메뉴 건너뛰기




Volumn 49, Issue 9-12, 2010, Pages 879-902

Artificial neural networks for machining processes surface roughness modeling

Author keywords

Artificial neural networks; Machining; Modeling; Surface roughness

Indexed keywords

ARTIFICIAL NEURAL NETWORK; CUTTING EDGES; ERROR MEASURES; MACHINING PROCESS; MODELING; NEUROCOMPUTING; SURFACE ROUGHNESS MODELING; TRAINING ALGORITHMS;

EID: 77956229257     PISSN: 02683768     EISSN: 14333015     Source Type: Journal    
DOI: 10.1007/s00170-009-2456-2     Document Type: Article
Times cited : (74)

References (106)
  • 1
    • 38349091129 scopus 로고    scopus 로고
    • Multi-objective optimization for turning processes using neural network modeling and dynamic-neighborhood particle swarm optimization
    • 10.1007/s00170-006-0719-8
    • Y Karpat T Özel 2007 Multi-objective optimization for turning processes using neural network modeling and dynamic-neighborhood particle swarm optimization Int J Adv Manuf Technol 35 234 247 10.1007/s00170-006-0719-8
    • (2007) Int J Adv Manuf Technol , vol.35 , pp. 234-247
    • Karpat, Y.1    Özel, T.2
  • 2
    • 33644749301 scopus 로고    scopus 로고
    • Approach to optimization of cutting conditions by using artificial neural networks
    • DOI 10.1016/j.jmatprotec.2005.04.123, PII S0924013605009611
    • F Cus U Zuperl 2006 Approach to optimization of cutting conditions by using artificial neural networks J Mater Process Technol 173 281 290 10.1016/j.jmatprotec.2005.04.123 (Pubitemid 43344284)
    • (2006) Journal of Materials Processing Technology , vol.173 , Issue.3 , pp. 281-290
    • Cus, F.1    Zuperl, U.2
  • 3
    • 34247328174 scopus 로고    scopus 로고
    • A surface roughness prediction model for hard turning process
    • DOI 10.1007/s00170-006-0429-2
    • D Singh PV Rao 2007 A surface roughness prediction model for hard turning process Int J Adv Manuf Technol 32 1115 1124 10.1007/s00170-006-0429-2 (Pubitemid 46645790)
    • (2007) International Journal of Advanced Manufacturing Technology , vol.32 , Issue.11-12 , pp. 1115-1124
    • Singh, D.1    Rao, P.V.2
  • 4
    • 27544452012 scopus 로고    scopus 로고
    • Selection of optimum tool geometry and cutting conditions using a surface roughness prediction model for end milling
    • DOI 10.1007/s00170-004-2110-y
    • NS Kumar Reddy PV Rao 2005 Selection of optimum tool geometry and cutting conditions using a surface roughness prediction model for end milling Int J Adv Manuf Technol 26 1202 1210 10.1007/s00170-004-2110-y (Pubitemid 41539537)
    • (2005) International Journal of Advanced Manufacturing Technology , vol.26 , Issue.11-12 , pp. 1202-1210
    • Reddy, N.S.K.1    Venkateswara Rao, P.2
  • 5
    • 67749114574 scopus 로고    scopus 로고
    • A multivariate mean square error optimization of AISI 52100 hardened steel turning
    • 10.1007/s00170-008-1745-5
    • AP Paiva EJ Paiva JR Ferreira PP Balestrassi SC Costa 2009 A multivariate mean square error optimization of AISI 52100 hardened steel turning Int J Adv Manuf Technol 43 7-8 631 643 10.1007/s00170-008-1745-5
    • (2009) Int J Adv Manuf Technol , vol.43 , Issue.78 , pp. 631-643
    • Paiva, A.P.1    Paiva, E.J.2    Ferreira, J.R.3    Balestrassi, P.P.4    Costa, S.C.5
  • 6
    • 33645566059 scopus 로고    scopus 로고
    • Analysis of tool wear and surface finish in hard turning
    • 10.1007/s00170-004-2411-1
    • T Tamizharasan T Sevaraj AN Haq 2006 Analysis of tool wear and surface finish in hard turning Int J Adv Manuf Technol 28 671 679 10.1007/s00170-004- 2411-1
    • (2006) Int J Adv Manuf Technol , vol.28 , pp. 671-679
    • Tamizharasan, T.1    Sevaraj, T.2    Haq, A.N.3
  • 7
    • 77956226457 scopus 로고    scopus 로고
    • Application of NN technique for predicting the in-depth residual stresses during hard machining of AISI 52100 steel
    • 10.1007/s12289-008-0004-5
    • G Ambrogio L Filice R Shivpuri D Umbrello 2008 Application of NN technique for predicting the in-depth residual stresses during hard machining of AISI 52100 steel Int J Material Forming 1 39 45 10.1007/s12289-008-0004-5
    • (2008) Int J Material Forming , vol.1 , pp. 39-45
    • Ambrogio, G.1    Filice, L.2    Shivpuri, R.3    Umbrello, D.4
  • 8
    • 37049001016 scopus 로고    scopus 로고
    • Modeling of surface roughness in precision machining of metal matrix composites using ANN
    • DOI 10.1016/j.jmatprotec.2007.04.121, PII S0924013607004748
    • AC Basheer UA Dabade SJ Suhas VV Bhanuprasad 2008 Modeling of surface roughness in precision machining of metal matrix composites using ANN J Mater Process Technol 197 439 444 10.1016/j.jmatprotec.2007.04.121 (Pubitemid 350251127)
    • (2008) Journal of Materials Processing Technology , vol.197 , Issue.1-3 , pp. 439-444
    • Basheer, A.C.1    Dabade, U.A.2    Joshi, S.S.3    Bhanuprasad, V.V.4    Gadre, V.M.5
  • 9
    • 46249124721 scopus 로고    scopus 로고
    • Estimation of cutting forces and surface roughness for hard turning using neural networks
    • 10.1007/s10845-008-0097-1
    • VS Sharma S Dhiman R Sehgal SK Sharma 2008 Estimation of cutting forces and surface roughness for hard turning using neural networks J Intell Manuf 19 473 483 10.1007/s10845-008-0097-1
    • (2008) J Intell Manuf , vol.19 , pp. 473-483
    • Sharma, V.S.1    Dhiman, S.2    Sehgal, R.3    Sharma, S.K.4
  • 10
    • 12444249998 scopus 로고    scopus 로고
    • Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks
    • DOI 10.1016/j.ijmachtools.2004.09.007, PII S0890695504002299
    • T Özel Y Karpat 2005 Predictive modeling of surface roughness and tool wear in hard turning using regression and neural networks Int J Mach Tools Manuf 45 467 479 10.1016/j.ijmachtools.2004.09.007 (Pubitemid 40142539)
    • (2005) International Journal of Machine Tools and Manufacture , vol.45 , Issue.4-5 , pp. 467-479
    • Ozel, T.1    Karpat, Y.2
  • 11
    • 0038298770 scopus 로고    scopus 로고
    • Predicting surface roughness in machining: A review
    • 10.1016/S0890-6955(03)00059-2
    • PG Benardos GC Vosniakos 2003 Predicting surface roughness in machining: a review Int J Mach Tools Manuf 43 833 844 10.1016/S0890-6955(03)00059-2
    • (2003) Int J Mach Tools Manuf , vol.43 , pp. 833-844
    • Benardos, P.G.1    Vosniakos, G.C.2
  • 12
    • 67651230570 scopus 로고    scopus 로고
    • An integrated study of surface roughness for modelling and optimization of cutting parameters during end milling operation
    • 10.1007/s00170-008-1763-3
    • H Öktem 2009 An integrated study of surface roughness for modelling and optimization of cutting parameters during end milling operation Int J Adv Manuf Technol 43 9-10 852 861 10.1007/s00170-008-1763-3
    • (2009) Int J Adv Manuf Technol , vol.43 , Issue.910 , pp. 852-861
    • Öktem, H.1
  • 13
    • 62949132164 scopus 로고    scopus 로고
    • Prediction and control of surface roughness in CNC lathe using artificial neural network
    • 10.1016/j.jmatprotec.2008.07.023
    • D Karayel 2009 Prediction and control of surface roughness in CNC lathe using artificial neural network J Mater Process Technol 209 3125 3137 10.1016/j.jmatprotec.2008.07.023
    • (2009) J Mater Process Technol , vol.209 , pp. 3125-3137
    • Karayel, D.1
  • 14
    • 22944469411 scopus 로고    scopus 로고
    • Optimization of CNC ball end milling: A neural network-based model
    • DOI 10.1016/j.jmatprotec.2004.07.097, PII S0924013604009951
    • H El-Mounayri H Kishawy J Briceno 2005 Optimization of CNC ball end milling: a neural network-based model J Mater Process Technol 166 50 62 10.1016/j.jmatprotec.2004.07.097 (Pubitemid 41050630)
    • (2005) Journal of Materials Processing Technology , vol.166 , Issue.1 , pp. 50-62
    • El-Mounayri, H.1    Kishawy, H.2    Briceno, J.3
  • 15
    • 0032205695 scopus 로고    scopus 로고
    • Static neural network process models: Considerations and case studies
    • 0953.90550 10.1080/002075498192229
    • DW Coit BT Jackson AE Smith 1998 Static neural network process models: considerations and case studies Int J Prod Res 36 11 2953 2967 0953.90550 10.1080/002075498192229
    • (1998) Int J Prod Res , vol.36 , Issue.11 , pp. 2953-2967
    • Coit, D.W.1    Jackson, B.T.2    Smith, A.E.3
  • 16
    • 20444464409 scopus 로고    scopus 로고
    • Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network
    • DOI 10.1016/j.ijmachtools.2005.02.004, PII S0890695505000556
    • EO Ezugwu DA Fadare J Bonney RB Da Silva WF Sales 2005 Modelling the correlation between cutting and process parameters in high-speed machining of Inconel 718 alloy using an artificial neural network Int J Mach Tools Manuf 45 1375 1385 10.1016/j.ijmachtools.2005.02.004 (Pubitemid 40821886)
    • (2005) International Journal of Machine Tools and Manufacture , vol.45 , Issue.12-13 , pp. 1375-1385
    • Ezugwu, E.O.1    Fadare, D.A.2    Bonney, J.3    Da Silva, R.B.4    Sales, W.F.5
  • 17
    • 58349093492 scopus 로고    scopus 로고
    • Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process
    • 10.1016/j.eswa.2008.09.024
    • M Correa C Bielza J Pamies-Teixeira 2009 Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process Expert Systems Appl 36 3 7270 7279 10.1016/j.eswa.2008.09.024
    • (2009) Expert Systems Appl , vol.36 , Issue.3 , pp. 7270-7279
    • Correa, M.1    Bielza, C.2    Pamies-Teixeira, J.3
  • 18
    • 42949106000 scopus 로고    scopus 로고
    • A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method
    • DOI 10.1016/j.jmatprotec.2007.10.024, PII S0924013607009168
    • U Çaydas A Hasçalik 2008 A study on surface roughness in abrasive waterjet machining process using artificial neural networks and regression analysis method J Mater Process Technol 202 1-3 574 582 10.1016/j.jmatprotec.2007.10.024 (Pubitemid 351615588)
    • (2008) Journal of Materials Processing Technology , vol.202 , Issue.1-3 , pp. 574-582
    • Caydas, U.1    Hascalik, A.2
  • 20
    • 33646773258 scopus 로고    scopus 로고
    • Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm
    • H Oktem T Erzurumlu F Erzincanli 2006 Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm Mater Des 27 735 744
    • (2006) Mater des , vol.27 , pp. 735-744
    • Oktem, H.1    Erzurumlu, T.2    Erzincanli, F.3
  • 21
    • 33746907798 scopus 로고    scopus 로고
    • Study on the prediction model of surface roughness for side milling operations
    • DOI 10.1007/s00170-005-2604-2
    • CK Chang HS Lu 2006 Study on the prediction model of surface roughness for side milling operations Int J Adv Manuf Technol 29 867 878 10.1007/s00170-005-2604-2 (Pubitemid 44195212)
    • (2006) International Journal of Advanced Manufacturing Technology , vol.29 , Issue.9-10 , pp. 867-878
    • Chang, C.-K.1    Lu, H.S.2
  • 22
    • 27744485019 scopus 로고    scopus 로고
    • Surface roughness prediction in turning using artificial neural network
    • DOI 10.1007/s00521-005-0468-x
    • SK Pal D Chakraborty 2005 Surface roughness prediction in turning using artificial neural network Neural Comput Appl 14 319 324 10.1007/s00521-005-0468- x (Pubitemid 41604362)
    • (2005) Neural Computing and Applications , vol.14 , Issue.4 , pp. 319-324
    • Pal, S.K.1    Chakraborty, D.2
  • 23
    • 33750356120 scopus 로고    scopus 로고
    • Comparison of response surface model with neural network in determining the surface quality of moulded parts
    • T Erzurumlu H Oktem 2007 Comparison of response surface model with neural network in determining the surface quality of moulded parts Mater Des 28 459 465
    • (2007) Mater des , vol.28 , pp. 459-465
    • Erzurumlu, T.1    Oktem, H.2
  • 24
    • 0036815452 scopus 로고    scopus 로고
    • Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments
    • DOI 10.1016/S0736-5845(02)00005-4, PII S0736584502000054
    • PG Benardos GC Vosniakos 2002 Prediction of surface roughness in CNC face milling using neural networks and Taguchi's design of experiments Robot Comput Integr Manuf 18 343 354 10.1016/S0736-5845(02)00005-4 (Pubitemid 35405670)
    • (2002) Robotics and Computer-Integrated Manufacturing , vol.18 , Issue.5-6 , pp. 343-354
    • Benardos, P.G.1    Vosniakos, G.C.2
  • 25
    • 44749086674 scopus 로고    scopus 로고
    • Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models
    • 10.1016/j.jmatprotec.2007.11.082
    • JP Davim VN Gaitonde SR Karnik 2008 Investigations into the effect of cutting conditions on surface roughness in turning of free machining steel by ANN models J Mater Process Technol 205 16 23 10.1016/j.jmatprotec.2007.11.082
    • (2008) J Mater Process Technol , vol.205 , pp. 16-23
    • Davim, J.P.1    Gaitonde, V.N.2    Karnik, S.R.3
  • 29
    • 33645556229 scopus 로고    scopus 로고
    • Prediction of surface roughness of turned surfaces using neural networks
    • 10.1007/s00170-004-2429-4
    • ZW Zhong LP Khoo ST Han 2006 Prediction of surface roughness of turned surfaces using neural networks Int J Adv Manuf Technol 28 688 693 10.1007/s00170-004-2429-4
    • (2006) Int J Adv Manuf Technol , vol.28 , pp. 688-693
    • Zhong, Z.W.1    Khoo, L.P.2    Han, S.T.3
  • 30
    • 33750319478 scopus 로고    scopus 로고
    • Ground surface roughness prediction based upon experimental design and neural network models
    • DOI 10.1007/s00170-005-0169-8
    • NB Fredj R Amamou 2006 Ground surface roughness prediction based upon experimental design and neural network models Int J Adv Manuf Technol 31 24 36 10.1007/s00170-005-0169-8 (Pubitemid 44631978)
    • (2006) International Journal of Advanced Manufacturing Technology , vol.31 , Issue.1-2 , pp. 24-36
    • Fredj, N.B.1    Amamou, R.2
  • 31
    • 0030784163 scopus 로고    scopus 로고
    • A new algorithm for developing a reference model for predicting surface roughness in finish machining of steels
    • 0951.90544 10.1080/002075497196046
    • XD Fang H Safi-Jahanshaki 1997 A new algorithm for developing a reference model for predicting surface roughness in finish machining of steels Int J Prod Res 35 179 197 0951.90544 10.1080/002075497196046
    • (1997) Int J Prod Res , vol.35 , pp. 179-197
    • Fang, X.D.1    Safi-Jahanshaki, H.2
  • 34
    • 51249194645 scopus 로고
    • A logical calculus of the ideas immanent in nervous activity
    • 0063.03860 10.1007/BF02478259 10388
    • WS McCulloch W Pitts 1943 A logical calculus of the ideas immanent in nervous activity Bull Math Biophys 5 115 133 0063.03860 10.1007/BF02478259 10388
    • (1943) Bull Math Biophys , vol.5 , pp. 115-133
    • McCulloch, W.S.1    Pitts, W.2
  • 36
    • 11144273669 scopus 로고
    • The perceptron: A probabilistic model for information storage and organization in the brain
    • 10.1037/h0042519 1529895
    • F Rosenblatt 1958 The perceptron: a probabilistic model for information storage and organization in the brain Psychol Revue 65 386 408 10.1037/h0042519 1529895
    • (1958) Psychol Revue , vol.65 , pp. 386-408
    • Rosenblatt, F.1
  • 37
    • 77956225316 scopus 로고
    • Institute of Radio Engineers, Western Electronic Show and Convention
    • Widrow B, Hoff ME (1960) Adaptative switching circuits. Institute of Radio Engineers, Western Electronic Show and Convention
    • (1960) Adaptative Switching Circuits
    • Widrow, B.1    Hoff, M.E.2
  • 39
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective properties
    • 10.1073/pnas.79.8.2554 652033
    • JJ Hopfield 1982 Neural networks and physical systems with emergent collective properties Proc Natl Acad Sci 79 2554 2558 10.1073/pnas.79.8.2554 652033
    • (1982) Proc Natl Acad Sci , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 40
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • DOI 10.1007/BF00337288
    • T Kohonen 1982 Self-organized formation of topologically correct feature maps Biol Cybern 43 49 59 10.1007/BF00337288 667889 (Pubitemid 12139984)
    • (1982) Biological Cybernetics , vol.43 , Issue.1 , pp. 59-69
    • Kohonen, T.1
  • 41
    • 0022471098 scopus 로고
    • Learning representations by back-propagating errors
    • 10.1038/323533a0
    • DE Rumelhart GE Hinton RJ Williams 1986 Learning representations by back-propagating errors Nature 323 533 536 10.1038/323533a0
    • (1986) Nature , vol.323 , pp. 533-536
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 42
    • 34248198328 scopus 로고    scopus 로고
    • Predictive machinability models for a selected hard material in turning operations
    • DOI 10.1016/j.jmatprotec.2007.02.031, PII S0924013607001707
    • AMA Al-Ahmari 2007 Predictive machinability models for a selected hard material in turning operations J Mater Process Technol 190 305 311 10.1016/j.jmatprotec.2007.02.031 (Pubitemid 46719818)
    • (2007) Journal of Materials Processing Technology , vol.190 , Issue.1-3 , pp. 305-311
    • Al-Ahmari, A.M.A.1
  • 43
    • 0000621802 scopus 로고
    • Mulvariable function interpolation and adaptive networks
    • 0657.68085 955557
    • DS Broomhead D Lowe 1988 Mulvariable function interpolation and adaptive networks Complex Syst 2 321 355 0657.68085 955557
    • (1988) Complex Syst , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 45
    • 0036664145 scopus 로고    scopus 로고
    • On-line and indirect tool wear monitoring in turning with artificial neural networks: A review of more than a decade of research
    • 10.1006/mssp.2001.1460
    • B Sick 2002 On-line and indirect tool wear monitoring in turning with artificial neural networks: a review of more than a decade of research Mech Syst Signal Process 16 4 487 546 10.1006/mssp.2001.1460
    • (2002) Mech Syst Signal Process , vol.16 , Issue.4 , pp. 487-546
    • Sick, B.1
  • 46
    • 0029252416 scopus 로고
    • Tool-wear prediction using artificial neural networks
    • 10.1016/0924-0136(94)01351-Z
    • EO Ezugwu SJ Arthur EL Hines 1995 Tool-wear prediction using artificial neural networks J Mater Process Technol 49 255 264 10.1016/0924-0136(94)01351-Z
    • (1995) J Mater Process Technol , vol.49 , pp. 255-264
    • Ezugwu, E.O.1    Arthur, S.J.2    Hines, E.L.3
  • 47
    • 0031124160 scopus 로고    scopus 로고
    • An improved neural network model for the prediction of cutting tool life
    • 10.1023/A:1018552620196
    • PY Chao YD Hwang 1997 An improved neural network model for the prediction of cutting tool life J Intell Manuf 8 107 117 10.1023/A:1018552620196
    • (1997) J Intell Manuf , vol.8 , pp. 107-117
    • Chao, P.Y.1    Hwang, Y.D.2
  • 48
    • 0035803614 scopus 로고    scopus 로고
    • The predictive model for machinability of 304 stainless steel
    • DOI 10.1016/S0924-0136(01)00875-5, PII S0924013601008755
    • WT Chien CY Chou 2001 The predictive model for machinability of 304 stainless steel J Mater Process Technol 118 442 447 10.1016/S0924-0136(01)00875- 5 (Pubitemid 33148023)
    • (2001) Journal of Materials Processing Technology , vol.118 , Issue.1-3 , pp. 442-447
    • Chien, W.-T.1    Chou, C.-Y.2
  • 49
    • 0035427810 scopus 로고    scopus 로고
    • Predictions on surface finish in electrical discharge machining based upon neural network models
    • DOI 10.1016/S0890-6955(01)00028-1, PII S0890695501000281
    • KM Tsai PJ Wang 2001 Predictions on surface finish in electrical discharge machining based upon neural network models Int J Mach Tools Manuf 41 1385 1403 10.1016/S0890-6955(01)00028-1 (Pubitemid 32405079)
    • (2001) International Journal of Machine Tools and Manufacture , vol.41 , Issue.10 , pp. 1385-1403
    • Shatla, M.1    Kerk, C.2    Altan, T.3
  • 50
    • 34047132833 scopus 로고    scopus 로고
    • Modelling of surface finish and tool flank wear in turning of AISI D2 steel with ceramic wiper inserts
    • DOI 10.1016/j.jmatprotec.2007.01.021, PII S0924013607000611
    • T Özel Y Karpat L Figueira JP Davim 2007 Modelling of surface finish and tool flank wear in turning of AISI D2 steel with ceramic wiper inserts J Mater Process Technol 189 192 198 10.1016/j.jmatprotec.2007.01.021 (Pubitemid 46529196)
    • (2007) Journal of Materials Processing Technology , vol.189 , Issue.1-3 , pp. 192-198
    • Ozel, T.1    Karpat, Y.2    Figueira, L.3    Davim, J.P.4
  • 51
    • 53549114540 scopus 로고    scopus 로고
    • Neural-network-based modeling and optimization of the electro-discharge machining process
    • 10.1007/s00170-007-1235-1
    • S Assarzadeh M Ghoreishi 2008 Neural-network-based modeling and optimization of the electro-discharge machining process Int J Adv Manuf Technol 39 488 500 10.1007/s00170-007-1235-1
    • (2008) Int J Adv Manuf Technol , vol.39 , pp. 488-500
    • Assarzadeh, S.1    Ghoreishi, M.2
  • 52
    • 51849129542 scopus 로고    scopus 로고
    • Development of an artificial neural network algorithm for predicting the surface roughness in end milling of Inconel 718 Alloy, IEEE ICCCE 2008
    • May 13-15, 2008, Kuala Lumpur, Malaysia
    • Hossain MI, Amin AKMN, Patwari AU (2008) Development of an artificial neural network algorithm for predicting the surface roughness in end milling of Inconel 718 Alloy, IEEE ICCCE 2008. Proceedings of the International Conference on Computer and Communication Engineering 2008, May 13-15, 2008, Kuala Lumpur, Malaysia, pp 1321-1324
    • (2008) Proceedings of the International Conference on Computer and Communication Engineering 2008 , pp. 1321-1324
    • Hossain, M.I.1    Akmn, A.2    Patwari, A.U.3
  • 54
    • 52149102100 scopus 로고    scopus 로고
    • Experimental study of tool wear monitoring based on neural networks, intelligent control and automation, IEEE WCICA 2008
    • June 25-27, 2008, Chongqing, China
    • Gao H, Xu M, Su YC, Fu P, Liu Q (2008) Experimental study of tool wear monitoring based on neural networks, intelligent control and automation, IEEE WCICA 2008. Proceedings of the 7th World Congress on Intelligent Control and Automation, June 25-27, 2008, Chongqing, China, pp 6906-6910
    • (2008) Proceedings of the 7th World Congress on Intelligent Control and Automation , pp. 6906-6910
    • Gao, H.1    Xu, M.2    Su, Y.C.3    Fu, P.4    Liu, Q.5
  • 55
    • 38649122368 scopus 로고    scopus 로고
    • Artificial-neural-networks-based surface roughness Pokayoke system for end-milling operations
    • 10.1016/j.neucom.2007.07.029
    • BP Huang JC Chen Y Li 2008 Artificial-neural-networks-based surface roughness Pokayoke system for end-milling operations Neurocomputing 71 544 549 10.1016/j.neucom.2007.07.029
    • (2008) Neurocomputing , vol.71 , pp. 544-549
    • Huang, B.P.1    Chen, J.C.2    Li, Y.3
  • 56
    • 56049106112 scopus 로고    scopus 로고
    • The experimental investigation of the effects of uncoated, PVD- and CVD-coated cemented carbide inserts and cutting parameters on surface roughness in CNC turning and its prediction using artificial neural networks
    • 10.1016/j.rcim.2007.11.004
    • M Nalbant H Gökkaya I Toktas G Sur 2009 The experimental investigation of the effects of uncoated, PVD- and CVD-coated cemented carbide inserts and cutting parameters on surface roughness in CNC turning and its prediction using artificial neural networks Robot Comput Integr Manuf 25 211 223 10.1016/j.rcim.2007.11.004
    • (2009) Robot Comput Integr Manuf , vol.25 , pp. 211-223
    • Nalbant, M.1    Gökkaya, H.2    Toktas, I.3    Sur, G.4
  • 58
    • 33746257756 scopus 로고    scopus 로고
    • Neural network and regression spline value function approximations for stochastic dynamic programming
    • DOI 10.1016/j.cor.2005.02.043, PII S030505480500136X
    • C Cervellera A Wen VCP Chen 2007 Neural network and regression spline value function approximations for stochastic dynamic programming Comput Oper Res 34 70 90 1102.90040 10.1016/j.cor.2005.02.043 2246739 (Pubitemid 44093844)
    • (2007) Computers and Operations Research , vol.34 , Issue.1 , pp. 70-90
    • Cervellera, C.1    Wen, A.2    Chen, V.C.P.3
  • 59
    • 50849135518 scopus 로고    scopus 로고
    • A comparative study of the ANN and RSM modeling approaches for predicting burr size in drilling
    • 10.1007/s00170-007-1140-7
    • SR Karnik VN Gaitonde JP Davim 2008 A comparative study of the ANN and RSM modeling approaches for predicting burr size in drilling Int J Adv Manuf Technol 38 9-10 868 883 10.1007/s00170-007-1140-7
    • (2008) Int J Adv Manuf Technol , vol.38 , Issue.910 , pp. 868-883
    • Karnik, S.R.1    Gaitonde, V.N.2    Davim, J.P.3
  • 60
    • 33750317589 scopus 로고    scopus 로고
    • Investigation of surface roughness in turning unidirectional GFRP composites by using RS methodology and ANN
    • DOI 10.1007/s00170-005-0175-x
    • E Bagci B Işik 2006 Investigation of surface roughness in turning unidirectional GFRP composites by using RS methodology and ANN Int J Adv Manuf Technol 31 10 17 10.1007/s00170-005-0175-x (Pubitemid 44631976)
    • (2006) International Journal of Advanced Manufacturing Technology , vol.31 , Issue.1-2 , pp. 10-17
    • Bagci, E.1    Isik, B.2
  • 62
    • 57949102475 scopus 로고    scopus 로고
    • Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm
    • 10.1016/j.jmatprotec.2008.04.003
    • GK Mohana Rao G Rangajanardhaa D Hanumantha Rao M Sreenivasa Rao 2009 Development of hybrid model and optimization of surface roughness in electric discharge machining using artificial neural networks and genetic algorithm J Mater Process Technol 209 1512 1520 10.1016/j.jmatprotec.2008.04.003
    • (2009) J Mater Process Technol , vol.209 , pp. 1512-1520
    • Mohana Rao, G.K.1    Rangajanardhaa, G.2    Hanumantha Rao, D.3    Sreenivasa Rao, M.4
  • 67
    • 0033878853 scopus 로고    scopus 로고
    • Interactive multi-objective artificial neural network approach for machine setup optimization
    • DOI 10.1023/A:1008999907768
    • B Malakooti V Raman 2000 An interactive multi-objective artificial neural network approach for machine setup optimization J Intell Manuf 11 41 50 10.1023/A:1008999907768 (Pubitemid 30583083)
    • (2000) Journal of Intelligent Manufacturing , vol.11 , Issue.1 , pp. 41-50
    • Malakooti, B.1    Raman, V.2
  • 68
    • 11144328104 scopus 로고    scopus 로고
    • A neural-network-based methodology for the prediction of surface roughness in a turning process
    • DOI 10.1007/s00170-003-1810-z
    • A Kohli US Dixit 2005 A neural-network-based methodology for the prediction of surface roughness in a turning process Int J Adv Manuf Technol 25 118 129 10.1007/s00170-003-1810-z (Pubitemid 40034736)
    • (2005) International Journal of Advanced Manufacturing Technology , vol.25 , Issue.1-2 , pp. 118-129
    • Kohli, A.1    Dixit, U.S.2
  • 69
    • 29344436678 scopus 로고    scopus 로고
    • The application of a radial basis function neural network for predicting the surface roughness in a turning process
    • DOI 10.1007/s00170-004-2258-5
    • DK Sonar US Dixit DK Ojha 2006 The application of a radial basis function neural network for predicting the surface roughness in a turning process Int J Adv Manuf Technol 27 661 666 10.1007/s00170-004-2258-5 (Pubitemid 43004616)
    • (2006) International Journal of Advanced Manufacturing Technology , vol.27 , Issue.7-8 , pp. 661-666
    • Sonar, D.K.1    Dixit, U.S.2    Ojha, D.K.3
  • 70
    • 34248214598 scopus 로고    scopus 로고
    • A comparison of dry and air-cooled turning of grey cast iron with mixed oxide ceramic tool
    • DOI 10.1016/j.jmatprotec.2007.02.049, PII S0924013607002981
    • DK Sarma US Dixit 2007 A comparison of dry and air-cooled turning of grey cast iron with mixed oxide ceramic tool J Mater Process Technol 190 160 172 10.1016/j.jmatprotec.2007.02.049 (Pubitemid 46719832)
    • (2007) Journal of Materials Processing Technology , vol.190 , Issue.1-3 , pp. 160-172
    • Sarma, D.K.1    Dixit, U.S.2
  • 71
    • 0037402607 scopus 로고    scopus 로고
    • Role of temperature and surface finish in predicting tool wear using neural network and design of experiments
    • 10.1016/S0890-6955(02)00166-9
    • SK Choudhury G Bartarya 2003 Role of temperature and surface finish in predicting tool wear using neural network and design of experiments Int J Mach Tools Manuf 43 747 753 10.1016/S0890-6955(02)00166-9
    • (2003) Int J Mach Tools Manuf , vol.43 , pp. 747-753
    • Choudhury, S.K.1    Bartarya, G.2
  • 72
    • 0344082794 scopus 로고    scopus 로고
    • On-line surface roughness recognition system using artificial neural networks system in turning operations
    • 10.1007/s00170-002-1511-z
    • SS Lee JC Chen 2003 On-line surface roughness recognition system using artificial neural networks system in turning operations Int J Adv Manuf Technol 22 498 509 10.1007/s00170-002-1511-z
    • (2003) Int J Adv Manuf Technol , vol.22 , pp. 498-509
    • Lee, S.S.1    Chen, J.C.2
  • 73
    • 37149016011 scopus 로고    scopus 로고
    • Application of multiple regression and adaptive neuro fuzzy inference system for the prediction of surface roughness
    • DOI 10.1007/s00170-006-0755-4
    • S Kumanan CP Jesuthanam R Ashok Kumar 2008 Application of multiple regression and adaptive neuro fuzzy inference system for the prediction of surface roughness Int J Adv Manuf Technol 35 778 788 10.1007/s00170-006-0755-4 (Pubitemid 350260752)
    • (2008) International Journal of Advanced Manufacturing Technology , vol.35 , Issue.7-8 , pp. 778-788
    • Kumanan, S.1    Jesuthanam, C.P.2    Ashok Kumar, R.3
  • 74
    • 4544330901 scopus 로고    scopus 로고
    • Neural-network-based numerical control for milling machine
    • 10.1023/B:JINT.0000042183.02570.7f
    • J Balic 2004 Neural-network-based numerical control for milling machine J Intell Robot Syst 40 343 358 10.1023/B:JINT.0000042183.02570.7f
    • (2004) J Intell Robot Syst , vol.40 , pp. 343-358
    • Balic, J.1
  • 75
    • 77956229889 scopus 로고    scopus 로고
    • Surface roughness modelling in finish face milling under MQL and dry cutting conditions
    • 10.1007/s12289-008-0151-8
    • C Bruni L d'Apolito A Forcellese F Gabrielli M Simoncini 2008 Surface roughness modelling in finish face milling under MQL and dry cutting conditions Int J Material Forming 1 1 503 506 10.1007/s12289-008-0151-8
    • (2008) Int J Material Forming , vol.1 , Issue.1 , pp. 503-506
    • Bruni, C.1    D'Apolito, L.2    Forcellese, A.3    Gabrielli, F.4    Simoncini, M.5
  • 76
    • 39949083945 scopus 로고    scopus 로고
    • Prediction of surface roughness profiles for milled surfaces using an artificial neural network and fractal geometry approach
    • 10.1016/j.jmatprotec.2007.09.006
    • IA El-Sonbaty UA Khashaba AI Selmy AI Ali 2008 Prediction of surface roughness profiles for milled surfaces using an artificial neural network and fractal geometry approach J Mater Process Technol 200 271 278 10.1016/j.jmatprotec.2007.09.006
    • (2008) J Mater Process Technol , vol.200 , pp. 271-278
    • El-Sonbaty, I.A.1    Khashaba, U.A.2    Selmy, A.I.3    Ali, A.I.4
  • 78
    • 34249737428 scopus 로고    scopus 로고
    • Surface roughness prediction using hybrid neural networks
    • DOI 10.1080/10910340701340141, PII 779063373
    • CP Jesuthanam S Kumanan P Asokan 2007 Surface roughness prediction using hybrid neural networks Mach Sci Technol 11 271 286 10.1080/10910340701340141 (Pubitemid 46828410)
    • (2007) Machining Science and Technology , vol.11 , Issue.2 , pp. 271-286
    • Jesuthanam, C.P.1    Kumanan, S.2    Asokan, P.3
  • 79
    • 33746906672 scopus 로고    scopus 로고
    • A study of surface roughness in drilling using mathematical analysis and neural networks
    • DOI 10.1007/s00170-005-2538-8
    • C Sanjay C Jyothi 2006 A study of surface roughness in drilling using mathematical analysis and neural networks Int J Adv Manuf Technol 29 846 852 10.1007/s00170-005-2538-8 (Pubitemid 44195209)
    • (2006) International Journal of Advanced Manufacturing Technology , vol.29 , Issue.9-10 , pp. 846-852
    • Sanjay, C.1    Jyothi, C.2
  • 80
    • 43849109630 scopus 로고    scopus 로고
    • Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network
    • 10.1016/j.jmatprotec.2006.04.126
    • CC Tsao H Hocheng 2008 Evaluation of thrust force and surface roughness in drilling composite material using Taguchi analysis and neural network J Mater Process Technol 203 342 348 10.1016/j.jmatprotec.2006.04.126
    • (2008) J Mater Process Technol , vol.203 , pp. 342-348
    • Tsao, C.C.1    Hocheng, H.2
  • 81
    • 34249912918 scopus 로고    scopus 로고
    • Prediction of wear and surface roughness in electro-discharge diamond grinding
    • DOI 10.1016/j.jmatprotec.2007.03.032, PII S0924013607002749, Advances in Materials and Processing Technologies
    • S Kumar SK Choudury 2007 Prediction of wear and surface roughness in electro-discharge diamond grinding J Mater Process Technol 191 206 209 10.1016/j.jmatprotec.2007.03.032 (Pubitemid 46873992)
    • (2007) Journal of Materials Processing Technology , vol.191 , Issue.1-3 , pp. 206-209
    • Kumar, S.1    Choudhury, S.K.2
  • 82
    • 43949110585 scopus 로고    scopus 로고
    • Artificial neural network models for the prediction of surface roughness in electrical discharge machining
    • 10.1007/s10845-008-0081-9
    • AP Markopoulos DE Manolakos NM Vaxevanidis 2008 Artificial neural network models for the prediction of surface roughness in electrical discharge machining J Intell Manuf 19 283 292 10.1007/s10845-008-0081-9
    • (2008) J Intell Manuf , vol.19 , pp. 283-292
    • Markopoulos, A.P.1    Manolakos, D.E.2    Vaxevanidis, N.M.3
  • 83
    • 28644444250 scopus 로고    scopus 로고
    • Parametric optimisation of wire electrical discharge machining of γ titanium aluminide alloy through an artificial neural network model
    • DOI 10.1007/s00170-004-2203-7
    • S Sarkar S Mitra B Bhattacharyya 2006 Parametric optimisation of wire electrical discharge machining of γ titanium aluminide alloy through an artificial neural network model Int J Adv Manuf Technol 27 501 508 10.1007/s00170-004-2203-7 (Pubitemid 41748171)
    • (2006) International Journal of Advanced Manufacturing Technology , vol.27 , Issue.5-6 , pp. 501-508
    • Sarkar, S.1    Mitra, S.2    Bhattacharyya, B.3
  • 84
    • 85013584646 scopus 로고    scopus 로고
    • Back propagation neural network based modeling of multi-responses of an electrical discharge machining process
    • D Mandal SK Pal P Saha 2007 Back propagation neural network based modeling of multi-responses of an electrical discharge machining process Int J Knowledge-based Intelligent Engineering Systems 11 381 390
    • (2007) Int J Knowledge-based Intelligent Engineering Systems , vol.11 , pp. 381-390
    • Mandal, D.1    Pal, S.K.2    Saha, P.3
  • 85
    • 44449122862 scopus 로고    scopus 로고
    • Modeling of TIG welding and abrasive flow machining processes using radial basis function networks
    • DOI 10.1007/s00170-007-1026-8
    • AA Mollah DK Pratihar 2008 Modeling of TIG welding and abrasive flow machining processes using radial basis function networks Int J Adv Manuf Technol 37 937 952 10.1007/s00170-007-1026-8 (Pubitemid 351768702)
    • (2008) International Journal of Advanced Manufacturing Technology , vol.37 , Issue.9-10 , pp. 937-952
    • Mollah, A.A.1    Pratihar, D.K.2
  • 86
    • 52649139478 scopus 로고    scopus 로고
    • Development of multi-objective optimization models for electrochemical machining process
    • 10.1007/s00170-007-1204-8
    • P Asokan R Ravi Kumar R Jeyapaul M Santhi 2008 Development of multi-objective optimization models for electrochemical machining process Int J Adv Manuf Technol 39 55 63 10.1007/s00170-007-1204-8
    • (2008) Int J Adv Manuf Technol , vol.39 , pp. 55-63
    • Asokan, P.1    Ravi Kumar, R.2    Jeyapaul, R.3    Santhi, M.4
  • 88
    • 42649138966 scopus 로고    scopus 로고
    • Comparing statistical models and artificial neural networks on predicting the tool wear in hard machining D2 AISI steel
    • DOI 10.1007/s00170-007-0999-7
    • R Quiza L Figueira JP Davim 2008 Comparing statistical models and artificial neural networks on predicting the tool wear in hard machining D2 AISI steel Int J Adv Manuf Technol 37 641 648 10.1007/s00170-007-0999-7 (Pubitemid 351601452)
    • (2008) International Journal of Advanced Manufacturing Technology , vol.37 , Issue.7-8 , pp. 641-648
    • Quiza, R.1    Figueira, L.2    Davim, J.P.3
  • 89
    • 37749029995 scopus 로고    scopus 로고
    • Parameter optimization model in electrical discharge machining process
    • 10.1631/jzus.A071242
    • Q Gao Q Zhang S Su J Zhang 2008 Parameter optimization model in electrical discharge machining process Journal of Zheijiang University SCIENCE A 9 1 104 108 10.1631/jzus.A071242
    • (2008) Journal of Zheijiang University SCIENCE A , vol.9 , Issue.1 , pp. 104-108
    • Gao, Q.1    Zhang, Q.2    Su, S.3    Zhang, J.4
  • 91
    • 33751541735 scopus 로고    scopus 로고
    • Multi-objective optimization of abrasive flow machining processes using polynomial neural networks and genetic algorithms
    • DOI 10.1080/10910340600996126, PII Q23X2L88KNL7L344
    • M Ali-Tavoli N Nariman-Zadeh A Khakhali M Mehran 2006 Multi-objective optimization of abrasive flow machining processes using polynomial neural networks and genetic algorithms Mach Sci Technol 10 491 510 10.1080/ 10910340600996126 (Pubitemid 44837693)
    • (2006) Machining Science and Technology , vol.10 , Issue.4 , pp. 491-510
    • Ali-Tavoli, M.1    Nariman-Zadeh, N.2    Khakhali, A.3    Mehran, M.4
  • 92
    • 20444409189 scopus 로고    scopus 로고
    • Quantitative and qualitative evaluation of surface roughness-tool wear correlation in turning operations
    • SE Oraby A Al-Askari EA Al-Meshaiei 2004 Quantitative and qualitative evaluation of surface roughness-tool wear correlation in turning operations Kuwait Journal of Science and Engineering 31 1 219 244
    • (2004) Kuwait Journal of Science and Engineering , vol.31 , Issue.1 , pp. 219-244
    • Oraby, S.E.1    Al-Askari, A.2    Al-Meshaiei, E.A.3
  • 94
    • 0015142058 scopus 로고
    • Polynomial theory of complex systems
    • 10.1109/TSMC.1971.4308320 309583
    • AG Ivakhnenko 1971 Polynomial theory of complex systems IEEE Trans Syst Man Cybern 1 4 364 378 10.1109/TSMC.1971.4308320 309583
    • (1971) IEEE Trans Syst Man Cybern , vol.1 , Issue.4 , pp. 364-378
    • Ivakhnenko, A.G.1
  • 95
    • 0021776661 scopus 로고
    • A massively parallel architecture for a self-organizing neural pattern recognition machine
    • 10.1016/S0734-189X(87)80014-2
    • GA Carpenter S Grossberg 1987 A massively parallel architecture for a self-organizing neural pattern recognition machine Comput Vis Graph Image Process 37 54 115 10.1016/S0734-189X(87)80014-2
    • (1987) Comput Vis Graph Image Process , vol.37 , pp. 54-115
    • Carpenter, G.A.1    Grossberg, S.2
  • 96
    • 84973857317 scopus 로고
    • ART2: Self-organization of stable category recognition codes for analog input patterns
    • 10.1364/AO.26.004919
    • GA Carpenter S Grossberg 1987 ART2: self-organization of stable category recognition codes for analog input patterns Appl Optics 26 23 4919 4930 10.1364/AO.26.004919
    • (1987) Appl Optics , vol.26 , Issue.23 , pp. 4919-4930
    • Carpenter, G.A.1    Grossberg, S.2
  • 97
    • 58149472216 scopus 로고    scopus 로고
    • Design of experiments on neural network's training for nonlinear time series forecasting
    • 10.1016/j.neucom.2008.02.002
    • PP Balestrassi E Popova AP Paiva JW Marangon Lima 2009 Design of experiments on neural network's training for nonlinear time series forecasting Neurocomputing 72 4-6 1160 1178 10.1016/j.neucom.2008.02.002
    • (2009) Neurocomputing , vol.72 , Issue.46 , pp. 1160-1178
    • Balestrassi, P.P.1    Popova, E.2    Paiva, A.P.3    Marangon Lima, J.W.4
  • 100
    • 33751284733 scopus 로고    scopus 로고
    • 2 involving process variables and structural parameters characteristics to azo dyes
    • DOI 10.1016/j.cep.2006.04.005, PII S0255270106001012
    • OLC Guimarães MB Silva 2007 Hybrid neural model for decoloration by UV/H2O2 involving process variables and structural parameters characteristics to azo dyes Chem Eng Process 46 45 51 10.1016/j.cep.2006.04.005 (Pubitemid 44794324)
    • (2007) Chemical Engineering and Processing: Process Intensification , vol.46 , Issue.1 , pp. 45-51
    • Guimaraes, O.L.C.1    Silva, M.B.2
  • 101
    • 0001867238 scopus 로고
    • Interpreting neural network connection weights
    • GD Garson 1991 Interpreting neural network connection weights Artificial Intelligence Expert 6 7 47 51
    • (1991) Artificial Intelligence Expert , vol.6 , Issue.7 , pp. 47-51
    • Garson, G.D.1
  • 102
    • 0028543366 scopus 로고
    • Training feedforward networks with the Marquadt algorithm
    • 10.1109/72.329697
    • M Hagan M Menhaj 1994 Training feedforward networks with the Marquadt algorithm IEEE Trans Neural Netw 5 6 989 993 10.1109/72.329697
    • (1994) IEEE Trans Neural Netw , vol.5 , Issue.6 , pp. 989-993
    • Hagan, M.1    Menhaj, M.2
  • 103
    • 0001024110 scopus 로고
    • First and second-order methods for learning: Between steepest descent and Newton's Method
    • 10.1162/neco.1992.4.2.141
    • R Battiti 1992 First and second-order methods for learning: between steepest descent and Newton's Method Neural Comput 4 2 141 166 10.1162/neco.1992.4.2.141
    • (1992) Neural Comput , vol.4 , Issue.2 , pp. 141-166
    • Battiti, R.1
  • 104
    • 0025536870 scopus 로고
    • Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights
    • 10.1109/IJCNN.1990.137819
    • D Nguyen B Widrow 1990 Improving the learning speed of 2-layer neural networks by choosing initial values of the adaptive weights Proc International Joint Conference on Neural Networks 3 21 26 10.1109/IJCNN.1990.137819
    • (1990) Proc International Joint Conference on Neural Networks , vol.3 , pp. 21-26
    • Nguyen, D.1    Widrow, B.2
  • 106
    • 0027662338 scopus 로고
    • Pruning algorithms-a survey
    • 10.1109/72.248452
    • R Reed 1993 Pruning algorithms-a survey IEEE Trans Neural Netw 4 5 740 746 10.1109/72.248452
    • (1993) IEEE Trans Neural Netw , vol.4 , Issue.5 , pp. 740-746
    • Reed, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.