메뉴 건너뛰기




Volumn 190, Issue 1-3, 2007, Pages 305-311

Predictive machinability models for a selected hard material in turning operations

Author keywords

Machinability models; Neural networks; Response surface methodology

Indexed keywords

DATA MINING; MACHINABILITY; MACHINE TOOLS; NEURAL NETWORKS; SURFACE ROUGHNESS; TURNING;

EID: 34248198328     PISSN: 09240136     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jmatprotec.2007.02.031     Document Type: Article
Times cited : (96)

References (27)
  • 1
    • 0343168164 scopus 로고    scopus 로고
    • Machinability assessment of inconel 718 by factorial design of experiment coupled with response surface methodology
    • Coudhury I., and El-Baradie M. Machinability assessment of inconel 718 by factorial design of experiment coupled with response surface methodology. J. Mater. Process. Technol. 95 (1999) 30-39
    • (1999) J. Mater. Process. Technol. , vol.95 , pp. 30-39
    • Coudhury, I.1    El-Baradie, M.2
  • 2
    • 0033742932 scopus 로고    scopus 로고
    • Selection of cutting tools and conditions of machining operations using an expert system
    • Arezoo B., Ridgway K., and Al-Ahmari A.M.A. Selection of cutting tools and conditions of machining operations using an expert system. Comput. Ind. 42 (2000) 43-58
    • (2000) Comput. Ind. , vol.42 , pp. 43-58
    • Arezoo, B.1    Ridgway, K.2    Al-Ahmari, A.M.A.3
  • 3
    • 0034668375 scopus 로고    scopus 로고
    • Optimization of machining conditions for multi-tool milling operations
    • Cakir M., and Gurarda A. Optimization of machining conditions for multi-tool milling operations. Int. J. Prod. Res. 38 (2000) 3537-3552
    • (2000) Int. J. Prod. Res. , vol.38 , pp. 3537-3552
    • Cakir, M.1    Gurarda, A.2
  • 4
    • 0019634309 scopus 로고
    • Optimization of multipass turning with constraints
    • Ermer D., and Kromodihardjo S. Optimization of multipass turning with constraints. Trans. ASME J. Eng. Ind. 10 (1981) 462-468
    • (1981) Trans. ASME J. Eng. Ind. , vol.10 , pp. 462-468
    • Ermer, D.1    Kromodihardjo, S.2
  • 5
    • 0011771603 scopus 로고
    • Determination of optimal subdivisions of depth of cut in multipass turning with constraints
    • Gupta R., Batra J., and Lal G. Determination of optimal subdivisions of depth of cut in multipass turning with constraints. Int. J. Prod. Res. 33 (1995) 2555-2565
    • (1995) Int. J. Prod. Res. , vol.33 , pp. 2555-2565
    • Gupta, R.1    Batra, J.2    Lal, G.3
  • 6
    • 0026221229 scopus 로고
    • Machine parameter selection for turning with constraints: an analytical approach based on geometric programming
    • Gopalakrishan B., and Al-Khayyal F. Machine parameter selection for turning with constraints: an analytical approach based on geometric programming. Int. J. Prod. Res. 29 (1991) 1897-1908
    • (1991) Int. J. Prod. Res. , vol.29 , pp. 1897-1908
    • Gopalakrishan, B.1    Al-Khayyal, F.2
  • 7
    • 0017984145 scopus 로고
    • Optimization of multipass machining operations
    • Lambert B., and Walvekar A. Optimization of multipass machining operations. Int. J. Prod. Res. 16 (1978) 259-265
    • (1978) Int. J. Prod. Res. , vol.16 , pp. 259-265
    • Lambert, B.1    Walvekar, A.2
  • 8
    • 0033101579 scopus 로고    scopus 로고
    • An economic machining process model using fuzzy non-linear programming and neural network
    • Lee H., Yang B., and Moon K. An economic machining process model using fuzzy non-linear programming and neural network. Int. J. Prod. Res. 37 (1999) 835-847
    • (1999) Int. J. Prod. Res. , vol.37 , pp. 835-847
    • Lee, H.1    Yang, B.2    Moon, K.3
  • 9
    • 0001418851 scopus 로고
    • Optimization of machining conditions with practical constraints
    • Shin Y., and Joo Y. Optimization of machining conditions with practical constraints. Int. J. Prod. Res. 30 (1992) 2907-2919
    • (1992) Int. J. Prod. Res. , vol.30 , pp. 2907-2919
    • Shin, Y.1    Joo, Y.2
  • 10
    • 0024731498 scopus 로고
    • The optimal subdivision of cut in multipass machining operations
    • Yellowey I., and Gunn E. The optimal subdivision of cut in multipass machining operations. Int. J. Prod. Res. 27 (1989) 1573-1579
    • (1989) Int. J. Prod. Res. , vol.27 , pp. 1573-1579
    • Yellowey, I.1    Gunn, E.2
  • 11
    • 0035889172 scopus 로고    scopus 로고
    • Mathematical model for determining machining parameters in multipass turning operations with constraints
    • Al-Ahmari A.M.A. Mathematical model for determining machining parameters in multipass turning operations with constraints. Int. J. Prod. Res. 39 (2001) 3367-3376
    • (2001) Int. J. Prod. Res. , vol.39 , pp. 3367-3376
    • Al-Ahmari, A.M.A.1
  • 12
    • 34248142117 scopus 로고
    • Utilization of design of experiments for reduced cost and added reliability
    • Taraman K. Utilization of design of experiments for reduced cost and added reliability. SME (1981)
    • (1981) SME
    • Taraman, K.1
  • 13
    • 0035149285 scopus 로고    scopus 로고
    • Theoretical and experimental determination of tool life in hot machining of austenitic manganese steel
    • Ozler L., and Ozel A. Theoretical and experimental determination of tool life in hot machining of austenitic manganese steel. Int. J. Mach. Tool Manufact. 41 (2001) 163-172
    • (2001) Int. J. Mach. Tool Manufact. , vol.41 , pp. 163-172
    • Ozler, L.1    Ozel, A.2
  • 14
    • 10444235721 scopus 로고    scopus 로고
    • A hybrid analytical-neural network approach to the determination of optimal cutting conditions
    • Zuperl U., Cus F., Mursec B., and Ploj T. A hybrid analytical-neural network approach to the determination of optimal cutting conditions. J. Mater. Process. Technol. 175 (2004) 82-90
    • (2004) J. Mater. Process. Technol. , vol.175 , pp. 82-90
    • Zuperl, U.1    Cus, F.2    Mursec, B.3    Ploj, T.4
  • 15
    • 0037804668 scopus 로고    scopus 로고
    • Machinability data representation with artificial neural network
    • Wong S., and Hamouda A. Machinability data representation with artificial neural network. J. Mater. Process. Technol. 138 (2003) 538-544
    • (2003) J. Mater. Process. Technol. , vol.138 , pp. 538-544
    • Wong, S.1    Hamouda, A.2
  • 16
    • 1642335673 scopus 로고    scopus 로고
    • A study of tool life in hot machining using artificial neural networks and regression analysis method
    • Tosum N., and Ozler L. A study of tool life in hot machining using artificial neural networks and regression analysis method. J. Mater. Process. Technol. 124 (2002) 99-104
    • (2002) J. Mater. Process. Technol. , vol.124 , pp. 99-104
    • Tosum, N.1    Ozler, L.2
  • 17
    • 0036611175 scopus 로고    scopus 로고
    • Digitizing uncertainty modeling for reverse engineering applications: regression vs. neural networks
    • Feng C., and Wang X. Digitizing uncertainty modeling for reverse engineering applications: regression vs. neural networks. J. Intell. Manufact. 13 (2002) 189-199
    • (2002) J. Intell. Manufact. , vol.13 , pp. 189-199
    • Feng, C.1    Wang, X.2
  • 18
    • 12444249998 scopus 로고    scopus 로고
    • Predictive modelling of surface roughness and tool wear in hard turning using regression and neural networks
    • Ozel T., and Karpat Y. Predictive modelling of surface roughness and tool wear in hard turning using regression and neural networks. Int. J. Mach. Tool Manufact. 45 (2005) 467-479
    • (2005) Int. J. Mach. Tool Manufact. , vol.45 , pp. 467-479
    • Ozel, T.1    Karpat, Y.2
  • 19
    • 0035803614 scopus 로고    scopus 로고
    • The predictive model for machinability of 304 stainless steel
    • Chien W., and Chou C. The predictive model for machinability of 304 stainless steel. J. Mater. Process. Technol. 118 (2001) 441-447
    • (2001) J. Mater. Process. Technol. , vol.118 , pp. 441-447
    • Chien, W.1    Chou, C.2
  • 21
    • 34248169623 scopus 로고    scopus 로고
    • J. Mozher, Development of Machinability Models for High Strength Materials, Master Thesis, Industrial Engineering Department, KSU, Saudi Arabia, 1998.
  • 22
    • 0032205695 scopus 로고    scopus 로고
    • Static neural network process models: considerations and case studies
    • Coit D., Jackson B., and Smith A. Static neural network process models: considerations and case studies. Int. J. Prod. Res. 36 (1998) 2953-2967
    • (1998) Int. J. Prod. Res. , vol.36 , pp. 2953-2967
    • Coit, D.1    Jackson, B.2    Smith, A.3
  • 23
    • 0025503558 scopus 로고
    • Backpropagation through time: what it does and how to do it
    • Werbos P.J. Backpropagation through time: what it does and how to do it. Proc. IEEE 78 (1990) 1550-1560
    • (1990) Proc. IEEE , vol.78 , pp. 1550-1560
    • Werbos, P.J.1
  • 24
    • 0025488663 scopus 로고
    • Thirty years of adaptive neural networks: perceprtron, madaline, and backpropagation
    • Widrow B., and Lehr M.A. Thirty years of adaptive neural networks: perceprtron, madaline, and backpropagation. Proc. IEEE 78 (1990) 1415-1444
    • (1990) Proc. IEEE , vol.78 , pp. 1415-1444
    • Widrow, B.1    Lehr, M.A.2
  • 25
    • 0000646059 scopus 로고
    • Learning internal representation by error propagation
    • Rumelhart D., and MeClelland J. (Eds), MIT Press, Cambridge, MA
    • Rumelhart D.E., Hinton G.E., and Williams R.J. Learning internal representation by error propagation. In: Rumelhart D., and MeClelland J. (Eds). Parallel Data Processing (1986), MIT Press, Cambridge, MA
    • (1986) Parallel Data Processing
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.