메뉴 건너뛰기




Volumn , Issue , 2013, Pages 90-94

Empirical analysis of model selection criteria for genetic programming in modeling of time series system

Author keywords

fitness function; genetic programming; model selection; stock market

Indexed keywords

FITNESS FUNCTIONS; GENE EXPRESSION PROGRAMMING; GENERALIZATION ABILITY; MODEL SELECTION; MODEL SELECTION CRITERIA; MULTI EXPRESSION PROGRAMMING; NEW YORK STOCK EXCHANGE; STOCK MARKET;

EID: 84886052287     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CIFEr.2013.6611702     Document Type: Conference Paper
Times cited : (31)

References (33)
  • 1
    • 34547869773 scopus 로고    scopus 로고
    • Time series forecasting for dynamic environments: The DyFor genetic program model
    • Wagner, N., et al., Time series forecasting for dynamic environments: the DyFor genetic program model. Evolutionary Computation, IEEE Transactions on, 2007. 11(4): p. 433-452.
    • (2007) Evolutionary Computation, IEEE Transactions on , vol.11 , Issue.4 , pp. 433-452
    • Wagner, N.1
  • 2
    • 0033676168 scopus 로고    scopus 로고
    • Genetic programming polynomial models of financial data series. in Evolutionary Computation
    • Iba, H. and N. Nikolaev. Genetic programming polynomial models of financial data series. in Evolutionary Computation, 2000. Proceedings of the 2000 Congress on. 2000. IEEE.
    • (2000) Proceedings of the 2000 Congress On. 2000. IEEE
    • Iba, H.1    Nikolaev, N.2
  • 4
    • 84937415761 scopus 로고    scopus 로고
    • Genetic programming for financial time series prediction
    • Santini, M. and A. Tettamanzi, Genetic programming for financial time series prediction. Genetic Programming, 2001: p. 361-370.
    • (2001) Genetic Programming , pp. 361-370
    • Santini, M.1    Tettamanzi, A.2
  • 6
    • 0346750898 scopus 로고    scopus 로고
    • Genetic programming prediction of stock prices
    • Kaboudan, M., Genetic programming prediction of stock prices. Computational Economics, 2000. 16(3): p. 207-236.
    • (2000) Computational Economics , vol.16 , Issue.3 , pp. 207-236
    • Kaboudan, M.1
  • 8
    • 33750209031 scopus 로고    scopus 로고
    • Stock market modeling using genetic programming ensembles
    • Grosan, C. and A. Abraham, Stock market modeling using genetic programming ensembles. Genetic Systems Programming, 2006: p. 131-146.
    • (2006) Genetic Systems Programming , pp. 131-146
    • Grosan, C.1    Abraham, A.2
  • 10
    • 84856570927 scopus 로고    scopus 로고
    • Improved gene expression programming algorithm tested by predicting stock indexes
    • Qian, X. and C. Yang, Improved gene expression programming algorithm tested by predicting stock indexes. CAAI Transactions on Intelligent Systems, 2010. 4: p. 005.
    • (2010) CAAI Transactions on Intelligent Systems , pp. 005
    • Qian, X.1    Yang, C.2
  • 13
    • 26444612035 scopus 로고    scopus 로고
    • A comparison of several linear genetic programming techniques
    • Oltean, M. and C. Grosan, A comparison of several linear genetic programming techniques. Complex Systems, 2003. 14(4): p. 285-314.
    • (2003) Complex Systems , vol.14 , Issue.4 , pp. 285-314
    • Oltean, M.1    Grosan, C.2
  • 14
    • 79959920299 scopus 로고    scopus 로고
    • A hybrid procedure for stock price prediction by integrating self-organizing map and genetic programming
    • Hsu, C. M., A hybrid procedure for stock price prediction by integrating self-organizing map and genetic programming. Expert systems with applications, 2011. 38(11): p. 14026-14036.
    • (2011) Expert Systems with Applications , vol.38 , Issue.11 , pp. 14026-14036
    • Hsu, C.M.1
  • 16
    • 38949196039 scopus 로고    scopus 로고
    • Using correlation to improve boosting technique: An application for time series forecasting. in Tools with Artificial Intelligence
    • de Souza, L. V., A. T. R. Pozo, and A. C. Neto. Using correlation to improve boosting technique: an application for time series forecasting. in Tools with Artificial Intelligence, 2006. ICTAI'06. 18th IEEE International Conference on. 2006. IEEE.
    • (2006) ICTAI'06. 18th IEEE International Conference on 2006. IEEE
    • De Souza, L.V.1    Pozo, A.T.R.2    Neto, A.C.3
  • 17
    • 0002357422 scopus 로고
    • An information criterion (AIC)
    • Akaike, H., An information criterion (AIC). Math Sci, 1976. 14(153): p. 5-9.
    • (1976) Math Sci , vol.14 , Issue.153 , pp. 5-9
    • Akaike, H.1
  • 18
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • Schwarz, G., Estimating the dimension of a model. The annals of statistics, 1978. 6(2): p. 461-464.
    • (1978) The Annals of Statistics , vol.6 , Issue.2 , pp. 461-464
    • Schwarz, G.1
  • 21
    • 0003257214 scopus 로고
    • Prediction risk and architecture selection for neural networks
    • Moody, J., Prediction risk and architecture selection for neural networks. NATO ASI SERIES F COMPUTER AND SYSTEMS SCIENCES, 1994. 136: p. 147-147.
    • (1994) NATO ASI SERIES F COMPUTER and SYSTEMS SCIENCES , vol.136 , pp. 147-147
    • Moody, J.1
  • 23
    • 0037484691 scopus 로고    scopus 로고
    • Comparison of model selection for regression
    • Cherkassky, V. and Y. Ma, Comparison of model selection for regression. Neural computation, 2003. 15(7): p. 1691-1714.
    • (2003) Neural Computation , vol.15 , Issue.7 , pp. 1691-1714
    • Cherkassky, V.1    Ma, Y.2
  • 29
  • 32
    • 80054890052 scopus 로고    scopus 로고
    • Prediction of strain energy-based liquefaction resistance of sand-silt mixtures: An evolutionary approach
    • Baziar, M. H., et al., Prediction of strain energy-based liquefaction resistance of sand-silt mixtures: An evolutionary approach. Computers & Geosciences, 2011. 37(11): p. 1883-189.
    • (2011) Computers & Geosciences , vol.37 , Issue.11 , pp. 1883-2189
    • Baziar, M.H.1
  • 33
    • 10944230818 scopus 로고    scopus 로고
    • Genetic programming-based chaotic time series modeling
    • Zhang, W., Z. Wu, and G. Yang, Genetic programming-based chaotic time series modeling. Journal of Zhejiang University Science A, 2004. 5(11): p. 1432-1439.
    • (2004) Journal of Zhejiang University Science A , vol.5 , Issue.11 , pp. 1432-1439
    • Zhang, W.1    Wu, Z.2    Yang, G.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.