-
1
-
-
0038298770
-
Predicting surface roughness in machining: A review
-
10.1016/S0890-6955(03)00059-2
-
PG Benardos GC Vosniakos 2003 Predicting surface roughness in machining: a review Int J Mach Tools Manuf 43 8 833 844 10.1016/S0890-6955(03)00059-2
-
(2003)
Int J Mach Tools Manuf
, vol.43
, Issue.8
, pp. 833-844
-
-
Benardos, P.G.1
Vosniakos, G.C.2
-
2
-
-
74249115778
-
Application of soft computing techniques in machining performance prediction and optimization: A literature review
-
10.1007/s00170-009-2104-x
-
M Chandrasekaran M Muralidhar C Krishna U Dixit 2010 Application of soft computing techniques in machining performance prediction and optimization: a literature review Int J Adv Manuf Technol 46 5 445 464 10.1007/s00170-009-2104-x
-
(2010)
Int J Adv Manuf Technol
, vol.46
, Issue.5
, pp. 445-464
-
-
Chandrasekaran, M.1
Muralidhar, M.2
Krishna, C.3
Dixit, U.4
-
5
-
-
84926330861
-
An analysis of the milling process
-
ME Martellotti 1941 An analysis of the milling process Trans ASME 63 667 700
-
(1941)
Trans ASME
, vol.63
, pp. 667-700
-
-
Martellotti, M.E.1
-
7
-
-
77953638896
-
Surface roughness generation and material removal rate in ball end milling operations
-
10.1080/15394450902996601
-
G Quintana J de Ciurana J Ribatallada 2010 Surface roughness generation and material removal rate in ball end milling operations Mater Manuf Process 25 6 386 398 10.1080/15394450902996601
-
(2010)
Mater Manuf Process
, vol.25
, Issue.6
, pp. 386-398
-
-
Quintana, G.1
De Ciurana, J.2
Ribatallada, J.3
-
8
-
-
0035803629
-
Surface roughness prediction based on cutting parameters and tool vibrations in turning operations
-
DOI 10.1016/S0924-0136(01)00959-1, PII S0924013601009591
-
OB Abouelatta J Mádl 2001 Surface roughness prediction based on cutting parameters and tool vibrations in turning operations J Mater Process Technol 118 1-3 269 277 10.1016/S0924-0136(01)00959-1 (Pubitemid 33147998)
-
(2001)
Journal of Materials Processing Technology
, vol.118
, Issue.1-3
, pp. 269-277
-
-
Abouelatta, O.B.1
Madl, J.2
-
9
-
-
0037144746
-
Study of tool life, surface roughness and vibration in machining nodular cast iron with ceramic tool
-
10.1016/S0924-0136(02)00092-4
-
AK Ghani IA Choudhury Husni 2002 Study of tool life, surface roughness and vibration in machining nodular cast iron with ceramic tool J Mater Process Technol 127 1 17 22 10.1016/S0924-0136(02)00092-4
-
(2002)
J Mater Process Technol
, vol.127
, Issue.1
, pp. 17-22
-
-
Ghani, A.K.1
Choudhury, I.A.2
Husni3
-
10
-
-
72949124419
-
Advances in Modeling and Simulation of Grinding Processes
-
DOI 10.1016/j.cirp.2006.10.003, PII S1660277306000041
-
E Brinksmeier JC Aurich E Govekar C Heinzel H-W Hoffmeister F Klocke J Peters R Rentsch DJ Stephenson E Uhlmann K Weinert M Wittmann 2006 Advances in modeling and simulation of grinding processes CIRP Ann (Manuf Technol) 55 2 667 696 10.1016/j.cirp.2006.10.003 (Pubitemid 46148812)
-
(2006)
CIRP Annals - Manufacturing Technology
, vol.55
, Issue.2
, pp. 667-696
-
-
Brinksmeier, E.1
Aurich, J.C.2
Govekar, E.3
Heinzel, C.4
Hoffmeister, H.-W.5
Klocke, F.6
Peters, J.7
Rentsch, R.8
Stephenson, D.J.9
Uhlmann, E.10
Weinert, K.11
Wittmann, M.12
-
11
-
-
46249124721
-
Estimation of cutting forces and surface roughness for hard turning using neural networks
-
10.1007/s10845-008-0097-1
-
V Sharma S Dhiman R Sehgal S Sharma 2008 Estimation of cutting forces and surface roughness for hard turning using neural networks J Intell Manuf 19 4 473 483 10.1007/s10845-008-0097-1
-
(2008)
J Intell Manuf
, vol.19
, Issue.4
, pp. 473-483
-
-
Sharma, V.1
Dhiman, S.2
Sehgal, R.3
Sharma, S.4
-
12
-
-
43949110585
-
Artificial neural network models for the prediction of surface roughness in electrical discharge machining
-
10.1007/s10845-008-0081-9
-
AP Markopoulos DE Manolakos NM Vaxevanidis 2008 Artificial neural network models for the prediction of surface roughness in electrical discharge machining J Intell Manuf 19 3 283 292 10.1007/s10845-008-0081-9
-
(2008)
J Intell Manuf
, vol.19
, Issue.3
, pp. 283-292
-
-
Markopoulos, A.P.1
Manolakos, D.E.2
Vaxevanidis, N.M.3
-
13
-
-
61449183703
-
Neural network modeling and particle swarm optimization (PSO) of process parameters in pulsed laser micromachining of hardened AISI H13 steel
-
10.1080/10426910802679568
-
J Ciurana G Arias T Ozel 2009 Neural network modeling and particle swarm optimization (PSO) of process parameters in pulsed laser micromachining of hardened AISI H13 steel Mater Manuf Process 24 3 358 368 10.1080/ 10426910802679568
-
(2009)
Mater Manuf Process
, vol.24
, Issue.3
, pp. 358-368
-
-
Ciurana, J.1
Arias, G.2
Ozel, T.3
-
14
-
-
80053459850
-
Surface roughness monitoring application based on artificial neural networks for ball-end milling operations
-
10.1007/s10845-009-0323-5
-
G.Quintana, M.Garcia-Romeu, J.Ciurana. 2009 Surface roughness monitoring application based on artificial neural networks for ball-end milling operations. Journal of Intelligent Manufacturing, 22(4), pp. 607-617.10.1007/s10845-009-0323-5
-
(2009)
Journal of Intelligent Manufacturing
, vol.22
, Issue.4
, pp. 607-617
-
-
Quintana, G.1
Garcia-Romeu, M.2
Ciurana, J.3
-
15
-
-
0141959043
-
An adaptive-network based fuzzy inference system for prediction of workpiece surface roughness in end milling
-
10.1016/S0924-0136(03)00687-3
-
SP Lo 2003 An adaptive-network based fuzzy inference system for prediction of workpiece surface roughness in end milling J Mater Process Technol 142 3 665 675 10.1016/S0924-0136(03)00687-3
-
(2003)
J Mater Process Technol
, vol.142
, Issue.3
, pp. 665-675
-
-
Lo, S.P.1
-
16
-
-
56349089474
-
Adaptive network-based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchi-genetic learning algorithm
-
10.1016/j.eswa.2008.01.051
-
WH Ho JT Tsai BT Lin JH Chou 2009 Adaptive network-based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchi-genetic learning algorithm Expert Syst Appl 36 2 3216 3222 10.1016/j.eswa.2008.01.051
-
(2009)
Expert Syst Appl
, vol.36
, Issue.2
, pp. 3216-3222
-
-
Ho, W.H.1
Tsai, J.T.2
Lin, B.T.3
Chou, J.H.4
-
17
-
-
0034808424
-
A fuzzy-net-based multilevel in-process surface roughness recognition system in milling operations
-
DOI 10.1007/s001700170132
-
JC Chen M Savage 2001 A fuzzy-net-based multilevel in-process surface roughness recognition system in milling operations Int J Adv Manuf Technol 17 9 670 676 10.1007/s001700170132 (Pubitemid 32914763)
-
(2001)
International Journal of Advanced Manufacturing Technology
, vol.17
, Issue.9
, pp. 670-676
-
-
Chen, J.C.1
Savage, M.2
-
18
-
-
33751429157
-
A fuzzy expert system for optimizing parameters and predicting performance measures in hard-milling process
-
DOI 10.1016/j.eswa.2006.02.003, PII S0957417406000790
-
A Iqbal N He L Li NU Dar 2007 A fuzzy expert system for optimizing parameters and predicting performance measures in hard-milling process Expert Syst Appl 32 4 1020 1027 10.1016/j.eswa.2006.02.003 (Pubitemid 44821792)
-
(2007)
Expert Systems with Applications
, vol.32
, Issue.4
, pp. 1020-1027
-
-
Iqbal, A.1
He, N.2
Li, L.3
Dar, N.U.4
-
19
-
-
56149083827
-
Prediction of workpiece surface roughness using soft computing
-
10.1243/09544054JEM1035
-
B Samanta W Erevelles Y Omurtag 2008 Prediction of workpiece surface roughness using soft computing Proc Inst Mech Eng B J Eng Manuf 222 10 1221 1232 10.1243/09544054JEM1035
-
(2008)
Proc Inst Mech Eng B J Eng Manuf
, vol.222
, Issue.10
, pp. 1221-1232
-
-
Samanta, B.1
Erevelles, W.2
Omurtag, Y.3
-
20
-
-
55749096392
-
A Bayesian network model for surface roughness prediction in the machining process
-
05527575 10.1080/00207720802344683
-
M Correa C Bielza M de J. Ramirez JR Alique 2008 A Bayesian network model for surface roughness prediction in the machining process Int J Syst Sci 39 12 1181 1192 05527575 10.1080/00207720802344683
-
(2008)
Int J Syst Sci
, vol.39
, Issue.12
, pp. 1181-1192
-
-
Correa, M.1
Bielza, C.2
De, J.3
Ramirez, M.4
Alique, J.R.5
-
21
-
-
58349093492
-
Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process
-
10.1016/j.eswa.2008.09.024
-
M Correa C Bielza J Pamies-Teixeira 2009 Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process Expert Syst Appl 36 3 7270 7279 10.1016/j.eswa.2008.09.024
-
(2009)
Expert Syst Appl
, vol.36
, Issue.3
, pp. 7270-7279
-
-
Correa, M.1
Bielza, C.2
Pamies-Teixeira, J.3
-
22
-
-
0043156348
-
Integrated genetic programming and genetic algorithm approach to predict surface roughness
-
10.1081/AMP-120022023
-
M Brezocnik M Kovacic 2003 Integrated genetic programming and genetic algorithm approach to predict surface roughness Mater Manuf Process 18 3 475 491 10.1081/AMP-120022023
-
(2003)
Mater Manuf Process
, vol.18
, Issue.3
, pp. 475-491
-
-
Brezocnik, M.1
Kovacic, M.2
-
23
-
-
10444269430
-
Prediction of surface roughness with genetic programming
-
10.1016/j.jmatprotec.2004.09.004
-
M Brezocnik M Kovacic M Ficko 2004 Prediction of surface roughness with genetic programming J Mater Process Technol 157-158 28 36 10.1016/j.jmatprotec. 2004.09.004
-
(2004)
J Mater Process Technol
, vol.157-158
, pp. 28-36
-
-
Brezocnik, M.1
Kovacic, M.2
Ficko, M.3
-
24
-
-
61849100434
-
Optimal cutting condition determination for desired surface roughness in end milling
-
10.1007/s00170-008-1491-8
-
C Prakasvudhisarn S Kunnapapdeelert P Yenradee 2009 Optimal cutting condition determination for desired surface roughness in end milling Int J Adv Manuf Technol 41 5 440 451 10.1007/s00170-008-1491-8
-
(2009)
Int J Adv Manuf Technol
, vol.41
, Issue.5
, pp. 440-451
-
-
Prakasvudhisarn, C.1
Kunnapapdeelert, S.2
Yenradee, P.3
-
26
-
-
35348915328
-
Classifier ensembles: Select real-world applications
-
DOI 10.1016/j.inffus.2007.07.002, PII S1566253507000620, Applications of Ensemble Methods
-
N Oza K Tumer 2008 Classifier ensembles: select real-world applications Information Fusion 9 1 4 20 10.1016/j.inffus.2007.07.002 (Pubitemid 47589064)
-
(2008)
Information Fusion
, vol.9
, Issue.1
, pp. 4-20
-
-
Oza, N.C.1
Tumer, K.2
-
27
-
-
14644422971
-
-
978-471210788 Wiley-Interscience New York. 1066.68114 10.1002/0471660264 ISBN-10: 0471210781; ISBN-13: 978-0471210788
-
Kuncheva LI (2004) Combining pattern classifiers: methods and algorithms. Wiley-Interscience, New York. ISBN-10: 0471210781; ISBN-13: 978-0471210788
-
(2004)
Combining Pattern Classifiers: Methods and Algorithms
-
-
Kuncheva, L.I.1
-
28
-
-
80053403826
-
Ensemble methods in machine learning
-
Multiple classifier systems J. Kittler F. Roli (eds). Springer New York. 10.1007/3-540-45014-9-1
-
Dietterich TG (2000) Ensemble methods in machine learning. In: Kittler J, Roli F (ed) Multiple classifier systems. Lecture notes in computer science, vol 1857. Springer, New York pp 1-15
-
(2000)
Lecture Notes in Computer Science
, vol.1857
, pp. 1-15
-
-
Dietterich, T.G.1
-
29
-
-
74249109730
-
Design of multisensor fusion-based tool condition monitoring system in end milling
-
10.1007/s00170-009-2110-z
-
S Cho S Binsaeid S Asfour 2010 Design of multisensor fusion-based tool condition monitoring system in end milling Int J Adv Manuf Technol 46 5 681 694 10.1007/s00170-009-2110-z
-
(2010)
Int J Adv Manuf Technol
, vol.46
, Issue.5
, pp. 681-694
-
-
Cho, S.1
Binsaeid, S.2
Asfour, S.3
-
30
-
-
67349144405
-
Machine ensemble approach for simultaneous detection of transient and gradual abnormalities in end milling using multisensor fusion
-
10.1016/j.jmatprotec.2008.11.038
-
S Binsaeid S Asfour S Cho A Onar 2009 Machine ensemble approach for simultaneous detection of transient and gradual abnormalities in end milling using multisensor fusion J Mater Process Technol 209 10 4728 4738 10.1016/j.jmatprotec.2008.11.038
-
(2009)
J Mater Process Technol
, vol.209
, Issue.10
, pp. 4728-4738
-
-
Binsaeid, S.1
Asfour, S.2
Cho, S.3
Onar, A.4
-
31
-
-
79960830796
-
Modelling of process parameters in laser polishing of steel components using ensembles of regression trees
-
in press
-
Bustillo A, Ukar E, Rodriguez JJ, Lamikiz A (2011) Modelling of process parameters in laser polishing of steel components using ensembles of regression trees. Int J Comput Integr Manuf (in press)
-
(2011)
Int J Comput Integr Manuf
-
-
Bustillo, A.1
Ukar, E.2
Rodriguez, J.J.3
Lamikiz, A.4
-
32
-
-
0032645080
-
An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
-
10.1023/A:1007515423169
-
E Bauer R Kohavi 1999 An empirical comparison of voting classification algorithms: bagging, boosting, and variants Mach Learn 36 105 139 10.1023/A:1007515423169
-
(1999)
Mach Learn
, vol.36
, pp. 105-139
-
-
Bauer, E.1
Kohavi, R.2
-
33
-
-
0034247206
-
MultiBoosting: A technique for combining boosting and wagging
-
10.1023/A:1007659514849
-
GI Webb 2000 MultiBoosting: a technique for combining boosting and wagging Mach Learn 40 2 159 196 10.1023/A:1007659514849
-
(2000)
Mach Learn
, vol.40
, Issue.2
, pp. 159-196
-
-
Webb, G.I.1
-
34
-
-
33749682962
-
-
O. Maimon L. Rokach (eds). 2 Springer New York 1213.68237
-
Maimon O, Rokach L (eds) (2010) Data mining and knowledge discovery handbook, 2nd edn. Springer, New York
-
(2010)
Data Mining and Knowledge Discovery Handbook
-
-
-
35
-
-
80053403826
-
Ensemble methods in machine learning
-
London, UK. Springer, Berlin
-
Dietterich TG (2000) Ensemble methods in machine learning. In: Proceedings of the first international workshop on multiple classifier systems, MCS '00, London, UK. Springer, Berlin, pp 1-15
-
(2000)
Proceedings of the First International Workshop on Multiple Classifier Systems, MCS '00
, pp. 1-15
-
-
Dietterich, T.G.1
-
36
-
-
12144288329
-
Is combining classifiers with stacking better than selecting the best one?
-
1101.68077 10.1023/B:MACH.0000015881.36452.6e
-
S Dzeroski B Zenko 2004 Is combining classifiers with stacking better than selecting the best one? Mach Learn 54 3 255 273 1101.68077 10.1023/B:MACH.0000015881.36452.6e
-
(2004)
Mach Learn
, vol.54
, Issue.3
, pp. 255-273
-
-
Dzeroski, S.1
Zenko, B.2
-
37
-
-
0348151971
-
Combining classifiers: Soft computing solutions
-
S.K. Pal (eds). World Scientific Singapore. 10.1142/9789812386533-0015
-
Kuncheva LI (2001) Combining classifiers: soft computing solutions. In: Pal SK (ed) Pattern recognition: from classical to modern approaches. World Scientific, Singapore, pp 427-452
-
(2001)
Pattern Recognition: From Classical to Modern Approaches
, pp. 427-452
-
-
Kuncheva, L.I.1
-
38
-
-
80053403826
-
Ensemble methods in machine learning
-
London, UK. Springer, Berlin
-
Dietterich TG (2000) Ensemble methods in machine learning. In: Proceedings of the first international workshop on multiple classifier systems, MCS '00, London, UK. Springer, Berlin, pp 1-15
-
(2000)
Proceedings of the First International Workshop on Multiple Classifier Systems, MCS '00
, pp. 1-15
-
-
Dietterich, T.G.1
-
39
-
-
0030211964
-
Bagging predictors
-
L Breiman 1996 Bagging predictors Mach Learn 24 2 123 140 1425957 0858.68080 (Pubitemid 126724382)
-
(1996)
Machine Learning
, vol.24
, Issue.2
, pp. 123-140
-
-
Breiman, L.1
-
42
-
-
0031211090
-
A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
-
Y Freund RE Schapire 1997 A decision-theoretic generalization of on-line learning and an application to boosting J Comput Syst Sci 55 1 119 139 1473055 0880.68103 10.1006/jcss.1997.1504 (Pubitemid 127433398)
-
(1997)
Journal of Computer and System Sciences
, vol.55
, Issue.1
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
44
-
-
0034250160
-
An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
-
10.1023/A:1007607513941
-
TG Dietterich 2000 An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization Mach Learn 40 2 139 157 10.1023/A:1007607513941
-
(2000)
Mach Learn
, vol.40
, Issue.2
, pp. 139-157
-
-
Dietterich, T.G.1
-
46
-
-
83555170269
-
Random classification noise defeats all convex potential boosters
-
10.1007/s10994-009-5165-z
-
P Long R Servedio 2010 Random classification noise defeats all convex potential boosters Mach Learn 78 3 287 304 10.1007/s10994-009-5165-z
-
(2010)
Mach Learn
, vol.78
, Issue.3
, pp. 287-304
-
-
Long, P.1
Servedio, R.2
-
47
-
-
84870900608
-
A soft computing system using intelligent imputation strategies for roughness prediction in deep drilling
-
10.1007/s10845-010-0478-0
-
G Maciej A Bustillo P Zawistowski 2010 A soft computing system using intelligent imputation strategies for roughness prediction in deep drilling J Intell Manuf 10.1007/s10845-010-0478-0
-
(2010)
J Intell Manuf
-
-
MacIej, G.1
Bustillo, A.2
Zawistowski, P.3
|