메뉴 건너뛰기




Volumn 48, Issue 3, 2010, Pages 763-778

Predictive modelling of turning operations using response surface methodology, artificial neural networks and support vector regression

Author keywords

Artificial neural networks; Predictive modeling; Response surface methodology; Support vector regression; Turning operations

Indexed keywords

ARTIFICIAL NEURAL NETWORK; PREDICTIVE MODELING; RESPONSE SURFACE METHODOLOGY; SUPPORT VECTOR REGRESSIONS; TURNING OPERATIONS;

EID: 74549139703     PISSN: 00207543     EISSN: 1366588X     Source Type: Journal    
DOI: 10.1080/00207540802452132     Document Type: Article
Times cited : (94)

References (23)
  • 1
    • 0035889172 scopus 로고    scopus 로고
    • Mathematical model for determining machining parameters in multipass turning operations with constraints
    • Al-Ahmari, A.M.A., 2001. Mathematical model for determining machining parameters in multipass turning operations with constraints. International Journal of Production Research, 39 (15), 3367-3376.
    • (2001) International Journal of Production Research , vol.39 , Issue.15 , pp. 3367-3376
    • Al-Ahmari, A.M.A.1
  • 2
    • 46149118019 scopus 로고    scopus 로고
    • Prediction and optimisation models for turning operations
    • Al-Ahmari, A.M.A., 2007. Prediction and optimisation models for turning operations. International Journal of Production Research, 46 (15), 4061-40811.
    • (2007) International Journal of Production Research , vol.46 , Issue.15 , pp. 4061-40811
    • Al-Ahmari, A.M.A.1
  • 3
    • 0035803614 scopus 로고    scopus 로고
    • The predictive model for machinability of 304 stainless steel
    • Chien, W. and Chou, C., 2001. The predictive model for machinability of 304 stainless steel. Journal of Materials Processing Technology, 118 (1-3), 441-447.
    • (2001) Journal of Materials Processing Technology , vol.118 , Issue.1-3 , pp. 441-447
    • Chien, W.1    Chou, C.2
  • 4
    • 0343168164 scopus 로고    scopus 로고
    • Machinability assessment of inconel 718 by factorial design of experiment coupled with response surface methodology
    • Choudhury, I. and El-Baradie, M., 1999. Machinability assessment of inconel 718 by factorial design of experiment coupled with response surface methodology. Journal of Materials Processing Technology, 95 (1), 30-39.
    • (1999) Journal of Materials Processing Technology , vol.95 , Issue.1 , pp. 30-39
    • Choudhury, I.1    El-Baradie, M.2
  • 5
    • 0037427607 scopus 로고    scopus 로고
    • Design of optimisation of cutting parameters for turning metal matrix composites based on the orthogonal arrays
    • Davim, J.P., 2003. Design of optimisation of cutting parameters for turning metal matrix composites based on the orthogonal arrays. Journal of Materials Processing Technology, 132 (1), 340-344.
    • (2003) Journal of Materials Processing Technology , vol.132 , Issue.1 , pp. 340-344
    • Davim, J.P.1
  • 6
    • 0037233403 scopus 로고    scopus 로고
    • Surface roughness predictive modeling: Neural networks versus regression
    • Feng, C.-X. and Wang, X.-F., 2003. Surface roughness predictive modeling: Neural networks versus regression. IIE Transactions, 35 (1), 11-27.
    • (2003) IIE Transactions , vol.35 , Issue.1 , pp. 11-27
    • Feng, C.-X.1    Wang, X.-F.2
  • 7
    • 0026221229 scopus 로고
    • Machine parameter selection for turning with constraints: An analytical approach based on geometric programming
    • Gopalakrishan, B. and Al-Khayyal, F., 1991. Machine parameter selection for turning with constraints: an analytical approach based on geometric programming. International Journal of Production Research, 29 (9), 1897-1908.
    • (1991) International Journal of Production Research , vol.29 , Issue.9 , pp. 1897-1908
    • Gopalakrishan, B.1    Al-Khayyal, F.2
  • 8
    • 0011771603 scopus 로고
    • Determination of optimal subdivisions of depth of cut in multipass turning with constraints
    • Gupta, R., Batra, J., and Lal, G., 1995. Determination of optimal subdivisions of depth of cut in multipass turning with constraints. International Journal of Production Research, 33 (9), 2555-2565.
    • (1995) International Journal of Production Research , vol.33 , Issue.9 , pp. 2555-2565
    • Gupta, R.1    Batra, J.2    Lal, G.3
  • 10
    • 33744989246 scopus 로고    scopus 로고
    • Modelling and analysis of waviness reduction in soft-pad grinding of wire-sawn silicon wafers by support vector regression
    • Judong, S., et al., 2006. Modelling and analysis of waviness reduction in soft-pad grinding of wire-sawn silicon wafers by support vector regression. International Journal of Production Research, 44 (13), 2605-2623.
    • (2006) International Journal of Production Research , vol.44 , Issue.13 , pp. 2605-2623
    • Judong, S.1
  • 12
    • 17644446591 scopus 로고    scopus 로고
    • Control of chaotic dynamical systems using support vector machines
    • Kulkarni, A., Jayaraman, V.K., and Kulkarni, B.D., 2003. Control of chaotic dynamical systems using support vector machines. Physics Letters A, 317 (5-6), 429-435.
    • (2003) Physics Letters A , vol.317 , Issue.5-6 , pp. 429-435
    • Kulkarni, A.1    Jayaraman, V.K.2    Kulkarni, B.D.3
  • 14
    • 0033101579 scopus 로고    scopus 로고
    • An economic machining process model using fuzzy nonlinear programming and neural network
    • Lee, H., Yang, B., and Moon, K., 1999. An economic machining process model using fuzzy nonlinear programming and neural network. International Journal of Production Research, 37 (4), 835-847.
    • (1999) International Journal of Production Research , vol.37 , Issue.4 , pp. 835-847
    • Lee, H.1    Yang, B.2    Moon, K.3
  • 15
    • 74549199190 scopus 로고    scopus 로고
    • Minitab Inc, PA, USA: Minitab Inc
    • Minitab Inc., 2006. Meet MINITAB release 15. PA, USA: Minitab Inc.
    • (2006) Meet MINITAB release 15
  • 17
    • 43049173260 scopus 로고    scopus 로고
    • Residual stress prediction of dissimilar metals welding at NPPs using support vector regression
    • Na, M.G., et al., 2008. Residual stress prediction of dissimilar metals welding at NPPs using support vector regression. Nuclear Engineering and Design, 238 (7), 1503-1510.
    • (2008) Nuclear Engineering and Design , vol.238 , Issue.7 , pp. 1503-1510
    • Na, M.G.1
  • 18
    • 12444249998 scopus 로고    scopus 로고
    • Predictive modelling of surface roughness and tool wear in hard turning using regression and neural networks
    • Ozel, T. and Karpat, Y., 2005. Predictive modelling of surface roughness and tool wear in hard turning using regression and neural networks. International Journal of Machine Tools and Manufacture, 45 (4-5), 467-479.
    • (2005) International Journal of Machine Tools and Manufacture , vol.45 , Issue.4-5 , pp. 467-479
    • Ozel, T.1    Karpat, Y.2
  • 19
    • 74549144160 scopus 로고    scopus 로고
    • Parrella, F., 2007. Online support vector regression. A thesis presented for the degree of Information Science, University of Genoa, Italy.
    • Parrella, F., 2007. Online support vector regression. A thesis presented for the degree of Information Science, University of Genoa, Italy.
  • 20
    • 0001418851 scopus 로고
    • Optimisation of machining conditions with practical constraints
    • Shin, Y. and Joo, Y., 1992. Optimisation of machining conditions with practical constraints. International Journal of Production Research, 30 (12), 2907-2919.
    • (1992) International Journal of Production Research , vol.30 , Issue.12 , pp. 2907-2919
    • Shin, Y.1    Joo, Y.2
  • 22
    • 0024731498 scopus 로고
    • The optimal subdivision of cut in multipass machining operations
    • Yellowey, I. and Gunn, E., 1989. The optimal subdivision of cut in multipass machining operations. International Journal of Production Research, 27 (9), 1573-1579.
    • (1989) International Journal of Production Research , vol.27 , Issue.9 , pp. 1573-1579
    • Yellowey, I.1    Gunn, E.2
  • 23
    • 10444235721 scopus 로고    scopus 로고
    • A hybrid analytical-neural network approach to the determination of optimal cutting conditions
    • Zuperl, U., et al., 2004. A hybrid analytical-neural network approach to the determination of optimal cutting conditions. Journal of Materials Processing Technology, 157-158, 82-90.
    • (2004) Journal of Materials Processing Technology , vol.157-158 , pp. 82-90
    • Zuperl, U.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.