메뉴 건너뛰기




Volumn 57, Issue 5-8, 2011, Pages 521-532

Avoiding neural network fine tuning by using ensemble learning: Application to ball-end milling operations

Author keywords

Ball end mill; Cutting parameters; Data mining; Ensemble learning; Surface roughness

Indexed keywords

AEROSPACE AND AUTOMOTIVE INDUSTRIES; AISI H13; ARTIFICIAL NEURAL NETWORK APPROACH; BALL END MILLING; BALL-END MILL; CUTTING CONDITIONS; CUTTING PARAMETERS; DATA SETS; DYNAMIC FACTORS; ENSEMBLE LEARNING; FINE TUNING; FINISHING OPERATION; HIGH SPEED MILLING; INDUSTRIAL PROBLEM; MOULDS AND DIES; NEURAL NETWORK PARAMETERS; PREDICTION MODEL; QUENCHED STEEL; TIME-CONSUMING TASKS;

EID: 83555163643     PISSN: 02683768     EISSN: 14333015     Source Type: Journal    
DOI: 10.1007/s00170-011-3300-z     Document Type: Article
Times cited : (36)

References (47)
  • 1
    • 0038298770 scopus 로고    scopus 로고
    • Predicting surface roughness in machining: A review
    • 10.1016/S0890-6955(03)00059-2
    • PG Benardos GC Vosniakos 2003 Predicting surface roughness in machining: a review Int J Mach Tools Manuf 43 8 833 844 10.1016/S0890-6955(03)00059-2
    • (2003) Int J Mach Tools Manuf , vol.43 , Issue.8 , pp. 833-844
    • Benardos, P.G.1    Vosniakos, G.C.2
  • 2
    • 74249115778 scopus 로고    scopus 로고
    • Application of soft computing techniques in machining performance prediction and optimization: A literature review
    • 10.1007/s00170-009-2104-x
    • M Chandrasekaran M Muralidhar C Krishna U Dixit 2010 Application of soft computing techniques in machining performance prediction and optimization: a literature review Int J Adv Manuf Technol 46 5 445 464 10.1007/s00170-009-2104-x
    • (2010) Int J Adv Manuf Technol , vol.46 , Issue.5 , pp. 445-464
    • Chandrasekaran, M.1    Muralidhar, M.2    Krishna, C.3    Dixit, U.4
  • 5
    • 84926330861 scopus 로고
    • An analysis of the milling process
    • ME Martellotti 1941 An analysis of the milling process Trans ASME 63 667 700
    • (1941) Trans ASME , vol.63 , pp. 667-700
    • Martellotti, M.E.1
  • 7
    • 77953638896 scopus 로고    scopus 로고
    • Surface roughness generation and material removal rate in ball end milling operations
    • 10.1080/15394450902996601
    • G Quintana J de Ciurana J Ribatallada 2010 Surface roughness generation and material removal rate in ball end milling operations Mater Manuf Process 25 6 386 398 10.1080/15394450902996601
    • (2010) Mater Manuf Process , vol.25 , Issue.6 , pp. 386-398
    • Quintana, G.1    De Ciurana, J.2    Ribatallada, J.3
  • 8
    • 0035803629 scopus 로고    scopus 로고
    • Surface roughness prediction based on cutting parameters and tool vibrations in turning operations
    • DOI 10.1016/S0924-0136(01)00959-1, PII S0924013601009591
    • OB Abouelatta J Mádl 2001 Surface roughness prediction based on cutting parameters and tool vibrations in turning operations J Mater Process Technol 118 1-3 269 277 10.1016/S0924-0136(01)00959-1 (Pubitemid 33147998)
    • (2001) Journal of Materials Processing Technology , vol.118 , Issue.1-3 , pp. 269-277
    • Abouelatta, O.B.1    Madl, J.2
  • 9
    • 0037144746 scopus 로고    scopus 로고
    • Study of tool life, surface roughness and vibration in machining nodular cast iron with ceramic tool
    • 10.1016/S0924-0136(02)00092-4
    • AK Ghani IA Choudhury Husni 2002 Study of tool life, surface roughness and vibration in machining nodular cast iron with ceramic tool J Mater Process Technol 127 1 17 22 10.1016/S0924-0136(02)00092-4
    • (2002) J Mater Process Technol , vol.127 , Issue.1 , pp. 17-22
    • Ghani, A.K.1    Choudhury, I.A.2    Husni3
  • 11
    • 46249124721 scopus 로고    scopus 로고
    • Estimation of cutting forces and surface roughness for hard turning using neural networks
    • 10.1007/s10845-008-0097-1
    • V Sharma S Dhiman R Sehgal S Sharma 2008 Estimation of cutting forces and surface roughness for hard turning using neural networks J Intell Manuf 19 4 473 483 10.1007/s10845-008-0097-1
    • (2008) J Intell Manuf , vol.19 , Issue.4 , pp. 473-483
    • Sharma, V.1    Dhiman, S.2    Sehgal, R.3    Sharma, S.4
  • 12
    • 43949110585 scopus 로고    scopus 로고
    • Artificial neural network models for the prediction of surface roughness in electrical discharge machining
    • 10.1007/s10845-008-0081-9
    • AP Markopoulos DE Manolakos NM Vaxevanidis 2008 Artificial neural network models for the prediction of surface roughness in electrical discharge machining J Intell Manuf 19 3 283 292 10.1007/s10845-008-0081-9
    • (2008) J Intell Manuf , vol.19 , Issue.3 , pp. 283-292
    • Markopoulos, A.P.1    Manolakos, D.E.2    Vaxevanidis, N.M.3
  • 13
    • 61449183703 scopus 로고    scopus 로고
    • Neural network modeling and particle swarm optimization (PSO) of process parameters in pulsed laser micromachining of hardened AISI H13 steel
    • 10.1080/10426910802679568
    • J Ciurana G Arias T Ozel 2009 Neural network modeling and particle swarm optimization (PSO) of process parameters in pulsed laser micromachining of hardened AISI H13 steel Mater Manuf Process 24 3 358 368 10.1080/ 10426910802679568
    • (2009) Mater Manuf Process , vol.24 , Issue.3 , pp. 358-368
    • Ciurana, J.1    Arias, G.2    Ozel, T.3
  • 14
    • 80053459850 scopus 로고    scopus 로고
    • Surface roughness monitoring application based on artificial neural networks for ball-end milling operations
    • 10.1007/s10845-009-0323-5
    • G.Quintana, M.Garcia-Romeu, J.Ciurana. 2009 Surface roughness monitoring application based on artificial neural networks for ball-end milling operations. Journal of Intelligent Manufacturing, 22(4), pp. 607-617.10.1007/s10845-009-0323-5
    • (2009) Journal of Intelligent Manufacturing , vol.22 , Issue.4 , pp. 607-617
    • Quintana, G.1    Garcia-Romeu, M.2    Ciurana, J.3
  • 15
    • 0141959043 scopus 로고    scopus 로고
    • An adaptive-network based fuzzy inference system for prediction of workpiece surface roughness in end milling
    • 10.1016/S0924-0136(03)00687-3
    • SP Lo 2003 An adaptive-network based fuzzy inference system for prediction of workpiece surface roughness in end milling J Mater Process Technol 142 3 665 675 10.1016/S0924-0136(03)00687-3
    • (2003) J Mater Process Technol , vol.142 , Issue.3 , pp. 665-675
    • Lo, S.P.1
  • 16
    • 56349089474 scopus 로고    scopus 로고
    • Adaptive network-based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchi-genetic learning algorithm
    • 10.1016/j.eswa.2008.01.051
    • WH Ho JT Tsai BT Lin JH Chou 2009 Adaptive network-based fuzzy inference system for prediction of surface roughness in end milling process using hybrid Taguchi-genetic learning algorithm Expert Syst Appl 36 2 3216 3222 10.1016/j.eswa.2008.01.051
    • (2009) Expert Syst Appl , vol.36 , Issue.2 , pp. 3216-3222
    • Ho, W.H.1    Tsai, J.T.2    Lin, B.T.3    Chou, J.H.4
  • 17
    • 0034808424 scopus 로고    scopus 로고
    • A fuzzy-net-based multilevel in-process surface roughness recognition system in milling operations
    • DOI 10.1007/s001700170132
    • JC Chen M Savage 2001 A fuzzy-net-based multilevel in-process surface roughness recognition system in milling operations Int J Adv Manuf Technol 17 9 670 676 10.1007/s001700170132 (Pubitemid 32914763)
    • (2001) International Journal of Advanced Manufacturing Technology , vol.17 , Issue.9 , pp. 670-676
    • Chen, J.C.1    Savage, M.2
  • 18
    • 33751429157 scopus 로고    scopus 로고
    • A fuzzy expert system for optimizing parameters and predicting performance measures in hard-milling process
    • DOI 10.1016/j.eswa.2006.02.003, PII S0957417406000790
    • A Iqbal N He L Li NU Dar 2007 A fuzzy expert system for optimizing parameters and predicting performance measures in hard-milling process Expert Syst Appl 32 4 1020 1027 10.1016/j.eswa.2006.02.003 (Pubitemid 44821792)
    • (2007) Expert Systems with Applications , vol.32 , Issue.4 , pp. 1020-1027
    • Iqbal, A.1    He, N.2    Li, L.3    Dar, N.U.4
  • 19
    • 56149083827 scopus 로고    scopus 로고
    • Prediction of workpiece surface roughness using soft computing
    • 10.1243/09544054JEM1035
    • B Samanta W Erevelles Y Omurtag 2008 Prediction of workpiece surface roughness using soft computing Proc Inst Mech Eng B J Eng Manuf 222 10 1221 1232 10.1243/09544054JEM1035
    • (2008) Proc Inst Mech Eng B J Eng Manuf , vol.222 , Issue.10 , pp. 1221-1232
    • Samanta, B.1    Erevelles, W.2    Omurtag, Y.3
  • 20
    • 55749096392 scopus 로고    scopus 로고
    • A Bayesian network model for surface roughness prediction in the machining process
    • 05527575 10.1080/00207720802344683
    • M Correa C Bielza M de J. Ramirez JR Alique 2008 A Bayesian network model for surface roughness prediction in the machining process Int J Syst Sci 39 12 1181 1192 05527575 10.1080/00207720802344683
    • (2008) Int J Syst Sci , vol.39 , Issue.12 , pp. 1181-1192
    • Correa, M.1    Bielza, C.2    De, J.3    Ramirez, M.4    Alique, J.R.5
  • 21
    • 58349093492 scopus 로고    scopus 로고
    • Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process
    • 10.1016/j.eswa.2008.09.024
    • M Correa C Bielza J Pamies-Teixeira 2009 Comparison of Bayesian networks and artificial neural networks for quality detection in a machining process Expert Syst Appl 36 3 7270 7279 10.1016/j.eswa.2008.09.024
    • (2009) Expert Syst Appl , vol.36 , Issue.3 , pp. 7270-7279
    • Correa, M.1    Bielza, C.2    Pamies-Teixeira, J.3
  • 22
    • 0043156348 scopus 로고    scopus 로고
    • Integrated genetic programming and genetic algorithm approach to predict surface roughness
    • 10.1081/AMP-120022023
    • M Brezocnik M Kovacic 2003 Integrated genetic programming and genetic algorithm approach to predict surface roughness Mater Manuf Process 18 3 475 491 10.1081/AMP-120022023
    • (2003) Mater Manuf Process , vol.18 , Issue.3 , pp. 475-491
    • Brezocnik, M.1    Kovacic, M.2
  • 23
    • 10444269430 scopus 로고    scopus 로고
    • Prediction of surface roughness with genetic programming
    • 10.1016/j.jmatprotec.2004.09.004
    • M Brezocnik M Kovacic M Ficko 2004 Prediction of surface roughness with genetic programming J Mater Process Technol 157-158 28 36 10.1016/j.jmatprotec. 2004.09.004
    • (2004) J Mater Process Technol , vol.157-158 , pp. 28-36
    • Brezocnik, M.1    Kovacic, M.2    Ficko, M.3
  • 24
    • 61849100434 scopus 로고    scopus 로고
    • Optimal cutting condition determination for desired surface roughness in end milling
    • 10.1007/s00170-008-1491-8
    • C Prakasvudhisarn S Kunnapapdeelert P Yenradee 2009 Optimal cutting condition determination for desired surface roughness in end milling Int J Adv Manuf Technol 41 5 440 451 10.1007/s00170-008-1491-8
    • (2009) Int J Adv Manuf Technol , vol.41 , Issue.5 , pp. 440-451
    • Prakasvudhisarn, C.1    Kunnapapdeelert, S.2    Yenradee, P.3
  • 26
    • 35348915328 scopus 로고    scopus 로고
    • Classifier ensembles: Select real-world applications
    • DOI 10.1016/j.inffus.2007.07.002, PII S1566253507000620, Applications of Ensemble Methods
    • N Oza K Tumer 2008 Classifier ensembles: select real-world applications Information Fusion 9 1 4 20 10.1016/j.inffus.2007.07.002 (Pubitemid 47589064)
    • (2008) Information Fusion , vol.9 , Issue.1 , pp. 4-20
    • Oza, N.C.1    Tumer, K.2
  • 27
    • 14644422971 scopus 로고    scopus 로고
    • 978-471210788 Wiley-Interscience New York. 1066.68114 10.1002/0471660264 ISBN-10: 0471210781; ISBN-13: 978-0471210788
    • Kuncheva LI (2004) Combining pattern classifiers: methods and algorithms. Wiley-Interscience, New York. ISBN-10: 0471210781; ISBN-13: 978-0471210788
    • (2004) Combining Pattern Classifiers: Methods and Algorithms
    • Kuncheva, L.I.1
  • 28
    • 80053403826 scopus 로고    scopus 로고
    • Ensemble methods in machine learning
    • Multiple classifier systems J. Kittler F. Roli (eds). Springer New York. 10.1007/3-540-45014-9-1
    • Dietterich TG (2000) Ensemble methods in machine learning. In: Kittler J, Roli F (ed) Multiple classifier systems. Lecture notes in computer science, vol 1857. Springer, New York pp 1-15
    • (2000) Lecture Notes in Computer Science , vol.1857 , pp. 1-15
    • Dietterich, T.G.1
  • 29
    • 74249109730 scopus 로고    scopus 로고
    • Design of multisensor fusion-based tool condition monitoring system in end milling
    • 10.1007/s00170-009-2110-z
    • S Cho S Binsaeid S Asfour 2010 Design of multisensor fusion-based tool condition monitoring system in end milling Int J Adv Manuf Technol 46 5 681 694 10.1007/s00170-009-2110-z
    • (2010) Int J Adv Manuf Technol , vol.46 , Issue.5 , pp. 681-694
    • Cho, S.1    Binsaeid, S.2    Asfour, S.3
  • 30
    • 67349144405 scopus 로고    scopus 로고
    • Machine ensemble approach for simultaneous detection of transient and gradual abnormalities in end milling using multisensor fusion
    • 10.1016/j.jmatprotec.2008.11.038
    • S Binsaeid S Asfour S Cho A Onar 2009 Machine ensemble approach for simultaneous detection of transient and gradual abnormalities in end milling using multisensor fusion J Mater Process Technol 209 10 4728 4738 10.1016/j.jmatprotec.2008.11.038
    • (2009) J Mater Process Technol , vol.209 , Issue.10 , pp. 4728-4738
    • Binsaeid, S.1    Asfour, S.2    Cho, S.3    Onar, A.4
  • 31
    • 79960830796 scopus 로고    scopus 로고
    • Modelling of process parameters in laser polishing of steel components using ensembles of regression trees
    • in press
    • Bustillo A, Ukar E, Rodriguez JJ, Lamikiz A (2011) Modelling of process parameters in laser polishing of steel components using ensembles of regression trees. Int J Comput Integr Manuf (in press)
    • (2011) Int J Comput Integr Manuf
    • Bustillo, A.1    Ukar, E.2    Rodriguez, J.J.3    Lamikiz, A.4
  • 32
    • 0032645080 scopus 로고    scopus 로고
    • An empirical comparison of voting classification algorithms: Bagging, boosting, and variants
    • 10.1023/A:1007515423169
    • E Bauer R Kohavi 1999 An empirical comparison of voting classification algorithms: bagging, boosting, and variants Mach Learn 36 105 139 10.1023/A:1007515423169
    • (1999) Mach Learn , vol.36 , pp. 105-139
    • Bauer, E.1    Kohavi, R.2
  • 33
    • 0034247206 scopus 로고    scopus 로고
    • MultiBoosting: A technique for combining boosting and wagging
    • 10.1023/A:1007659514849
    • GI Webb 2000 MultiBoosting: a technique for combining boosting and wagging Mach Learn 40 2 159 196 10.1023/A:1007659514849
    • (2000) Mach Learn , vol.40 , Issue.2 , pp. 159-196
    • Webb, G.I.1
  • 34
    • 33749682962 scopus 로고    scopus 로고
    • O. Maimon L. Rokach (eds). 2 Springer New York 1213.68237
    • Maimon O, Rokach L (eds) (2010) Data mining and knowledge discovery handbook, 2nd edn. Springer, New York
    • (2010) Data Mining and Knowledge Discovery Handbook
  • 36
    • 12144288329 scopus 로고    scopus 로고
    • Is combining classifiers with stacking better than selecting the best one?
    • 1101.68077 10.1023/B:MACH.0000015881.36452.6e
    • S Dzeroski B Zenko 2004 Is combining classifiers with stacking better than selecting the best one? Mach Learn 54 3 255 273 1101.68077 10.1023/B:MACH.0000015881.36452.6e
    • (2004) Mach Learn , vol.54 , Issue.3 , pp. 255-273
    • Dzeroski, S.1    Zenko, B.2
  • 37
    • 0348151971 scopus 로고    scopus 로고
    • Combining classifiers: Soft computing solutions
    • S.K. Pal (eds). World Scientific Singapore. 10.1142/9789812386533-0015
    • Kuncheva LI (2001) Combining classifiers: soft computing solutions. In: Pal SK (ed) Pattern recognition: from classical to modern approaches. World Scientific, Singapore, pp 427-452
    • (2001) Pattern Recognition: From Classical to Modern Approaches , pp. 427-452
    • Kuncheva, L.I.1
  • 39
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • L Breiman 1996 Bagging predictors Mach Learn 24 2 123 140 1425957 0858.68080 (Pubitemid 126724382)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 42
    • 0031211090 scopus 로고    scopus 로고
    • A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting
    • Y Freund RE Schapire 1997 A decision-theoretic generalization of on-line learning and an application to boosting J Comput Syst Sci 55 1 119 139 1473055 0880.68103 10.1006/jcss.1997.1504 (Pubitemid 127433398)
    • (1997) Journal of Computer and System Sciences , vol.55 , Issue.1 , pp. 119-139
    • Freund, Y.1    Schapire, R.E.2
  • 44
    • 0034250160 scopus 로고    scopus 로고
    • An experimental comparison of three methods for constructing ensembles of decision trees: Bagging, boosting, and randomization
    • 10.1023/A:1007607513941
    • TG Dietterich 2000 An experimental comparison of three methods for constructing ensembles of decision trees: bagging, boosting, and randomization Mach Learn 40 2 139 157 10.1023/A:1007607513941
    • (2000) Mach Learn , vol.40 , Issue.2 , pp. 139-157
    • Dietterich, T.G.1
  • 46
    • 83555170269 scopus 로고    scopus 로고
    • Random classification noise defeats all convex potential boosters
    • 10.1007/s10994-009-5165-z
    • P Long R Servedio 2010 Random classification noise defeats all convex potential boosters Mach Learn 78 3 287 304 10.1007/s10994-009-5165-z
    • (2010) Mach Learn , vol.78 , Issue.3 , pp. 287-304
    • Long, P.1    Servedio, R.2
  • 47
    • 84870900608 scopus 로고    scopus 로고
    • A soft computing system using intelligent imputation strategies for roughness prediction in deep drilling
    • 10.1007/s10845-010-0478-0
    • G Maciej A Bustillo P Zawistowski 2010 A soft computing system using intelligent imputation strategies for roughness prediction in deep drilling J Intell Manuf 10.1007/s10845-010-0478-0
    • (2010) J Intell Manuf
    • MacIej, G.1    Bustillo, A.2    Zawistowski, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.