메뉴 건너뛰기




Volumn 25, Issue 6, 2014, Pages 1349-1365

A hybrid M5'-genetic programming approach for ensuring greater trustworthiness of prediction ability in modelling of FDM process

Author keywords

Artificial neural network; Fused deposition modelling; Genetic programming; M5'; Rapid prototyping; Support vector regression; Trustworthiness

Indexed keywords

DEPOSITION; ERROR COMPENSATION; FUSED DEPOSITION MODELING; FUZZY INFERENCE; FUZZY NEURAL NETWORKS; FUZZY SYSTEMS; GENETIC ALGORITHMS; GENETIC PROGRAMMING; NEURAL NETWORKS; RAPID PROTOTYPING; SOFTWARE PROTOTYPING; SUPPORT VECTOR REGRESSION; SURFACE ROUGHNESS;

EID: 84911997374     PISSN: 09565515     EISSN: 15728145     Source Type: Journal    
DOI: 10.1007/s10845-013-0734-1     Document Type: Article
Times cited : (59)

References (101)
  • 3
  • 4
    • 79958863038 scopus 로고    scopus 로고
    • An integrated artificial neural network-genetic algorithm clustering ensemble for performance assessment of decision making units
    • Azadeh, A., Saberi, M., Anvari, M., & Mohamadi, M. (2011). An integrated artificial neural network-genetic algorithm clustering ensemble for performance assessment of decision making units. Journal of Intelligent Manufacturing, 22, 229–245.
    • (2011) Journal of Intelligent Manufacturing , vol.22 , pp. 229-245
    • Azadeh, A.1    Saberi, M.2    Anvari, M.3    Mohamadi, M.4
  • 6
    • 80054890052 scopus 로고    scopus 로고
    • Prediction of strain energy-based liquefaction resistance of sand-silt mixtures: An evolutionary approach
    • Baziar, M. H., Jafarian, Y., Shahnazari, H., Movhed, V., & Amin Tutunchian, M. (2011). Prediction of strain energy-based liquefaction resistance of sand-silt mixtures: An evolutionary approach. Computers & Geosciences, 37(11), 1883–1893.
    • (2011) Computers & Geosciences , vol.37 , Issue.11 , pp. 1883-1893
    • Baziar, M.H.1    Jafarian, Y.2    Shahnazari, H.3    Movhed, V.4    Amin Tutunchian, M.5
  • 8
    • 12144264770 scopus 로고    scopus 로고
    • Neural networks and M5 model trees in modelling water level-discharge relationship
    • Bhattacharya, B., & Solomatine, D. (2005). Neural networks and $$\text{ M}5^\prime $$ model trees in modelling water level-discharge relationship. Neurocomputing, 63, 381–396.
    • (2005) Neurocomputing , vol.63 , pp. 381-396
    • Bhattacharya, B.1    Solomatine, D.2
  • 9
    • 77955873708 scopus 로고    scopus 로고
    • Borges, C. E., Alonso, C. L., & Montana, J. L. (2010). Model selection in genetic programming. In Genetic and evolutionary computation conference (GECCO) (pp. 985–986). ACM
    • Borges, C. E., Alonso, C. L., & Montana, J. L. (2010). Model selection in genetic programming. In Genetic and evolutionary computation conference (GECCO) (pp. 985–986). ACM.
  • 10
    • 84862289855 scopus 로고    scopus 로고
    • Tool wear estimation using an analytic fuzzy classifier and support vector machines
    • Brezak, D., Majetic, D., Udiljak, T., & Kasac, J. (2012). Tool wear estimation using an analytic fuzzy classifier and support vector machines. Journal of Intelligent Manufacturing, 23, 797–809.
    • (2012) Journal of Intelligent Manufacturing , vol.23 , pp. 797-809
    • Brezak, D.1    Majetic, D.2    Udiljak, T.3    Kasac, J.4
  • 11
    • 34247623520 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system (ANFIS): A new approach to predictive modeling in QSAR applications: A study of neuro-fuzzy modeling of PCP-based NMDA receptor antagonists
    • Buyukbingol, E., Sisman, A., Akyildiz, M., Alparslan, F. N., & Adejare, A. (2007). Adaptive neuro-fuzzy inference system (ANFIS): A new approach to predictive modeling in QSAR applications: A study of neuro-fuzzy modeling of PCP-based NMDA receptor antagonists. Bioorganic & Medicinal Chemistry, 15, 4265–4282.
    • (2007) Bioorganic & Medicinal Chemistry , vol.15 , pp. 4265-4282
    • Buyukbingol, E.1    Sisman, A.2    Akyildiz, M.3    Alparslan, F.N.4    Adejare, A.5
  • 12
    • 27144471864 scopus 로고    scopus 로고
    • Determination of the optimal build direction for different rapid prototyping processes using multi-criterion decision making
    • Byun, H. S., & Lee, K. H. (2006). Determination of the optimal build direction for different rapid prototyping processes using multi-criterion decision making. Robotics and Computer-Integrated Manufacturing, 22, 69–80.
    • (2006) Robotics and Computer-Integrated Manufacturing , vol.22 , pp. 69-80
    • Byun, H.S.1    Lee, K.H.2
  • 13
    • 0345040882 scopus 로고    scopus 로고
    • Support vector machine applications in bioinformatics
    • Byvatov, E., & Schneider, G. (2003). Support vector machine applications in bioinformatics. Applied Bioinformatics, 2, 67–77.
    • (2003) Applied Bioinformatics , vol.2 , pp. 67-77
    • Byvatov, E.1    Schneider, G.2
  • 14
    • 33845923168 scopus 로고    scopus 로고
    • Statistical analysis of the stereolithographic process to improve the accuracy
    • Campanelli, S., Cardano, G., Giannoccaro, R., Ludovico, A., and Bohez, E. (2007). Statistical analysis of the stereolithographic process to improve the accuracy. Computer-Aided Design, 39, 80–86.
    • (2007) Computer-Aided Design , vol.39 , pp. 80-86
    • Campanelli, E.1
  • 16
    • 0036573511 scopus 로고    scopus 로고
    • An investigation of rapid prototyping of sand casting molds by selective laser sintering
    • Casalino, G., De Filippis, L., Ludovico, A., & Tricarico, L. (2002). An investigation of rapid prototyping of sand casting molds by selective laser sintering. Journal of Laser Applications, 14, 100–106.
    • (2002) Journal of Laser Applications , vol.14 , pp. 100-106
    • Casalino, G.1    De Filippis, L.2    Ludovico, A.3    Tricarico, L.4
  • 17
    • 84862283893 scopus 로고    scopus 로고
    • Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel
    • Çaydas, U., & Ekici, S. (2012). Support vector machines models for surface roughness prediction in CNC turning of AISI 304 austenitic stainless steel. Journal of Intelligent Manufacturing, 23, 639–650.
    • (2012) Journal of Intelligent Manufacturing , vol.23 , pp. 639-650
    • Çaydas, U.1    Ekici, S.2
  • 18
    • 79953028697 scopus 로고    scopus 로고
    • Studies on profile error and extruding aperture for the RP parts using the fused deposition modeling process
    • Chang, D. Y., & Huang, B. H. (2011). Studies on profile error and extruding aperture for the RP parts using the fused deposition modeling process. The International Journal of Advanced Manufacturing Technology, 53, 1027–1037.
    • (2011) The International Journal of Advanced Manufacturing Technology , vol.53 , pp. 1027-1037
    • Chang, D.Y.1    Huang, B.H.2
  • 20
    • 79960434209 scopus 로고    scopus 로고
    • Improving dimensional accuracy of SLS processed part using Taguchi method. Fourth International seminar on Modern cutting and Measurement engineering
    • Cheng, R., Wu, X., & Zheng, J. (2010). Improving dimensional accuracy of SLS processed part using Taguchi method. Fourth International seminar on Modern cutting and Measurement engineering. Proceedings of the SPIE, 7997, 799715–799715-5.
    • (2010) Proceedings of the SPIE , vol.7997 , pp. 799715
    • Cheng, R.1    Wu, X.2    Zheng, J.3
  • 21
    • 84974743850 scopus 로고
    • Fuzzy model identification based on cluster estimation
    • Chiu, S. L. (1994). Fuzzy model identification based on cluster estimation. Journal of Intelligent and Fuzzy Systems, 2, 267–278.
    • (1994) Journal of Intelligent and Fuzzy Systems , vol.2 , pp. 267-278
    • Chiu, S.L.1
  • 22
    • 81255210790 scopus 로고    scopus 로고
    • Fabrication and characterization of embedded horizontal micro-channels using line-scan stereolithography
    • Choi, J. W., Quintana, R., & Wicker, R. B. (2011). Fabrication and characterization of embedded horizontal micro-channels using line-scan stereolithography. Rapid Prototyping Journal, 17, 351–361.
    • (2011) Rapid Prototyping Journal , vol.17 , pp. 351-361
    • Choi, J.W.1    Quintana, R.2    Wicker, R.B.3
  • 24
    • 79958287550 scopus 로고    scopus 로고
    • Optimized fabrication of Ca-P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering
    • Duan, B., Cheung, W. L., & Wang, M. (2011). Optimized fabrication of Ca-P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering. Biofabrication, 3, 015001.
    • (2011) Biofabrication , vol.3 , pp. 015001
    • Duan, B.1    Cheung, W.L.2    Wang, M.3
  • 26
    • 78650177756 scopus 로고    scopus 로고
    • Modeling and analysis of packing properties through a fuzzy inference system
    • Erginel, N. (2010). Modeling and analysis of packing properties through a fuzzy inference system. Journal of Intelligent Manufacturing, 21, 869–874.
    • (2010) Journal of Intelligent Manufacturing , vol.21 , pp. 869-874
    • Erginel, N.1
  • 27
    • 71549124103 scopus 로고    scopus 로고
    • 5’ model tree and neural networks for prediction of significant wave height in Lake Superior
    • Etemad-Shahidi, A., & Mahjoobi, J. (2009). Comparison between M5’ model tree and neural networks for prediction of significant wave height in Lake Superior. Ocean Engineering, 36, 1175–1181.
    • (2009) Ocean Engineering , vol.36 , pp. 1175-1181
    • Etemad-Shahidi, A.1    Mahjoobi, J.2
  • 28
    • 33646501414 scopus 로고    scopus 로고
    • System identification using genetic programming and gene expression programming
    • Flores, J., & Graff, M. (2005). System identification using genetic programming and gene expression programming. Computer and Information Sciences-ISCIS, 3733(2005), 503–511.
    • (2005) Computer and Information Sciences-ISCIS , vol.3733 , Issue.2005 , pp. 503-511
    • Flores, J.1    Graff, M.2
  • 29
    • 84870944954 scopus 로고    scopus 로고
    • Minimizing burr size in drilling using artificial neural network (ANN)-particle swarm optimization (PSO) approach
    • Gaitonde, V. N., & Karnik, S. R. (2012). Minimizing burr size in drilling using artificial neural network (ANN)-particle swarm optimization (PSO) approach. Journal of Intelligent Manufacturing, 23, 1783–1793.
    • (2012) Journal of Intelligent Manufacturing , vol.23 , pp. 1783-1793
    • Gaitonde, V.N.1    Karnik, S.R.2
  • 31
    • 84866948628 scopus 로고    scopus 로고
    • Garg, A., & Tai, K. (2012a). Comparison of regression analysis, artificial neural network and genetic programming in handling the multicollinearity problem. In Proceedings of 2012 international conference on modelling, identification & control (ICMIC 2012), Wuhan, China, 24–26 June 2012 (pp. 353–358), IEEE
    • Garg, A., & Tai, K. (2012a). Comparison of regression analysis, artificial neural network and genetic programming in handling the multicollinearity problem. In Proceedings of 2012 international conference on modelling, identification & control (ICMIC 2012), Wuhan, China, 24–26 June 2012 (pp. 353–358), IEEE.
  • 32
    • 84866948592 scopus 로고    scopus 로고
    • Garg, A., & Tai, K. (2012b). Review of genetic programming in modeling of machining processes. In Proceedings of 2012 international conference on modelling, identification & control (ICMIC 2012), Wuhan, China, 24–26 June 2012 (pp. 653–658). IEEE
    • Garg, A., & Tai, K. (2012b). Review of genetic programming in modeling of machining processes. In Proceedings of 2012 international conference on modelling, identification & control (ICMIC 2012), Wuhan, China, 24–26 June 2012 (pp. 653–658). IEEE.
  • 33
    • 62549130699 scopus 로고    scopus 로고
    • Zigzag machining surface roughness modelling using evolutionary approach
    • Gologlu, C., & Arslan, Y. (2009). Zigzag machining surface roughness modelling using evolutionary approach. Journal of Intelligent Manufacturing, 20, 203–210.
    • (2009) Journal of Intelligent Manufacturing , vol.20 , pp. 203-210
    • Gologlu, C.1    Arslan, Y.2
  • 34
    • 0003425664 scopus 로고    scopus 로고
    • Support vector machines for classification and regression
    • Gunn, S. R. (1998). Support vector machines for classification and regression. ISIS technical report, 14.
    • (1998) ISIS technical report , pp. 14
    • Gunn, S.R.1
  • 35
    • 74549139703 scopus 로고    scopus 로고
    • Predictive modelling of turning operations using response surface methodology, artificial neural networks and support vector regression
    • Gupta, A. K. (2008). Predictive modelling of turning operations using response surface methodology, artificial neural networks and support vector regression. International Journal of Production Research, 48, 763–778.
    • (2008) International Journal of Production Research , vol.48 , pp. 763-778
    • Gupta, A.K.1
  • 37
    • 0013485092 scopus 로고    scopus 로고
    • Data-based modelling using genetic programming. PhD Thesis, Dept
    • University of Newcastle, UK:
    • Hiden, H.G. (1998). Data-based modelling using genetic programming. PhD Thesis, Dept. Chemical and Process Engineering, University of Newcastle, UK.
    • (1998) Chemical and Process Engineering
    • Hiden, H.G.1
  • 38
    • 84912004370 scopus 로고    scopus 로고
    • Modelling chemical process systems using a multi-gene genetic programming algorithm (pp. 28–31). Late breaking paper, GP’96
    • Hinchliffe, M., Hiden, H., Mckay, B., Willis, M., Tham, M., & Barton, G. (1996). Modelling chemical process systems using a multi-gene genetic programming algorithm (pp. 28–31). Late breaking paper, GP’96. Stanford.
    • (1996) Stanford
    • Hinchliffe, M.1    Hiden, H.2    Mckay, B.3    Willis, M.4    Tham, M.5    Barton, G.6
  • 41
    • 0027601884 scopus 로고
    • ANFIS: Adaptive-network-based fuzzy inference system
    • Jang, J. S. R. (1993). ANFIS: Adaptive-network-based fuzzy inference system. IEEE Trans. Syst., Man, and Cyber, 23, 665–685.
    • (1993) IEEE Trans. Syst., Man, and Cyber , vol.23 , pp. 665-685
    • Jang, J.S.R.1
  • 42
    • 84855491384 scopus 로고    scopus 로고
    • The use of fuzzy logic and neural networks models for sensory properties prediction from process and structure parameters of knitted fabrics
    • Jeguirim, S. E. G., Dhouib, A. B., Sahnoun, M., Cheikhrouhou, M., Schacher, L., & Adolphe, D. (2011). The use of fuzzy logic and neural networks models for sensory properties prediction from process and structure parameters of knitted fabrics. Journal of Intelligent Manufacturing, 22, 873–884.
    • (2011) Journal of Intelligent Manufacturing , vol.22 , pp. 873-884
    • Jeguirim, S.E.G.1    Dhouib, A.B.2    Sahnoun, M.3    Cheikhrouhou, M.4    Schacher, L.5    Adolphe, D.6
  • 43
    • 84899821060 scopus 로고    scopus 로고
    • Simulation and parameter optimization of flux cored arc welding using artificial neural network and particle swarm optimization algorithm
    • Katherasan, D., Elias, J. V., Sathiya, P., & Haq, A. N. (2012). Simulation and parameter optimization of flux cored arc welding using artificial neural network and particle swarm optimization algorithm. Journal of Intelligent Manufacturing, 23, 1–10.
    • (2012) Journal of Intelligent Manufacturing , vol.23 , pp. 1-10
    • Katherasan, D.1    Elias, J.V.2    Sathiya, P.3    Haq, A.N.4
  • 44
    • 0004291150 scopus 로고    scopus 로고
    • Learning and soft computing: Support vector machines, neural networks
    • Cambridge, MA: MIT press
    • Kecman, V. (2001). Learning and soft computing: Support vector machines, neural networks, and fuzzy logic models. Cambridge, MA: MIT press.
    • (2001) and fuzzy logic models
    • Kecman, V.1
  • 45
    • 84894887900 scopus 로고
    • Computer aided design of experiments
    • Kennard, R. W., & Stone, L. A. (1969). Computer aided design of experiments. Technometrics, 11, 137–148.
    • (1969) Technometrics , vol.11 , pp. 137-148
    • Kennard, R.W.1    Stone, L.A.2
  • 46
    • 72749102343 scopus 로고    scopus 로고
    • Trustable symbolic regression models: using ensembles, interval arithmetic and pareto fronts to develop robust and trust-aware models
    • Kotanchek, M., Smits, G., & Vladislaveva, E. (2008). Trustable symbolic regression models: using ensembles, interval arithmetic and pareto fronts to develop robust and trust-aware models. Genetic Programming Theory and Practice, V, 201–220.
    • (2008) Genetic Programming Theory and Practice, V , pp. 201-220
    • Kotanchek, M.1    Smits, G.2    Vladislaveva, E.3
  • 48
    • 16744364998 scopus 로고    scopus 로고
    • Genetic programming approach for surface quality prediction
    • Kovacic, M., & Brezocnik, M. (2003). Genetic programming approach for surface quality prediction. Tehnicki Vjesnik, 10, 19–24.
    • (2003) Tehnicki Vjesnik , vol.10 , pp. 19-24
    • Kovacic, M.1    Brezocnik, M.2
  • 51
    • 25144481033 scopus 로고    scopus 로고
    • Statistical analysis of experimental parameters in selective laser sintering
    • Kruth, J. P., & Kumar, S. (2005). Statistical analysis of experimental parameters in selective laser sintering. Advanced Engineering Materials, 7, 750–755.
    • (2005) Advanced Engineering Materials , vol.7 , pp. 750-755
    • Kruth, J.P.1    Kumar, S.2
  • 52
    • 30844450339 scopus 로고    scopus 로고
    • Control of shape memory alloy actuators with a neuro-fuzzy feedforward model element
    • Kumagai, A., Liu, T. I., & Hozian, P. (2006). Control of shape memory alloy actuators with a neuro-fuzzy feedforward model element. Journal of Intelligent Manufacturing, 17, 45–56.
    • (2006) Journal of Intelligent Manufacturing , vol.17 , pp. 45-56
    • Kumagai, A.1    Liu, T.I.2    Hozian, P.3
  • 53
    • 81255195335 scopus 로고    scopus 로고
    • Optimization of support material and build time in fused deposition modeling (FDM)
    • Kumar, G. P., & Regalla, S. P. (2012). Optimization of support material and build time in fused deposition modeling (FDM). Applied Mechanics and Materials, 110, 2245–2251.
    • (2012) Applied Mechanics and Materials , vol.110 , pp. 2245-2251
    • Kumar, G.P.1    Regalla, S.P.2
  • 54
    • 0036808510 scopus 로고    scopus 로고
    • Genetic programming and evolutionary generalization. Evolutionary Computation
    • Kuschu, I. (2002). Genetic programming and evolutionary generalization. Evolutionary Computation, IEEE Transactions on, 6, 431–442.
    • (2002) IEEE Transactions on , vol.6 , pp. 431-442
    • Kuschu, I.1
  • 55
    • 33646264548 scopus 로고    scopus 로고
    • Optimizing flexible behaviour of bow prototype using Taguchi approach
    • Laeng, J., Khan, Z. A., & Khu, S. (2006). Optimizing flexible behaviour of bow prototype using Taguchi approach. Journal of Applied Sciences, 6, 622–630.
    • (2006) Journal of Applied Sciences , vol.6 , pp. 622-630
    • Laeng, J.1    Khan, Z.A.2    Khu, S.3
  • 57
    • 79952751399 scopus 로고    scopus 로고
    • Study on forecast of forming temperature of ABS resign during fused deposition manufacturing by fuzzy comprehensive evaluation
    • Li, C. L., Fu, G. Y., & Guo, K. B. (2011). Study on forecast of forming temperature of ABS resign during fused deposition manufacturing by fuzzy comprehensive evaluation. Key Engineering Materials, 464, 264–267.
    • (2011) Key Engineering Materials , vol.464 , pp. 264-267
    • Li, C.L.1    Fu, G.Y.2    Guo, K.B.3
  • 58
    • 33646421404 scopus 로고    scopus 로고
    • Data mining using genetic programming for construction of a semiconductor manufacturing yield rate prediction system
    • Li, T. S., Huang, C. L., & Wu, Z. Y. (2006). Data mining using genetic programming for construction of a semiconductor manufacturing yield rate prediction system. Journal of Intelligent Manufacturing, 17, 355–361.
    • (2006) Journal of Intelligent Manufacturing , vol.17 , pp. 355-361
    • Li, T.S.1    Huang, C.L.2    Wu, Z.Y.3
  • 60
    • 33745937912 scopus 로고    scopus 로고
    • Benchmarking for decision making in rapid prototyping systems. In IEEE International Conference on Automation Science and
    • Mahesh, M., Fuh, J., Wong, Y., & Loh, H. (2005). Benchmarking for decision making in rapid prototyping systems. In IEEE International Conference on Automation Science and, Engineering (pp. 19–24).
    • (2005) Engineering , pp. 19-24
    • Mahesh, M.1    Fuh, J.2    Wong, Y.3    Loh, H.4
  • 62
    • 74149090502 scopus 로고    scopus 로고
    • Data splitting for artificial neural networks using SOM-based stratified sampling
    • May, R., Maier, H. R., & Dandy, G. C. (2010). Data splitting for artificial neural networks using SOM-based stratified sampling. Neural Networks, 23, 283–294.
    • (2010) Neural Networks , vol.23 , pp. 283-294
    • May, R.1    Maier, H.R.2    Dandy, G.C.3
  • 66
    • 77954427266 scopus 로고    scopus 로고
    • Heat consumption forecasting using partial least squares, artificial neural network and support vector regression techniques in district heating systems
    • Park, T. C., Kim, U. S., Kim, L. H., Jo, B. W., & Yeo, Y. K. (2010). Heat consumption forecasting using partial least squares, artificial neural network and support vector regression techniques in district heating systems. Korean Journal of Chemical Engineering, 27, 1063–1071.
    • (2010) Korean Journal of Chemical Engineering , vol.27 , pp. 1063-1071
    • Park, T.C.1    Kim, U.S.2    Kim, L.H.3    Jo, B.W.4    Yeo, Y.K.5
  • 67
    • 0033880373 scopus 로고    scopus 로고
    • Gray-box identification of block-oriented nonlinear models
    • Pearson, R. K., & Pottmann, M. (2000). Gray-box identification of block-oriented nonlinear models. Journal of Process Control, 10, 301–315.
    • (2000) Journal of Process Control , vol.10 , pp. 301-315
    • Pearson, R.K.1    Pottmann, M.2
  • 70
    • 84912023703 scopus 로고    scopus 로고
    • Quinlan, J. R. (1992). Learning with continuous classes. In Proceedings of the fifth Australian joint conference on artificial intelligence (pp. 343–348). Singapore: World Scientific
    • Quinlan, J. R. (1992). Learning with continuous classes. In Proceedings of the fifth Australian joint conference on artificial intelligence (pp. 343–348). Singapore: World Scientific.
  • 72
    • 33751256243 scopus 로고    scopus 로고
    • Determination of optimum process parameters using Taguchi’s approach to improve the quality of SLS parts. In Proceedings of the 17th IASTED international conference on Modelling and simulation
    • Reddy, T., Kumar, Y. R., & Rao, C. (2006). Determination of optimum process parameters using Taguchi’s approach to improve the quality of SLS parts. In Proceedings of the 17th IASTED international conference on Modelling and simulation. ACTA Press (pp. 228–233).
    • (2006) ACTA Press , pp. 228-233
    • Reddy, T.1    Kumar, Y.R.2    Rao, C.3
  • 73
    • 0344861965 scopus 로고    scopus 로고
    • Model selection methodology in supervised learning with evolutionary computation
    • Rowland, J. (2003). Model selection methodology in supervised learning with evolutionary computation. Biosystems, 72, 187–196.
    • (2003) Biosystems , vol.72 , pp. 187-196
    • Rowland, J.1
  • 74
    • 34548361987 scopus 로고    scopus 로고
    • An approach based on current and sound signals for in-process tool wear monitoring
    • Salgado, D., & Alonso, F. (2007). An approach based on current and sound signals for in-process tool wear monitoring. International Journal of Machine Tools and Manufacture, 47, 2140–2152.
    • (2007) International Journal of Machine Tools and Manufacture , vol.47 , pp. 2140-2152
    • Salgado, D.1    Alonso, F.2
  • 76
    • 84887622153 scopus 로고    scopus 로고
    • A modified Kennard-stone algorithm for optimal division of data for developing artificial neural network models
    • Saptoro, A., Tade, M. O., & Vuthaluru, H. (2012). A modified Kennard-stone algorithm for optimal division of data for developing artificial neural network models. Chemical Product and Process Modeling, 7, 13.
    • (2012) Chemical Product and Process Modeling , vol.7 , pp. 13
    • Saptoro, A.1    Tade, M.O.2    Vuthaluru, H.3
  • 79
    • 84939538687 scopus 로고    scopus 로고
    • (2004). Density prediction of selective laser sintering parts based on artificial neural network
    • Shen, X., Yao, J., Wang, Y., & Yang, J. (2004). Density prediction of selective laser sintering parts based on artificial neural network. In Advances in neural networks-ISNN 2004 (vol. 3174/2004, pp. 153–165).
    • (2004) In Advances in neural networks-ISNN , vol.3174 , Issue.2004 , pp. 153-165
    • Shen, X.1    Yao, J.2    Wang, Y.3    Yang, J.4
  • 80
    • 39449115775 scopus 로고    scopus 로고
    • Flexible and optimal M5 model trees with applications to flow predictions. In Liong, Phoon, & Babovic (Eds.)
    • Singapore: World Scientific
    • Solomatine, D. P., & Siek, M. (2004). Flexible and optimal M5 model trees with applications to flow predictions. In Liong, Phoon, & Babovic (Eds.), Proceedings of the sixth international conference on hydroinformatics. Singapore: World Scientific.
    • (2004) Proceedings of the sixth international conference on hydroinformatics
    • Solomatine, D.P.1    Siek, M.2
  • 81
    • 10244261532 scopus 로고    scopus 로고
    • M5 model trees and neural networks: Application to flood forecasting in the upper reach of the Huai River in China
    • Solomatine, D. P., & Xue, Y. (2004). M5 model trees and neural networks: Application to flood forecasting in the upper reach of the Huai River in China. Journal of Hydrologic Engineering, 9, 491– 501.
    • (2004) Journal of Hydrologic Engineering , vol.9 , pp. 491-501
    • Solomatine, D.P.1    Xue, Y.2
  • 82
    • 78650888285 scopus 로고    scopus 로고
    • A hybrid ANN-BFOA approach for optimization of FDM process parameters
    • Sood, A., Ohdar, R., & Mahapatra, S. (2010a). A hybrid ANN-BFOA approach for optimization of FDM process parameters. Swarm, Evolutionary, and Memetic Computing, 6466, 396–403.
    • (2010) Swarm, Evolutionary, and Memetic Computing , vol.6466 , pp. 396-403
    • Sood, A.1    Ohdar, R.2    Mahapatra, S.3
  • 85
    • 67649395515 scopus 로고    scopus 로고
    • Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method
    • Sood, A. K., Ohdar, R., & Mahapatra, S. (2009). Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method. Materials & Design, 30, 4243–4252.
    • (2009) Materials & Design , vol.30 , pp. 4243-4252
    • Sood, A.K.1    Ohdar, R.2    Mahapatra, S.3
  • 86
    • 84855674497 scopus 로고    scopus 로고
    • Experimental investigation and empirical modelling of FDM process for compressive strength improvement
    • Sood, A. K., Ohdar, R. K., & Mahapatra, S. S. (2011b). Experimental investigation and empirical modelling of FDM process for compressive strength improvement. Journal of Advanced Research, 3, 81–90.
    • (2011) Journal of Advanced Research , vol.3 , pp. 81-90
    • Sood, A.K.1    Ohdar, R.K.2    Mahapatra, S.S.3
  • 87
    • 0021892282 scopus 로고
    • Fuzzy identification of system and its applications to modelling and control
    • Takagi, T., & Sugeno, M. (1985). Fuzzy identification of system and its applications to modelling and control. IEEE Trans. Syst., Man, and Cyber, 15, 116–132.
    • (1985) IEEE Trans. Syst., Man, and Cyber , vol.15 , pp. 116-132
    • Takagi, T.1    Sugeno, M.2
  • 89
    • 0242468106 scopus 로고    scopus 로고
    • The rapid prototyping technologies
    • Upcraft, S., & Fletcher, R. (2003). The rapid prototyping technologies. Assembly Automation, 23, 318–330.
    • (2003) Assembly Automation , vol.23 , pp. 318-330
    • Upcraft, S.1    Fletcher, R.2
  • 91
    • 36849010956 scopus 로고    scopus 로고
    • A method for optimizing process parameters in layer-based rapid prototyping. Proceedings of the Institution of Mechanical Engineers
    • Vosniakos, G., Maroulis, T., & Pantelis, D. (2007). A method for optimizing process parameters in layer-based rapid prototyping. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 221, 1329–1340.
    • (2007) Part B: Journal of Engineering Manufacture , vol.221 , pp. 1329-1340
    • Vosniakos, G.1    Maroulis, T.2    Pantelis, D.3
  • 92
    • 84862278723 scopus 로고    scopus 로고
    • Process optimization of the serial-parallel hybrid polishing machine tool based on artificial neural network and genetic algorithm
    • Wang, G., Wang, Y., Zhao, J., & Chen, G. (2012). Process optimization of the serial-parallel hybrid polishing machine tool based on artificial neural network and genetic algorithm. Journal of Intelligent Manufacturing, 23, 365–374.
    • (2012) Journal of Intelligent Manufacturing , vol.23 , pp. 365-374
    • Wang, G.1    Wang, Y.2    Zhao, J.3    Chen, G.4
  • 94
    • 0030352442 scopus 로고    scopus 로고
    • Influence of process parameters on stereolithography part shrinkage
    • Wang, W., Cheah, C., Fuh, J., & Lu, L. (1996). Influence of process parameters on stereolithography part shrinkage. Materials & Design, 17, 205–213.
    • (1996) Materials & Design , vol.17 , pp. 205-213
    • Wang, W.1    Cheah, C.2    Fuh, J.3    Lu, L.4
  • 95
    • 70549102594 scopus 로고    scopus 로고
    • Induction of model trees for predicting continuous classes (Working paper 96/23). Hamilton, New Zealand: University of Waikato
    • Wang, Y., & Witten, I. H. (1996). Induction of model trees for predicting continuous classes (Working paper 96/23). Hamilton, New Zealand: University of Waikato, Department of Computer Science
    • (1996) Department of Computer Science
    • Wang, Y.1    Witten, I.H.2
  • 96
    • 0032664383 scopus 로고    scopus 로고
    • Strategies and applications for rapid product and process development in Daimler-Benz AG
    • Wiedemann, B., & Jantzen, H. A. (1999). Strategies and applications for rapid product and process development in Daimler-Benz AG. Computers in Industry, 39, 11–25.
    • (1999) Computers in Industry , vol.39 , pp. 11-25
    • Wiedemann, B.1    Jantzen, H.A.2
  • 99
    • 0042091884 scopus 로고    scopus 로고
    • A review of rapid prototyping technologies and systems
    • Yan, X., & Gu, P. (1996). A review of rapid prototyping technologies and systems. Computer-Aided Design, 28, 307–318.
    • (1996) Computer-Aided Design , vol.28 , pp. 307-318
    • Yan, X.1    Gu, P.2
  • 100
    • 0028385414 scopus 로고
    • Fuzzy logic, neural networks, and soft computing
    • Zadeh, L. A. (1994). Fuzzy logic, neural networks, and soft computing. Communications of the ACM, 37, 77–84.
    • (1994) Communications of the ACM , vol.37 , pp. 77-84
    • Zadeh, L.A.1
  • 101
    • 2442688288 scopus 로고    scopus 로고
    • Genetic programming in classifying large-scale data: An ensemble method
    • Zhang, Y., & Bhattacharyya, S. (2004). Genetic programming in classifying large-scale data: An ensemble method. Information Sciences, 163, 85–101.
    • (2004) Information Sciences , vol.163 , pp. 85-101
    • Zhang, Y.1    Bhattacharyya, S.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.