메뉴 건너뛰기




Volumn 205, Issue 1-3, 2008, Pages 16-23

Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models

Author keywords

Artificial neural network; Free machining steel; Orthogonal array; Surface roughness; Turning

Indexed keywords

MACHINE TOOLS; NEURAL NETWORKS; PARAMETER ESTIMATION; PROCESS ENGINEERING; STEEL TESTING; SURFACE ROUGHNESS;

EID: 44749086674     PISSN: 09240136     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmatprotec.2007.11.082     Document Type: Article
Times cited : (219)

References (21)
  • 1
    • 0038298770 scopus 로고    scopus 로고
    • Predicting surface roughness in machining: a review
    • Benardos P.G., and Vosniakos G.C. Predicting surface roughness in machining: a review. Int. J. Mach. Tools Manuf. 43 (2003) 833-844
    • (2003) Int. J. Mach. Tools Manuf. , vol.43 , pp. 833-844
    • Benardos, P.G.1    Vosniakos, G.C.2
  • 3
    • 0031144509 scopus 로고    scopus 로고
    • Surface roughness in the turning of high strength steel by factorial design of experiments
    • Choudhury I.A., and EI-Baradie M.A. Surface roughness in the turning of high strength steel by factorial design of experiments. J. Mater. Process. Technol. 67 (1997) 55-61
    • (1997) J. Mater. Process. Technol. , vol.67 , pp. 55-61
    • Choudhury, I.A.1    EI-Baradie, M.A.2
  • 4
    • 0035944460 scopus 로고    scopus 로고
    • A note on the determination of optimal cutting conditions for surface finish obtained in turning using design of experiments
    • Davim J.P. A note on the determination of optimal cutting conditions for surface finish obtained in turning using design of experiments. J. Mater. Process. Technol. 116 (2001) 305-308
    • (2001) J. Mater. Process. Technol. , vol.116 , pp. 305-308
    • Davim, J.P.1
  • 5
    • 0036604073 scopus 로고    scopus 로고
    • Cutting conditions for finish turning process aiming: the use of dry cutting
    • Diniz A.E., and Micaroni R. Cutting conditions for finish turning process aiming: the use of dry cutting. Int. J. Mach. Tools Manuf. 432 (2002) 899-904
    • (2002) Int. J. Mach. Tools Manuf. , vol.432 , pp. 899-904
    • Diniz, A.E.1    Micaroni, R.2
  • 6
    • 0036391197 scopus 로고    scopus 로고
    • Development of empirical models for surface roughness prediction in finish turning
    • Feng C.X.J., and Wang X. Development of empirical models for surface roughness prediction in finish turning. Int. J. Adv. Manuf. Technol. 20 (2002) 348-356
    • (2002) Int. J. Adv. Manuf. Technol. , vol.20 , pp. 348-356
    • Feng, C.X.J.1    Wang, X.2
  • 7
    • 0342298565 scopus 로고    scopus 로고
    • Interaction of the technological history of a workpiece material and the machining parameters on the desired quality of the surface roughness of a product
    • Kopac J., and Bahor M. Interaction of the technological history of a workpiece material and the machining parameters on the desired quality of the surface roughness of a product. J. Mater. Process. Technol. 92-93 (1999) 381-387
    • (1999) J. Mater. Process. Technol. , vol.92-93 , pp. 381-387
    • Kopac, J.1    Bahor, M.2
  • 9
    • 44749094938 scopus 로고    scopus 로고
    • Math Works Incorporation, 2005. MATLAB user manual version 7.1 R14, Math Works Incorporation, Natick, MA.
    • Math Works Incorporation, 2005. MATLAB user manual version 7.1 R14, Math Works Incorporation, Natick, MA.
  • 12
    • 0342733658 scopus 로고    scopus 로고
    • Optimization of turning operations with multiple performance characteristics
    • Nian C.Y., Yang W.H., and Tarng Y.S. Optimization of turning operations with multiple performance characteristics. J. Mater. Process. Technol. 95 (1999) 90-96
    • (1999) J. Mater. Process. Technol. , vol.95 , pp. 90-96
    • Nian, C.Y.1    Yang, W.H.2    Tarng, Y.S.3
  • 13
    • 0036027375 scopus 로고    scopus 로고
    • Prediction of flank wear by using back propagation neural network modeling when cutting hardened H-13 steel with chamfered and honed CBN tools
    • Ozel T., and Nadgir A. Prediction of flank wear by using back propagation neural network modeling when cutting hardened H-13 steel with chamfered and honed CBN tools. Int. J. Mach. Tools Manuf. 42 (2002) 287-297
    • (2002) Int. J. Mach. Tools Manuf. , vol.42 , pp. 287-297
    • Ozel, T.1    Nadgir, A.2
  • 15
    • 27544452012 scopus 로고    scopus 로고
    • Selection of optimum tool geometry and cutting conditions using a surface roughness prediction model for end milling
    • Reddy N.S., and Rao P.V. Selection of optimum tool geometry and cutting conditions using a surface roughness prediction model for end milling. Int. J. Adv. Manuf. Technol. 26 (2005) 1202-1210
    • (2005) Int. J. Adv. Manuf. Technol. , vol.26 , pp. 1202-1210
    • Reddy, N.S.1    Rao, P.V.2
  • 17
    • 29144452580 scopus 로고    scopus 로고
    • Modeling of tool wear in drilling by statistical analysis and artificial neural network
    • Sanjay C., Neema M.L., and Chin C.W. Modeling of tool wear in drilling by statistical analysis and artificial neural network. J. Mater. Proces. Technol. 170 (2005) 494-500
    • (2005) J. Mater. Proces. Technol. , vol.170 , pp. 494-500
    • Sanjay, C.1    Neema, M.L.2    Chin, C.W.3
  • 21
    • 34047129755 scopus 로고    scopus 로고
    • Prediction on tribiological behaviour of composite PEEK-CF30 using artificial neural networks
    • Xu LiuJie, Davim J.P., and Cardoso R. Prediction on tribiological behaviour of composite PEEK-CF30 using artificial neural networks. J. Mater. Process. Technol. 189 (2007) 374-378
    • (2007) J. Mater. Process. Technol. , vol.189 , pp. 374-378
    • Xu LiuJie1    Davim, J.P.2    Cardoso, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.