메뉴 건너뛰기




Volumn 35, Issue 1, 2003, Pages 11-27

Surface roughness predictive modeling: Neural networks versus regression

Author keywords

[No Author keywords available]

Indexed keywords

DATA MINING; METAL CUTTING; NEURAL NETWORKS; PRODUCT DESIGN; REGRESSION ANALYSIS; SURFACE ROUGHNESS;

EID: 0037233403     PISSN: 0740817X     EISSN: None     Source Type: Journal    
DOI: 10.1080/07408170304433     Document Type: Article
Times cited : (97)

References (55)
  • 1
    • 0012596999 scopus 로고    scopus 로고
    • (not dated), Machining Development Service, Publication A-5, General Electric Company, Schenectady, NY
    • Anon (not dated) Surface Finish, Machining Development Service, Publication A-5, General Electric Company, Schenectady, NY.
    • Surface Finish
  • 7
    • 0012551936 scopus 로고    scopus 로고
    • Minitab Inc., State College, PA
    • Anon (2000) Meet MINITAB, Release 13, Minitab Inc., State College, PA.
    • (2000) Meet MINITAB, Release 13
  • 8
    • 0014828732 scopus 로고
    • Regression analysis for predicting surface finish and its application in the determination of optimum machining conditions
    • Bhattacharya, A., Faria-Gonzalez, R. and Ham, I. (1970) Regression analysis for predicting surface finish and its application in the determination of optimum machining conditions. ASME Journal of Engineering for Industry, 4, 711-714.
    • (1970) ASME Journal of Engineering for Industry , vol.4 , pp. 711-714
    • Bhattacharya, A.1    Faria-Gonzalez, R.2    Ham, I.3
  • 12
    • 85010548929 scopus 로고
    • Investigation on the nature of surface finish and its variation with cutting speed
    • Chandiramani, K.L. and Cook, N.H. (1964) Investigation on the nature of surface finish and its variation with cutting speed. Journal of Engineering for Industry, 86 (Series B2), 134-140.
    • (1964) Journal of Engineering for Industry , vol.86 , Issue.SERIES B2 , pp. 134-140
    • Chandiramani, K.L.1    Cook, N.H.2
  • 15
    • 4244080039 scopus 로고    scopus 로고
    • An investigation of tool wear and surface quality in hard turning
    • presented at the SME/NAMRC, Lexington, KY, Society of Manufacturing Engineers, Dearborn, MI
    • Dawson, T.G. and Kurfess, T.R. (2000) An investigation of tool wear and surface quality in hard turning. SME Technical Paper, MR00-204, presented at the SME/NAMRC, Lexington, KY, Society of Manufacturing Engineers, Dearborn, MI.
    • (2000) SME Technical Paper , vol.MR00-204
    • Dawson, T.G.1    Kurfess, T.R.2
  • 19
    • 0000200563 scopus 로고    scopus 로고
    • Sequential experimentation using two-level fractional factorials
    • Emanuel, J.T. and Palanisamy, M. (2000) Sequential experimentation using two-level fractional factorials. Quality Engineering, 13(3), 335-346.
    • (2000) Quality Engineering , vol.13 , Issue.3 , pp. 335-346
    • Emanuel, J.T.1    Palanisamy, M.2
  • 20
    • 0043086775 scopus 로고    scopus 로고
    • An experimental study of the effect of turning parameters on surface roughness in finish turning
    • Paper No. 2036, Institute of Industrial Engineers, Norcross, GA
    • Feng, C.-X. (2001) An experimental study of the effect of turning parameters on surface roughness in finish turning, in Proceedings of the 2001 Industrial Engineering Research Conference, Paper No. 2036, Institute of Industrial Engineers, Norcross, GA.
    • (2001) Proceedings of the 2001 Industrial Engineering Research Conference
    • Feng, C.-X.1
  • 23
    • 0037085106 scopus 로고    scopus 로고
    • Experimental study of the effect of digitizing parameters on digitizing uncertainty with a CMM
    • Feng, C.-X. and Pandey, V. (2002) Experimental study of the effect of digitizing parameters on digitizing uncertainty with a CMM. International Journal of Production Research, 40(3), 683-697.
    • (2002) International Journal of Production Research , vol.40 , Issue.3 , pp. 683-697
    • Feng, C.-X.1    Pandey, V.2
  • 24
    • 0036611175 scopus 로고    scopus 로고
    • Digitizing uncertainty modeling for reverse engineering applications: Regression vs. neural networks
    • Feng, C.-X. and Wang, X.-F. (2002a) Digitizing uncertainty modeling for reverse engineering applications: regression vs. neural networks. Journal of Intelligent Manufacturing, 13(3), 189-199.
    • (2002) Journal of Intelligent Manufacturing , vol.13 , Issue.3 , pp. 189-199
    • Feng, C.-X.1    Wang, X.-F.2
  • 26
    • 0035371268 scopus 로고    scopus 로고
    • An optimization model for concurrent selection of tolerances and suppliers
    • Feng, C.-X., Wang, J., and Wang, J.-S. (2001) An optimization model for concurrent selection of tolerances and suppliers. Computers and Industrial Engineering, 40, 15-33.
    • (2001) Computers and Industrial Engineering , vol.40 , pp. 15-33
    • Feng, C.-X.1    Wang, J.2    Wang, J.-S.3
  • 27
    • 0015052020 scopus 로고
    • Surface finish as a function of tool geometry and feed: A theoretical approach
    • Fischer, H.L. and Elrod, J.T. (1971) Surface finish as a function of tool geometry and feed: a theoretical approach. Microtechnic, 25, 175-178.
    • (1971) Microtechnic , vol.25 , pp. 175-178
    • Fischer, H.L.1    Elrod, J.T.2
  • 31
    • 0017108520 scopus 로고
    • Surface roughness model for turning
    • December
    • Hasegawa, H., Seireg, A. and Lindberg, R.A. (1976) Surface roughness model for turning. Tribology, December, 285-289.
    • (1976) Tribology , pp. 285-289
    • Hasegawa, H.1    Seireg, A.2    Lindberg, R.A.3
  • 34
    • 0030129715 scopus 로고    scopus 로고
    • Study of the correlation between surface roughness and cutting vibrations to develop an on-line roughness measuring technique in hard turning
    • Jang, D.Y., Choi, Y.G., Kim, H.G. and Hsiao, A. (1996) Study of the correlation between surface roughness and cutting vibrations to develop an on-line roughness measuring technique in hard turning. International Journal of Machine Tools and Manufacture, 36(4), 453-464.
    • (1996) International Journal of Machine Tools and Manufacture , vol.36 , Issue.4 , pp. 453-464
    • Jang, D.Y.1    Choi, Y.G.2    Kim, H.G.3    Hsiao, A.4
  • 36
    • 0031362524 scopus 로고    scopus 로고
    • Process monitoring of abrasive flow machining using a neural network predictive model
    • Institute of Industrial Engineers, Norcross, GA
    • Lam, S. and Smith, A.E. (1997) Process monitoring of abrasive flow machining using a neural network predictive model, in Proceedings of the Sixth Industrial Engineering Research Conference, pp. 477-482, Institute of Industrial Engineers, Norcross, GA.
    • (1997) Proceedings of the Sixth Industrial Engineering Research Conference , pp. 477-482
    • Lam, S.1    Smith, A.E.2
  • 37
    • 0020760651 scopus 로고
    • Determination of metal removal rate with surface finish restriction
    • May-June
    • Lambert, B.K. (1983) Determination of metal removal rate with surface finish restriction. Carbide and Tool Journal, May-June, 16-19.
    • (1983) Carbide and Tool Journal , pp. 16-19
    • Lambert, B.K.1
  • 41
    • 0001086093 scopus 로고
    • Surface roughness characteristics for turning 380 and 390 aluminum casting alloys
    • Society of Manufacturing Engineers, Dearborn, MI
    • Miller, J.C., De Vor, R.E. and Southerland, J.W. (1983) Surface roughness characteristics for turning 380 and 390 aluminum casting alloys, in Proceedings of the North American Manufacturing Research Conference, pp. 282-288, Society of Manufacturing Engineers, Dearborn, MI.
    • (1983) Proceedings of the North American Manufacturing Research Conference , pp. 282-288
    • Miller, J.C.1    De Vor, R.E.2    Southerland, J.W.3
  • 43
    • 0016057359 scopus 로고
    • Statistical basis for surface roughness assessment in oblique finish turning of steel components
    • Petropoulos, P.G. (1974) Statistical basis for surface roughness assessment in oblique finish turning of steel components. International Journal of Production Research, 12, 345-360.
    • (1974) International Journal of Production Research , vol.12 , pp. 345-360
    • Petropoulos, P.G.1
  • 44
    • 0015096131 scopus 로고
    • Selection of optimum speeds and feeds in finish turning
    • Rasch, F.O. and Rolstadas, A. (1971) Selection of optimum speeds and feeds in finish turning. Annals of CIRP, 19, 787-792.
    • (1971) Annals of CIRP , vol.19 , pp. 787-792
    • Rasch, F.O.1    Rolstadas, A.2
  • 45
    • 0001707469 scopus 로고
    • Surface finish in metal cutting
    • Sata, T. (1963) Surface finish in metal cutting. C.I.R.P. Annalen, 12(4), 190-197.
    • (1963) C.I.R.P. Annalen , vol.12 , Issue.4 , pp. 190-197
    • Sata, T.1
  • 46
    • 0016453017 scopus 로고
    • Tool vibrations and its influence on surface roughness in turning
    • Selvam, M.S. (1975) Tool vibrations and its influence on surface roughness in turning. Wear, 35, 149-157.
    • (1975) Wear , vol.35 , pp. 149-157
    • Selvam, M.S.1
  • 47
    • 0015557442 scopus 로고
    • Characteristics of a surface machined with a single point tool
    • Selvam, M.S. and Radhakrishnan, V. (1973) Characteristics of a surface machined with a single point tool. Tribology, 6, 93-96.
    • (1973) Tribology , vol.6 , pp. 93-96
    • Selvam, M.S.1    Radhakrishnan, V.2
  • 50
    • 0031336193 scopus 로고    scopus 로고
    • Cost estimation predictive modeling: Regression versus neural network
    • Smith, A.E. and Mason, A.K. (1997) Cost estimation predictive modeling: regression versus neural network. The Engineering Economist, 42(2), 137-161.
    • (1997) The Engineering Economist , vol.42 , Issue.2 , pp. 137-161
    • Smith, A.E.1    Mason, A.K.2
  • 51
    • 0018469537 scopus 로고
    • Surface roughness variability of ANSI 4140 steel in fine turning using carbide tools
    • Sundaram, R.M. and Lambert, B.K. (1979) Surface roughness variability of ANSI 4140 steel in fine turning using carbide tools. International Journal of Production Research, 17(3), 249-258.
    • (1979) International Journal of Production Research , vol.17 , Issue.3 , pp. 249-258
    • Sundaram, R.M.1    Lambert, B.K.2
  • 52
    • 84952499448 scopus 로고
    • Mathematical models to predict surface finish in fine turning of steel, part I
    • Sundaram, R.M. and Lambert, B.K. (1981a) Mathematical models to predict surface finish in fine turning of steel, part I. International Journal of Production Research, 19, 547-556.
    • (1981) International Journal of Production Research , vol.19 , pp. 547-556
    • Sundaram, R.M.1    Lambert, B.K.2
  • 53
    • 84952508853 scopus 로고
    • Mathematical models to predict surface finish in fine turning of steel, part II
    • Sundaram, R.M. and Lambert, B.K. (1981b) Mathematical models to predict surface finish in fine turning of steel, part II. International Journal of Production Research, 19, 557-564.
    • (1981) International Journal of Production Research , vol.19 , pp. 557-564
    • Sundaram, R.M.1    Lambert, B.K.2
  • 54
    • 0032140934 scopus 로고    scopus 로고
    • Bias and variance of validation methods for function approximation neural networks under conditions of sparse data
    • Twomey, J.M. and Smith, A.E. (1998) Bias and variance of validation methods for function approximation neural networks under conditions of sparse data. IEEE Transactions on Systems, Man, and Cybernetics, Part C, 28(3), 417-430.
    • (1998) IEEE Transactions on Systems, Man, and Cybernetics, Part C , vol.28 , Issue.3 , pp. 417-430
    • Twomey, J.M.1    Smith, A.E.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.