메뉴 건너뛰기




Volumn 25, Issue 1-2, 2005, Pages 118-129

A neural-network-based methodology for the prediction of surface roughness in a turning process

Author keywords

Artificial neural networks; Dry and wet turning; Surface roughness; Vibration

Indexed keywords

ALGORITHMS; FEEDBACK; STEEL; SURFACE ROUGHNESS; TURNING; VIBRATIONS (MECHANICAL);

EID: 11144328104     PISSN: 02683768     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00170-003-1810-z     Document Type: Article
Times cited : (138)

References (14)
  • 1
    • 0037427589 scopus 로고    scopus 로고
    • Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process
    • Risbood KA, Dixit US, Sahasrabudhe AD (2003) Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process. J Mater Process Technol 132:203-214
    • (2003) J Mater Process Technol , vol.132 , pp. 203-214
    • Risbood, K.A.1    Dixit, U.S.2    Sahasrabudhe, A.D.3
  • 2
    • 0036391197 scopus 로고    scopus 로고
    • Development of empirical models for surface roughness prediction in finish turning
    • Wang XF, Feng CX (2002) Development of empirical models for surface roughness prediction in finish turning. Int J Adv Manuf Technol 20(5):348-356
    • (2002) Int J Adv Manuf Technol , vol.20 , Issue.5 , pp. 348-356
    • Wang, X.F.1    Feng, C.X.2
  • 3
    • 84952499448 scopus 로고
    • Mathematical model to predict surface finish in fine turning of steel
    • Sundaram RM, Lambert BK (1981) Mathematical model to predict surface finish in fine turning of steel. Int J Prod Res 19:547-564
    • (1981) Int J Prod Res , vol.19 , pp. 547-564
    • Sundaram, R.M.1    Lambert, B.K.2
  • 4
    • 0024137276 scopus 로고
    • Surface finish prediction models for fine turning
    • 1988
    • Mittal A, Mehta M (1988) Surface finish prediction models for fine turning. Int J Prod Res 26:1861-1876 1988.
    • (1988) Int J Prod Res , vol.26 , pp. 1861-1876
    • Mittal, A.1    Mehta, M.2
  • 6
    • 0028407979 scopus 로고
    • Predicting total machining performance in finish turning using integrated fuzzy-set models of the machinability parameters
    • Fang XD, Jawahir IS (1994) Predicting total machining performance in finish turning using integrated fuzzy-set models of the machinability parameters. Int J Prod Res 32:833-849
    • (1994) Int J Prod Res , vol.32 , pp. 833-849
    • Fang, X.D.1    Jawahir, I.S.2
  • 7
    • 0031999320 scopus 로고    scopus 로고
    • On-line optimisation of turning process using an inverse process Neuro controller
    • Azouzi R, Guillot M (1998) On-line optimisation of turning process using an inverse process Neuro controller. ASME J Manuf Sci Eng 120:101-108
    • (1998) ASME J Manuf Sci Eng , vol.120 , pp. 101-108
    • Azouzi, R.1    Guillot, M.2
  • 8
    • 0035154004 scopus 로고    scopus 로고
    • Modeling the surface roughness and cutting force for turning
    • Lin WS, Lee BY, Wu CL (2001) Modeling the surface roughness and cutting force for turning. J Mater Process Technol 108:286-293
    • (2001) J Mater Process Technol , vol.108 , pp. 286-293
    • Lin, W.S.1    Lee, B.Y.2    Wu, C.L.3
  • 9
    • 0037233403 scopus 로고    scopus 로고
    • Surface roughness prediction modelling: Neural networks versus regression
    • Feng C-X, Wang X-F (2003) Surface roughness prediction modelling: neural networks versus regression. IIE Trans 35(1):11-27
    • (2003) IIE Trans , vol.35 , Issue.1 , pp. 11-27
    • Feng, C.-X.1    Wang, X.-F.2
  • 10
    • 85016915578 scopus 로고
    • A comparison of statistical and AI approaches to the selection of process parameters in intelligent machining
    • Chryssolouris G, Guillot M (1990) A comparison of statistical and AI approaches to the selection of process parameters in intelligent machining. ASME J Eng Ind 112:112-131
    • (1990) ASME J Eng Ind , vol.112 , pp. 112-131
    • Chryssolouris, G.1    Guillot, M.2
  • 11
    • 0346906984 scopus 로고    scopus 로고
    • A neural network based methodology for the prediction of roll force and roll torque in fuzzy form for cold rolling process
    • Dixit US, Chandra S (2003) A neural network based methodology for the prediction of roll force and roll torque in fuzzy form for cold rolling process. Int J Adv Manuf Technol 22(11-12):883-889
    • (2003) Int J Adv Manuf Technol , vol.22 , Issue.11-12 , pp. 883-889
    • Dixit, U.S.1    Chandra, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.