (2012) Proc Inst Mechanical Eng, Part D: J Automobile Eng , vol.226 , Issue.10 , pp. 1340-1351
    • Yildiz, A.R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.