메뉴 건너뛰기




Volumn 9, Issue 10, 2013, Pages

A Reversible Histone H3 Acetylation Cooperates with Mismatch Repair and Replicative Polymerases in Maintaining Genome Stability

Author keywords

[No Author keywords available]

Indexed keywords

DNA DIRECTED DNA POLYMERASE DELTA; DNA DIRECTED DNA POLYMERASE EPSILON; DNA POLYMERASE; HISTONE H3; CHROMATIN; DNA DIRECTED DNA POLYMERASE; HISTONE; HISTONE DEACETYLASE; HST3 PROTEIN, S CEREVISIAE; HST4 PROTEIN, S CEREVISIAE; SACCHAROMYCES CEREVISIAE PROTEIN;

EID: 84887284221     PISSN: 15537390     EISSN: 15537404     Source Type: Journal    
DOI: 10.1371/journal.pgen.1003899     Document Type: Article
Times cited : (45)

References (106)
  • 1
    • 2342419732 scopus 로고    scopus 로고
    • DNA replication fidelity
    • Kunkel TA, (2004) DNA replication fidelity. J Biol Chem 279: 16895-16898.
    • (2004) J Biol Chem , vol.279 , pp. 16895-16898
    • Kunkel, T.A.1
  • 3
    • 0032109778 scopus 로고    scopus 로고
    • Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair
    • Chen C, Umezu K, Kolodner RD, (1998) Chromosomal rearrangements occur in S. cerevisiae rfa1 mutator mutants due to mutagenic lesions processed by double-strand-break repair. Mol Cell 2: 9-22.
    • (1998) Mol Cell , vol.2 , pp. 9-22
    • Chen, C.1    Umezu, K.2    Kolodner, R.D.3
  • 4
    • 0032860479 scopus 로고    scopus 로고
    • Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants
    • Chen C, Kolodner RD, (1999) Gross chromosomal rearrangements in Saccharomyces cerevisiae replication and recombination defective mutants. Nat Genet 23: 81-85.
    • (1999) Nat Genet , vol.23 , pp. 81-85
    • Chen, C.1    Kolodner, R.D.2
  • 5
    • 0034503096 scopus 로고    scopus 로고
    • DNA polymerase zeta introduces multiple mutations when bypassing spontaneous DNA damage in Saccharomyces cerevisiae
    • Harfe BD, Jinks-Robertson S, (2000) DNA polymerase zeta introduces multiple mutations when bypassing spontaneous DNA damage in Saccharomyces cerevisiae. Mol Cell 6: 1491-1499.
    • (2000) Mol Cell , vol.6 , pp. 1491-1499
    • Harfe, B.D.1    Jinks-Robertson, S.2
  • 7
    • 0025886466 scopus 로고
    • A constant rate of spontaneous mutation in DNA-based microbes
    • Drake JW, (1991) A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci USA 88: 7160-7164.
    • (1991) Proc Natl Acad Sci USA , vol.88 , pp. 7160-7164
    • Drake, J.W.1
  • 8
    • 0026298735 scopus 로고
    • Chemical, molecular biology, and genetic techniques for correlating DNA base damage induced by ionizing radiation with biological end points
    • Geacintov NE, Swenberg CE, (1991) Chemical, molecular biology, and genetic techniques for correlating DNA base damage induced by ionizing radiation with biological end points. Basic Life Sci 58: 453-473 discussion 473-454.
    • (1991) Basic Life Sci , vol.58 , pp. 453-473
    • Geacintov, N.E.1    Swenberg, C.E.2
  • 9
    • 0037178722 scopus 로고    scopus 로고
    • Maintenance of genome stability in Saccharomyces cerevisiae
    • Kolodner RD, Putnam CD, Myung K, (2002) Maintenance of genome stability in Saccharomyces cerevisiae. Science 297: 552-557.
    • (2002) Science , vol.297 , pp. 552-557
    • Kolodner, R.D.1    Putnam, C.D.2    Myung, K.3
  • 10
    • 84870218426 scopus 로고    scopus 로고
    • Mutations arising during repair of chromosome breaks
    • Malkova A, Haber JE, (2012) Mutations arising during repair of chromosome breaks. Annu Rev Genet 46: 455-473.
    • (2012) Annu Rev Genet , vol.46 , pp. 455-473
    • Malkova, A.1    Haber, J.E.2
  • 11
    • 84876398399 scopus 로고    scopus 로고
    • DNA Repair Mechanisms and the Bypass of DNA Damage in Saccharomyces cerevisiae
    • Boiteux S, Jinks-Robertson S, (2013) DNA Repair Mechanisms and the Bypass of DNA Damage in Saccharomyces cerevisiae. Genetics 193: 1025-1064.
    • (2013) Genetics , vol.193 , pp. 1025-1064
    • Boiteux, S.1    Jinks-Robertson, S.2
  • 12
    • 50649100744 scopus 로고    scopus 로고
    • Mechanism of eukaryotic homologous recombination
    • San Filippo J, Sung P, Klein H, (2008) Mechanism of eukaryotic homologous recombination. Annu Rev Biochem 77: 229-257.
    • (2008) Annu Rev Biochem , vol.77 , pp. 229-257
    • San Filippo, J.1    Sung, P.2    Klein, H.3
  • 13
    • 34447336941 scopus 로고    scopus 로고
    • Yeast DNA polymerase epsilon participates in leading-strand DNA replication
    • Pursell ZF, Isoz I, Lundstrom EB, Johansson E, Kunkel TA, (2007) Yeast DNA polymerase epsilon participates in leading-strand DNA replication. Science 317: 127-130.
    • (2007) Science , vol.317 , pp. 127-130
    • Pursell, Z.F.1    Isoz, I.2    Lundstrom, E.B.3    Johansson, E.4    Kunkel, T.A.5
  • 16
    • 0034500024 scopus 로고    scopus 로고
    • DNA Mismatch Repair and Genetic Instability
    • Harfe BD, Jinks-Robertson S, (2000) DNA Mismatch Repair and Genetic Instability. Annu Rev Genet 34: 359-399.
    • (2000) Annu Rev Genet , vol.34 , pp. 359-399
    • Harfe, B.D.1    Jinks-Robertson, S.2
  • 17
    • 5644277503 scopus 로고    scopus 로고
    • Mismatch repair proteins: key regulators of genetic recombination
    • Surtees JA, Argueso JL, Alani E, (2004) Mismatch repair proteins: key regulators of genetic recombination. Cytogenet Genome Res 107: 146-159.
    • (2004) Cytogenet Genome Res , vol.107 , pp. 146-159
    • Surtees, J.A.1    Argueso, J.L.2    Alani, E.3
  • 19
    • 33750083332 scopus 로고    scopus 로고
    • Mechanisms in eukaryotic mismatch repair
    • Modrich P, (2006) Mechanisms in eukaryotic mismatch repair. J Biol Chem 281: 30305-30309.
    • (2006) J Biol Chem , vol.281 , pp. 30305-30309
    • Modrich, P.1
  • 20
    • 38049125557 scopus 로고    scopus 로고
    • Mechanisms and functions of DNA mismatch repair
    • Li GM, (2008) Mechanisms and functions of DNA mismatch repair. Cell Res 18: 85-98.
    • (2008) Cell Res , vol.18 , pp. 85-98
    • Li, G.M.1
  • 21
    • 84860510016 scopus 로고    scopus 로고
    • Mammalian mismatch repair: error-free or error-prone?
    • Pena-Diaz J, Jiricny J, (2012) Mammalian mismatch repair: error-free or error-prone? Trends Biochem Sci 37: 206-214.
    • (2012) Trends Biochem Sci , vol.37 , pp. 206-214
    • Pena-Diaz, J.1    Jiricny, J.2
  • 22
    • 33746189409 scopus 로고    scopus 로고
    • Endonucleolytic function of MutLalpha in human mismatch repair
    • Kadyrov FA, Dzantiev L, Constantin N, Modrich P, (2006) Endonucleolytic function of MutLalpha in human mismatch repair. Cell 126: 297-308.
    • (2006) Cell , vol.126 , pp. 297-308
    • Kadyrov, F.A.1    Dzantiev, L.2    Constantin, N.3    Modrich, P.4
  • 24
    • 77957979862 scopus 로고    scopus 로고
    • PCNA function in the activation and strand direction of MutLalpha endonuclease in mismatch repair
    • Pluciennik A, Dzantiev L, Iyer RR, Constantin N, Kadyrov FA, et al. (2010) PCNA function in the activation and strand direction of MutLalpha endonuclease in mismatch repair. Proc Natl Acad Sci US A 107: 16066-16071.
    • (2010) Proc Natl Acad Sci US A , vol.107 , pp. 16066-16071
    • Pluciennik, A.1    Dzantiev, L.2    Iyer, R.R.3    Constantin, N.4    Kadyrov, F.A.5
  • 25
    • 77951245006 scopus 로고    scopus 로고
    • MutLalpha and proliferating cell nuclear antigen share binding sites on MutSbeta
    • Iyer RR, Pluciennik A, Genschel J, Tsai MS, Beese LS, et al. (2010) MutLalpha and proliferating cell nuclear antigen share binding sites on MutSbeta. J Biol Chem 285: 11730-11739.
    • (2010) J Biol Chem , vol.285 , pp. 11730-11739
    • Iyer, R.R.1    Pluciennik, A.2    Genschel, J.3    Tsai, M.S.4    Beese, L.S.5
  • 26
    • 28844503379 scopus 로고    scopus 로고
    • Human mismatch repair: Reconstitution of a nick-directed bidirectional reaction
    • Constantin N, Dzantiev L, Kadyrov FA, Modrich P, (2005) Human mismatch repair: Reconstitution of a nick-directed bidirectional reaction. J Biol Chem 280: 39752-39761.
    • (2005) J Biol Chem , vol.280 , pp. 39752-39761
    • Constantin, N.1    Dzantiev, L.2    Kadyrov, F.A.3    Modrich, P.4
  • 27
    • 66649124883 scopus 로고    scopus 로고
    • A possible mechanism for exonuclease 1-independent eukaryotic mismatch repair
    • Kadyrov FA, Genschel J, Fang Y, Penland E, Edelmann W, et al. (2009) A possible mechanism for exonuclease 1-independent eukaryotic mismatch repair. Proc Natl Acad Sci USA 106: 8495-8500.
    • (2009) Proc Natl Acad Sci USA , vol.106 , pp. 8495-8500
    • Kadyrov, F.A.1    Genschel, J.2    Fang, Y.3    Penland, E.4    Edelmann, W.5
  • 28
    • 0027306173 scopus 로고
    • Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair
    • Strand M, Prolla TA, Liskay RM, Petes TD, (1993) Destabilization of tracts of simple repetitive DNA in yeast by mutations affecting DNA mismatch repair. Nature 365: 274-276.
    • (1993) Nature , vol.365 , pp. 274-276
    • Strand, M.1    Prolla, T.A.2    Liskay, R.M.3    Petes, T.D.4
  • 29
    • 0027417017 scopus 로고
    • Pathway correcting DNA replication errors in Saccharomyces cerevisiae
    • Morrison A, Johnson AL, Johnston LH, Sugino A, (1993) Pathway correcting DNA replication errors in Saccharomyces cerevisiae. EMBO J 12: 1467-1473.
    • (1993) EMBO J , vol.12 , pp. 1467-1473
    • Morrison, A.1    Johnson, A.L.2    Johnston, L.H.3    Sugino, A.4
  • 30
    • 0027137935 scopus 로고
    • Hypermutability and mismatch repair deficiency in RER+ tumor cells
    • Parsons R, Li GM, Longley MJ, Fang WH, Papadopoulos N, et al. (1993) Hypermutability and mismatch repair deficiency in RER+ tumor cells. Cell 75: 1227-1236.
    • (1993) Cell , vol.75 , pp. 1227-1236
    • Parsons, R.1    Li, G.M.2    Longley, M.J.3    Fang, W.H.4    Papadopoulos, N.5
  • 31
    • 70350126567 scopus 로고    scopus 로고
    • DNA polymerase epsilon and delta proofreading suppress discrete mutator and cancer phenotypes in mice
    • Albertson TM, Ogawa M, Bugni JM, Hays LE, Chen Y, et al. (2009) DNA polymerase epsilon and delta proofreading suppress discrete mutator and cancer phenotypes in mice. Proc Natl Acad Sci U S A 106: 17101-17104.
    • (2009) Proc Natl Acad Sci U S A , vol.106 , pp. 17101-17104
    • Albertson, T.M.1    Ogawa, M.2    Bugni, J.M.3    Hays, L.E.4    Chen, Y.5
  • 32
    • 33847076248 scopus 로고    scopus 로고
    • Chromatin challenges during DNA replication and repair
    • Groth A, Rocha W, Verreault A, Almouzni G, (2007) Chromatin challenges during DNA replication and repair. Cell 128: 721-733.
    • (2007) Cell , vol.128 , pp. 721-733
    • Groth, A.1    Rocha, W.2    Verreault, A.3    Almouzni, G.4
  • 33
    • 74549138158 scopus 로고    scopus 로고
    • Chaperoning histones during DNA replication and repair
    • Ransom M, Dennehey BK, Tyler JK, (2010) Chaperoning histones during DNA replication and repair. Cell 140: 183-195.
    • (2010) Cell , vol.140 , pp. 183-195
    • Ransom, M.1    Dennehey, B.K.2    Tyler, J.K.3
  • 34
    • 18844413266 scopus 로고    scopus 로고
    • Acetylation in histone H3 globular domain regulates gene expression in yeast
    • Xu F, Zhang K, Grunstein M, (2005) Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell 121: 375-385.
    • (2005) Cell , vol.121 , pp. 375-385
    • Xu, F.1    Zhang, K.2    Grunstein, M.3
  • 35
    • 22444448143 scopus 로고    scopus 로고
    • A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response
    • Masumoto H, Hawke D, Kobayashi R, Verreault A, (2005) A role for cell-cycle-regulated histone H3 lysine 56 acetylation in the DNA damage response. Nature 436: 294-298.
    • (2005) Nature , vol.436 , pp. 294-298
    • Masumoto, H.1    Hawke, D.2    Kobayashi, R.3    Verreault, A.4
  • 36
    • 33745520486 scopus 로고    scopus 로고
    • The sirtuins Hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation
    • Celic I, Masumoto H, Griffith WP, Meluh P, Cotter RJ, et al. (2006) The sirtuins Hst3 and Hst4p preserve genome integrity by controlling histone h3 lysine 56 deacetylation. Curr Biol 16: 1280-1289.
    • (2006) Curr Biol , vol.16 , pp. 1280-1289
    • Celic, I.1    Masumoto, H.2    Griffith, W.P.3    Meluh, P.4    Cotter, R.J.5
  • 37
    • 33846023720 scopus 로고    scopus 로고
    • Rtt109 is required for proper H3K56 acetylation: a chromatin mark associated with the elongating RNA polymerase II
    • Schneider J, Bajwa P, Johnson FC, Bhaumik SR, Shilatifard A, (2006) Rtt109 is required for proper H3K56 acetylation: a chromatin mark associated with the elongating RNA polymerase II. J Biol Chem 281: 37270-37274.
    • (2006) J Biol Chem , vol.281 , pp. 37270-37274
    • Schneider, J.1    Bajwa, P.2    Johnson, F.C.3    Bhaumik, S.R.4    Shilatifard, A.5
  • 38
    • 33846796258 scopus 로고    scopus 로고
    • Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication
    • Han J, Zhou H, Horazdovsky B, Zhang K, Xu RM, et al. (2007) Rtt109 acetylates histone H3 lysine 56 and functions in DNA replication. Science 315: 653-655.
    • (2007) Science , vol.315 , pp. 653-655
    • Han, J.1    Zhou, H.2    Horazdovsky, B.3    Zhang, K.4    Xu, R.M.5
  • 39
    • 33846818840 scopus 로고    scopus 로고
    • Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56
    • Driscoll R, Hudson A, Jackson SP, (2007) Yeast Rtt109 promotes genome stability by acetylating histone H3 on lysine 56. Science 315: 649-652.
    • (2007) Science , vol.315 , pp. 649-652
    • Driscoll, R.1    Hudson, A.2    Jackson, S.P.3
  • 40
    • 33847412826 scopus 로고    scopus 로고
    • Histone H3-K56 acetylation is catalyzed by histone chaperone-dependent complexes
    • Tsubota T, Berndsen CE, Erkmann JA, Smith CL, Yang L, et al. (2007) Histone H3-K56 acetylation is catalyzed by histone chaperone-dependent complexes. Mol Cell 25: 703-712.
    • (2007) Mol Cell , vol.25 , pp. 703-712
    • Tsubota, T.1    Berndsen, C.E.2    Erkmann, J.A.3    Smith, C.L.4    Yang, L.5
  • 41
    • 47549105301 scopus 로고    scopus 로고
    • Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair
    • Chen CC, Carson JJ, Feser J, Tamburini B, Zabaronick S, et al. (2008) Acetylated lysine 56 on histone H3 drives chromatin assembly after repair and signals for the completion of repair. Cell 134: 231-243.
    • (2008) Cell , vol.134 , pp. 231-243
    • Chen, C.C.1    Carson, J.J.2    Feser, J.3    Tamburini, B.4    Zabaronick, S.5
  • 42
    • 27644467857 scopus 로고    scopus 로고
    • Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae
    • Hyland EM, Cosgrove MS, Molina H, Wang D, Pandey A, et al. (2005) Insights into the role of histone H3 and histone H4 core modifiable residues in Saccharomyces cerevisiae. Mol Cell Biol 25: 10060-10070.
    • (2005) Mol Cell Biol , vol.25 , pp. 10060-10070
    • Hyland, E.M.1    Cosgrove, M.S.2    Molina, H.3    Wang, D.4    Pandey, A.5
  • 43
    • 22344434704 scopus 로고    scopus 로고
    • Histone deposition protein Asf1 maintains DNA replisome integrity and interacts with replication factor C
    • Franco AA, Lam WM, Burgers PM, Kaufman PD, (2005) Histone deposition protein Asf1 maintains DNA replisome integrity and interacts with replication factor C. Genes Dev 19: 1365-1375.
    • (2005) Genes Dev , vol.19 , pp. 1365-1375
    • Franco, A.A.1    Lam, W.M.2    Burgers, P.M.3    Kaufman, P.D.4
  • 44
    • 66749102871 scopus 로고    scopus 로고
    • Histone H3-K56 acetylation is important for genomic stability in mammals
    • Yuan J, Pu M, Zhang Z, Lou Z, (2009) Histone H3-K56 acetylation is important for genomic stability in mammals. Cell Cycle 8: 1747-1753.
    • (2009) Cell Cycle , vol.8 , pp. 1747-1753
    • Yuan, J.1    Pu, M.2    Zhang, Z.3    Lou, Z.4
  • 45
    • 67650409769 scopus 로고    scopus 로고
    • Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells
    • Tjeertes JV, Miller KM, Jackson SP, (2009) Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO J 28: 1878-1889.
    • (2009) EMBO J , vol.28 , pp. 1878-1889
    • Tjeertes, J.V.1    Miller, K.M.2    Jackson, S.P.3
  • 46
    • 33745496607 scopus 로고    scopus 로고
    • Cell cycle and checkpoint regulation of histone H3 K56 acetylation by Hst3 and Hst4
    • Maas NL, Miller KM, DeFazio LG, Toczyski DP, (2006) Cell cycle and checkpoint regulation of histone H3 K56 acetylation by Hst3 and Hst4. Mol Cell 23: 109-119.
    • (2006) Mol Cell , vol.23 , pp. 109-119
    • Maas, N.L.1    Miller, K.M.2    DeFazio, L.G.3    Toczyski, D.P.4
  • 47
    • 55149098842 scopus 로고    scopus 로고
    • Histone H3 K56 hyperacetylation perturbs replisomes and causes DNA damage
    • Celic I, Verreault A, Boeke JD, (2008) Histone H3 K56 hyperacetylation perturbs replisomes and causes DNA damage. Genetics 179: 1769-1784.
    • (2008) Genetics , vol.179 , pp. 1769-1784
    • Celic, I.1    Verreault, A.2    Boeke, J.D.3
  • 48
    • 84873494530 scopus 로고    scopus 로고
    • Histone H3K56 acetylation, Rad52, and non-DNA repair factors control double-strand break repair choice with the sister chromatid
    • Munoz-Galvan S, Jimeno S, Rothstein R, Aguilera A, (2013) Histone H3K56 acetylation, Rad52, and non-DNA repair factors control double-strand break repair choice with the sister chromatid. PLoS Genet 9: e1003237.
    • (2013) PLoS Genet , vol.9
    • Munoz-Galvan, S.1    Jimeno, S.2    Rothstein, R.3    Aguilera, A.4
  • 49
    • 0028841317 scopus 로고
    • The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability
    • Brachmann CB, Sherman JM, Devine SE, Cameron EE, Pillus L, et al. (1995) The SIR2 gene family, conserved from bacteria to humans, functions in silencing, cell cycle progression, and chromosome stability. Genes Dev 9: 2888-2902.
    • (1995) Genes Dev , vol.9 , pp. 2888-2902
    • Brachmann, C.B.1    Sherman, J.M.2    Devine, S.E.3    Cameron, E.E.4    Pillus, L.5
  • 50
    • 79953009238 scopus 로고    scopus 로고
    • Hst3 and Hst4 histone deacetylases regulate replicative lifespan by preventing genome instability in Saccharomyces cerevisiae
    • Hachinohe M, Hanaoka F, Masumoto H, (2011) Hst3 and Hst4 histone deacetylases regulate replicative lifespan by preventing genome instability in Saccharomyces cerevisiae. Genes Cells 16: 467-477.
    • (2011) Genes Cells , vol.16 , pp. 467-477
    • Hachinohe, M.1    Hanaoka, F.2    Masumoto, H.3
  • 51
    • 77949887506 scopus 로고    scopus 로고
    • Mammalian sirtuins: biological insights and disease relevance
    • Haigis MC, Sinclair DA, (2010) Mammalian sirtuins: biological insights and disease relevance. Annu Rev Pathol 5: 253-295.
    • (2010) Annu Rev Pathol , vol.5 , pp. 253-295
    • Haigis, M.C.1    Sinclair, D.A.2
  • 52
    • 79953760389 scopus 로고    scopus 로고
    • H3 lysine 4 is acetylated at active gene promoters and is regulated by H3 lysine 4 methylation
    • Guillemette B, Drogaris P, Lin HH, Armstrong H, Hiragami-Hamada K, et al. (2011) H3 lysine 4 is acetylated at active gene promoters and is regulated by H3 lysine 4 methylation. PLoS Genet 7: e1001354.
    • (2011) PLoS Genet , vol.7
    • Guillemette, B.1    Drogaris, P.2    Lin, H.H.3    Armstrong, H.4    Hiragami-Hamada, K.5
  • 53
    • 0038312215 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae chromatin-assembly factors that act during DNA replication function in the maintenance of genome stability
    • Myung K, Pennaneach V, Kats ES, Kolodner RD, (2003) Saccharomyces cerevisiae chromatin-assembly factors that act during DNA replication function in the maintenance of genome stability. Proc Natl Acad Sci USA 100: 6640-6645.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 6640-6645
    • Myung, K.1    Pennaneach, V.2    Kats, E.S.3    Kolodner, R.D.4
  • 54
    • 84859249636 scopus 로고    scopus 로고
    • Rapid analysis of Saccharomyces cerevisiae genome rearrangements by multiplex ligation-dependent probe amplification
    • Chan JE, Kolodner RD, (2011) Rapid analysis of Saccharomyces cerevisiae genome rearrangements by multiplex ligation-dependent probe amplification. PLoS Genet 8: e1002539.
    • (2011) PLoS Genet , vol.8
    • Chan, J.E.1    Kolodner, R.D.2
  • 56
    • 79952580115 scopus 로고    scopus 로고
    • CAF-I-dependent control of degradation of the discontinuous strands during mismatch repair
    • Kadyrova LY, Rodriges Blanko E, Kadyrov FA, (2011) CAF-I-dependent control of degradation of the discontinuous strands during mismatch repair. Proc Natl Acad Sci U S A 108: 2753-2758.
    • (2011) Proc Natl Acad Sci U S A , vol.108 , pp. 2753-2758
    • Kadyrova, L.Y.1    Rodriges Blanko, E.2    Kadyrov, F.A.3
  • 58
    • 84876943255 scopus 로고    scopus 로고
    • The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSalpha
    • Li F, Mao G, Tong D, Huang J, Gu L, et al. (2013) The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSalpha. Cell 153: 590-600.
    • (2013) Cell , vol.153 , pp. 590-600
    • Li, F.1    Mao, G.2    Tong, D.3    Huang, J.4    Gu, L.5
  • 59
    • 0032915375 scopus 로고    scopus 로고
    • Mutator phenotypes conferred by MLH1 overexpression and by heterozygosity for mlh1 mutations
    • Shcherbakova PV, Kunkel TA, (1999) Mutator phenotypes conferred by MLH1 overexpression and by heterozygosity for mlh1 mutations. Mol Cell Biol 19: 3177-3183.
    • (1999) Mol Cell Biol , vol.19 , pp. 3177-3183
    • Shcherbakova, P.V.1    Kunkel, T.A.2
  • 60
    • 33646472914 scopus 로고    scopus 로고
    • Histone chaperone Asf1 is required for histone H3 lysine 56 acetylation, a modification associated with S phase in mitosis and meiosis
    • Recht J, Tsubota T, Tanny JC, Diaz RL, Berger JM, et al. (2006) Histone chaperone Asf1 is required for histone H3 lysine 56 acetylation, a modification associated with S phase in mitosis and meiosis. Proc Natl Acad Sci U S A 103: 6988-6993.
    • (2006) Proc Natl Acad Sci U S A , vol.103 , pp. 6988-6993
    • Recht, J.1    Tsubota, T.2    Tanny, J.C.3    Diaz, R.L.4    Berger, J.M.5
  • 61
    • 70450223335 scopus 로고    scopus 로고
    • A negatively charged residue in place of histone H3K56 supports chromatin assembly factor association but not genotoxic stress resistance
    • Erkmann JA, Kaufman PD, (2009) A negatively charged residue in place of histone H3K56 supports chromatin assembly factor association but not genotoxic stress resistance. DNA Repair (Amst) 8: 1371-1379.
    • (2009) DNA Repair (Amst) , vol.8 , pp. 1371-1379
    • Erkmann, J.A.1    Kaufman, P.D.2
  • 62
    • 0037160097 scopus 로고    scopus 로고
    • Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1
    • Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA, (2002) Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J Biol Chem 277: 45099-45107.
    • (2002) J Biol Chem , vol.277 , pp. 45099-45107
    • Bitterman, K.J.1    Anderson, R.M.2    Cohen, H.Y.3    Latorre-Esteves, M.4    Sinclair, D.A.5
  • 63
    • 0037589924 scopus 로고    scopus 로고
    • A role for Saccharomyces cerevisiae Cul8 ubiquitin ligase in proper anaphase progression
    • Michel JJ, McCarville JF, Xiong Y, (2003) A role for Saccharomyces cerevisiae Cul8 ubiquitin ligase in proper anaphase progression. J Biol Chem 278: 22828-22837.
    • (2003) J Biol Chem , vol.278 , pp. 22828-22837
    • Michel, J.J.1    McCarville, J.F.2    Xiong, Y.3
  • 64
    • 33645453254 scopus 로고    scopus 로고
    • Global landscape of protein complexes in the yeast Saccharomyces cerevisiae
    • Krogan NJ, Cagney G, Yu H, Zhong G, Guo X, et al. (2006) Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440: 637-643.
    • (2006) Nature , vol.440 , pp. 637-643
    • Krogan, N.J.1    Cagney, G.2    Yu, H.3    Zhong, G.4    Guo, X.5
  • 65
    • 84876313606 scopus 로고    scopus 로고
    • A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme
    • Watanabe S, Radman-Livaja M, Rando OJ, Peterson CL, (2013) A histone acetylation switch regulates H2A.Z deposition by the SWR-C remodeling enzyme. Science 340: 195-199.
    • (2013) Science , vol.340 , pp. 195-199
    • Watanabe, S.1    Radman-Livaja, M.2    Rando, O.J.3    Peterson, C.L.4
  • 66
    • 33947137710 scopus 로고    scopus 로고
    • Dynamics of replication-independent histone turnover in budding yeast
    • Dion MF, Kaplan T, Kim M, Buratowski S, Friedman N, et al. (2007) Dynamics of replication-independent histone turnover in budding yeast. Science 315: 1405-1408.
    • (2007) Science , vol.315 , pp. 1405-1408
    • Dion, M.F.1    Kaplan, T.2    Kim, M.3    Buratowski, S.4    Friedman, N.5
  • 67
    • 0028174896 scopus 로고
    • The 3′-->5′ exonucleases of both DNA polymerases delta and epsilon participate in correcting errors of DNA replication in Saccharomyces cerevisiae
    • Morrison A, Sugino A, (1994) The 3′-->5′ exonucleases of both DNA polymerases delta and epsilon participate in correcting errors of DNA replication in Saccharomyces cerevisiae. Mol Gen Genet 242: 289-296.
    • (1994) Mol Gen Genet , vol.242 , pp. 289-296
    • Morrison, A.1    Sugino, A.2
  • 68
    • 0030962035 scopus 로고    scopus 로고
    • Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants
    • Tran HT, Keen JD, Kricker M, Resnick MA, Gordenin DA, (1997) Hypermutability of homonucleotide runs in mismatch repair and DNA polymerase proofreading yeast mutants. Mol Cell Biol 17: 2859-2865.
    • (1997) Mol Cell Biol , vol.17 , pp. 2859-2865
    • Tran, H.T.1    Keen, J.D.2    Kricker, M.3    Resnick, M.A.4    Gordenin, D.A.5
  • 69
    • 0032588388 scopus 로고    scopus 로고
    • The 3′-->5′ exonucleases of DNA polymerases delta and epsilon and the 5′-->3′ exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae
    • Tran HT, Gordenin DA, Resnick MA, (1999) The 3′-->5′ exonucleases of DNA polymerases delta and epsilon and the 5′-->3′ exonuclease Exo1 have major roles in postreplication mutation avoidance in Saccharomyces cerevisiae. Mol Cell Biol 19: 2000-2007.
    • (1999) Mol Cell Biol , vol.19 , pp. 2000-2007
    • Tran, H.T.1    Gordenin, D.A.2    Resnick, M.A.3
  • 70
    • 0033624527 scopus 로고    scopus 로고
    • A DNA polymerase epsilon mutant that specifically causes +1 frameshift mutations within homonucleotide runs in yeast
    • Kirchner JM, Tran H, Resnick MA, (2000) A DNA polymerase epsilon mutant that specifically causes +1 frameshift mutations within homonucleotide runs in yeast. Genetics 155: 1623-1632.
    • (2000) Genetics , vol.155 , pp. 1623-1632
    • Kirchner, J.M.1    Tran, H.2    Resnick, M.A.3
  • 71
    • 74249092035 scopus 로고    scopus 로고
    • Participation of DNA polymerase zeta in replication of undamaged DNA in Saccharomyces cerevisiae
    • Northam MR, Robinson HA, Kochenova OV, Shcherbakova PV, (2010) Participation of DNA polymerase zeta in replication of undamaged DNA in Saccharomyces cerevisiae. Genetics 184: 27-42.
    • (2010) Genetics , vol.184 , pp. 27-42
    • Northam, M.R.1    Robinson, H.A.2    Kochenova, O.V.3    Shcherbakova, P.V.4
  • 72
    • 0029868110 scopus 로고    scopus 로고
    • Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair
    • Marsischky GT, Filosi N, Kane MF, Kolodner R, (1996) Redundancy of Saccharomyces cerevisiae MSH3 and MSH6 in MSH2-dependent mismatch repair. Genes Dev 10: 407-420.
    • (1996) Genes Dev , vol.10 , pp. 407-420
    • Marsischky, G.T.1    Filosi, N.2    Kane, M.F.3    Kolodner, R.4
  • 73
    • 0026004621 scopus 로고
    • Eukaryotic DNA polymerase amino acid sequence required for 3′----5′ exonuclease activity
    • Morrison A, Bell JB, Kunkel TA, Sugino A, (1991) Eukaryotic DNA polymerase amino acid sequence required for 3′----5′ exonuclease activity. Proc NatlAcad Sci U S A 88: 9473-9477.
    • (1991) Proc NatlAcad Sci U S A , vol.88 , pp. 9473-9477
    • Morrison, A.1    Bell, J.B.2    Kunkel, T.A.3    Sugino, A.4
  • 74
    • 0035942104 scopus 로고    scopus 로고
    • The 3′-->5′ exonuclease of DNA polymerase delta can substitute for the 5′ flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability
    • Jin YH, Obert R, Burgers PM, Kunkel TA, Resnick MA, et al. (2001) The 3′-->5′ exonuclease of DNA polymerase delta can substitute for the 5′ flap endonuclease Rad27/Fen1 in processing Okazaki fragments and preventing genome instability. Proc Natl Acad Sci U S A 98: 5122-5127.
    • (2001) Proc Natl Acad Sci U S A , vol.98 , pp. 5122-5127
    • Jin, Y.H.1    Obert, R.2    Burgers, P.M.3    Kunkel, T.A.4    Resnick, M.A.5
  • 75
    • 46149100263 scopus 로고    scopus 로고
    • Chaperone control of the activity and specificity of the histone H3 acetyltransferase Rtt109
    • Fillingham J, Recht J, Silva AC, Suter B, Emili A, et al. (2008) Chaperone control of the activity and specificity of the histone H3 acetyltransferase Rtt109. Mol Cell Biol 28: 4342-4353.
    • (2008) Mol Cell Biol , vol.28 , pp. 4342-4353
    • Fillingham, J.1    Recht, J.2    Silva, A.C.3    Suter, B.4    Emili, A.5
  • 76
    • 51349159555 scopus 로고    scopus 로고
    • Molecular functions of the histone acetyltransferase chaperone complex Rtt109-Vps75
    • Berndsen CE, Tsubota T, Lindner SE, Lee S, Holton JM, et al. (2008) Molecular functions of the histone acetyltransferase chaperone complex Rtt109-Vps75. Nat Struct Mol Biol 15: 948-956.
    • (2008) Nat Struct Mol Biol , vol.15 , pp. 948-956
    • Berndsen, C.E.1    Tsubota, T.2    Lindner, S.E.3    Lee, S.4    Holton, J.M.5
  • 77
    • 79959504063 scopus 로고    scopus 로고
    • Mutagenic processing of ribonucleotides in DNA by yeast topoisomerase I
    • Kim N, Huang SN, Williams JS, Li YC, Clark AB, et al. (2011) Mutagenic processing of ribonucleotides in DNA by yeast topoisomerase I. Science 332: 1561-1564.
    • (2011) Science , vol.332 , pp. 1561-1564
    • Kim, N.1    Huang, S.N.2    Williams, J.S.3    Li, Y.C.4    Clark, A.B.5
  • 78
    • 0035963338 scopus 로고    scopus 로고
    • Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae
    • Myung K, Chen C, Kolodner RD, (2001) Multiple pathways cooperate in the suppression of genome instability in Saccharomyces cerevisiae. Nature 411: 1073-1076.
    • (2001) Nature , vol.411 , pp. 1073-1076
    • Myung, K.1    Chen, C.2    Kolodner, R.D.3
  • 79
    • 0035830498 scopus 로고    scopus 로고
    • Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae
    • Myung K, Datta A, Kolodner RD, (2001) Suppression of spontaneous chromosomal rearrangements by S phase checkpoint functions in Saccharomyces cerevisiae. Cell 104: 397-408.
    • (2001) Cell , vol.104 , pp. 397-408
    • Myung, K.1    Datta, A.2    Kolodner, R.D.3
  • 80
    • 0024461293 scopus 로고
    • REV3, a Saccharomyces cerevisiae gene whose function is required for induced mutagenesis, is predicted to encode a nonessential DNA polymerase
    • Morrison A, Christensen RB, Alley J, Beck AK, Bernstine EG, et al. (1989) REV3, a Saccharomyces cerevisiae gene whose function is required for induced mutagenesis, is predicted to encode a nonessential DNA polymerase. J Bacteriol 171: 5659-5667.
    • (1989) J Bacteriol , vol.171 , pp. 5659-5667
    • Morrison, A.1    Christensen, R.B.2    Alley, J.3    Beck, A.K.4    Bernstine, E.G.5
  • 81
    • 0030700468 scopus 로고    scopus 로고
    • A role for REV3 in mutagenesis during double-strand break repair in Saccharomyces cerevisiae
    • Holbeck SL, Strathern JN, (1997) A role for REV3 in mutagenesis during double-strand break repair in Saccharomyces cerevisiae. Genetics 147: 1017-1024.
    • (1997) Genetics , vol.147 , pp. 1017-1024
    • Holbeck, S.L.1    Strathern, J.N.2
  • 82
    • 34147217542 scopus 로고    scopus 로고
    • Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map
    • Collins SR, Miller KM, Maas NL, Roguev A, Fillingham J, et al. (2007) Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 446: 806-810.
    • (2007) Nature , vol.446 , pp. 806-810
    • Collins, S.R.1    Miller, K.M.2    Maas, N.L.3    Roguev, A.4    Fillingham, J.5
  • 83
    • 33646073448 scopus 로고    scopus 로고
    • The cullin Rtt101p promotes replication fork progression through damaged DNA and natural pause sites
    • Luke B, Versini G, Jaquenoud M, Zaidi IW, Kurz T, et al. (2006) The cullin Rtt101p promotes replication fork progression through damaged DNA and natural pause sites. Curr Biol 16: 786-792.
    • (2006) Curr Biol , vol.16 , pp. 786-792
    • Luke, B.1    Versini, G.2    Jaquenoud, M.3    Zaidi, I.W.4    Kurz, T.5
  • 84
    • 0035051062 scopus 로고    scopus 로고
    • Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion
    • Hanna JS, Kroll ES, Lundblad V, Spencer FA, (2001) Saccharomyces cerevisiae CTF18 and CTF4 are required for sister chromatid cohesion. Mol Cell Biol 21: 3144-3158.
    • (2001) Mol Cell Biol , vol.21 , pp. 3144-3158
    • Hanna, J.S.1    Kroll, E.S.2    Lundblad, V.3    Spencer, F.A.4
  • 85
    • 20744435871 scopus 로고    scopus 로고
    • Replication protein A-directed unloading of PCNA by the Ctf18 cohesion establishment complex
    • Bylund GO, Burgers PM, (2005) Replication protein A-directed unloading of PCNA by the Ctf18 cohesion establishment complex. Mol Cell Biol 25: 5445-5455.
    • (2005) Mol Cell Biol , vol.25 , pp. 5445-5455
    • Bylund, G.O.1    Burgers, P.M.2
  • 86
    • 0029065847 scopus 로고
    • Specificities of the Saccharomyces cerevisiae rad6, rad18, and rad52 mutators exhibit different degrees of dependence on the REV3 gene product, a putative nonessential DNA polymerase
    • Roche H, Gietz RD, Kunz BA, (1995) Specificities of the Saccharomyces cerevisiae rad6, rad18, and rad52 mutators exhibit different degrees of dependence on the REV3 gene product, a putative nonessential DNA polymerase. Genetics 140: 443-456.
    • (1995) Genetics , vol.140 , pp. 443-456
    • Roche, H.1    Gietz, R.D.2    Kunz, B.A.3
  • 87
    • 34547890019 scopus 로고    scopus 로고
    • Functions of site-specific histone acetylation and deacetylation
    • Shahbazian MD, Grunstein M, (2007) Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 76: 75-100.
    • (2007) Annu Rev Biochem , vol.76 , pp. 75-100
    • Shahbazian, M.D.1    Grunstein, M.2
  • 89
    • 69249231999 scopus 로고    scopus 로고
    • Specific pathways prevent duplication-mediated genome rearrangements
    • Putnam CD, Hayes TK, Kolodner RD, (2009) Specific pathways prevent duplication-mediated genome rearrangements. Nature 460: 984-989.
    • (2009) Nature , vol.460 , pp. 984-989
    • Putnam, C.D.1    Hayes, T.K.2    Kolodner, R.D.3
  • 90
    • 0037169325 scopus 로고    scopus 로고
    • The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements
    • Lobachev KS, Gordenin DA, Resnick MA, (2002) The Mre11 complex is required for repair of hairpin-capped double-strand breaks and prevention of chromosome rearrangements. Cell 108: 183-193.
    • (2002) Cell , vol.108 , pp. 183-193
    • Lobachev, K.S.1    Gordenin, D.A.2    Resnick, M.A.3
  • 91
    • 0029896663 scopus 로고    scopus 로고
    • Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1-RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae
    • Saparbaev M, Prakash L, Prakash S, (1996) Requirement of mismatch repair genes MSH2 and MSH3 in the RAD1-RAD10 pathway of mitotic recombination in Saccharomyces cerevisiae. Genetics 142: 727-736.
    • (1996) Genetics , vol.142 , pp. 727-736
    • Saparbaev, M.1    Prakash, L.2    Prakash, S.3
  • 92
    • 0030834260 scopus 로고    scopus 로고
    • Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination
    • Sugawara N, Paques F, Colaiacovo M, Haber JE, (1997) Role of Saccharomyces cerevisiae Msh2 and Msh3 repair proteins in double-strand break-induced recombination. Proc Natl Acad Sci U S A 94: 9214-9219.
    • (1997) Proc Natl Acad Sci U S A , vol.94 , pp. 9214-9219
    • Sugawara, N.1    Paques, F.2    Colaiacovo, M.3    Haber, J.E.4
  • 93
    • 0032718278 scopus 로고    scopus 로고
    • Separation-of-function mutations in Saccharomyces cerevisiae MSH2 that confer mismatch repair defects but do not affect nonhomologous-tail removal during recombination
    • Studamire B, Price G, Sugawara N, Haber JE, Alani E, (1999) Separation-of-function mutations in Saccharomyces cerevisiae MSH2 that confer mismatch repair defects but do not affect nonhomologous-tail removal during recombination. Mol Cell Biol 19: 7558-7567.
    • (1999) Mol Cell Biol , vol.19 , pp. 7558-7567
    • Studamire, B.1    Price, G.2    Sugawara, N.3    Haber, J.E.4    Alani, E.5
  • 94
    • 65249160271 scopus 로고    scopus 로고
    • A tale of tails: insights into the coordination of 3′ end processing during homologous recombination
    • Lyndaker AM, Alani E, (2009) A tale of tails: insights into the coordination of 3′ end processing during homologous recombination. Bioessays 31: 315-321.
    • (2009) Bioessays , vol.31 , pp. 315-321
    • Lyndaker, A.M.1    Alani, E.2
  • 95
    • 0029328551 scopus 로고
    • In vivo biochemistry: physical monitoring of recombination induced by site-specific endonucleases
    • Haber JE, (1995) In vivo biochemistry: physical monitoring of recombination induced by site-specific endonucleases. Bioessays 17: 609-620.
    • (1995) Bioessays , vol.17 , pp. 609-620
    • Haber, J.E.1
  • 96
    • 0018942768 scopus 로고
    • Isolation and characterization of dam+ revertants and suppressor mutations that modify secondary phenotypes of dam-3 strains of Escherichia coli K-12
    • McGraw BR, Marinus MG, (1980) Isolation and characterization of dam+ revertants and suppressor mutations that modify secondary phenotypes of dam-3 strains of Escherichia coli K-12. Mol Gen Genet 178: 309-315.
    • (1980) Mol Gen Genet , vol.178 , pp. 309-315
    • McGraw, B.R.1    Marinus, M.G.2
  • 97
    • 79954416946 scopus 로고    scopus 로고
    • Readers of histone modifications
    • Yun M, Wu J, Workman JL, Li B, (2011) Readers of histone modifications. Cell Res 21: 564-578.
    • (2011) Cell Res , vol.21 , pp. 564-578
    • Yun, M.1    Wu, J.2    Workman, J.L.3    Li, B.4
  • 98
    • 0030271999 scopus 로고    scopus 로고
    • Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis
    • Umar A, Buermeyer AB, Simon JA, Thomas DC, Clark AB, et al. (1996) Requirement for PCNA in DNA mismatch repair at a step preceding DNA resynthesis. Cell 87: 65-73.
    • (1996) Cell , vol.87 , pp. 65-73
    • Umar, A.1    Buermeyer, A.B.2    Simon, J.A.3    Thomas, D.C.4    Clark, A.B.5
  • 99
    • 3042841883 scopus 로고    scopus 로고
    • A defined human system that supports bidirectional mismatch-provoked excision
    • Dzantiev L, Constantin N, Genschel J, Iyer RR, Burgers PM, et al. (2004) A defined human system that supports bidirectional mismatch-provoked excision. Mol Cell 15: 31-41.
    • (2004) Mol Cell , vol.15 , pp. 31-41
    • Dzantiev, L.1    Constantin, N.2    Genschel, J.3    Iyer, R.R.4    Burgers, P.M.5
  • 100
    • 0034977802 scopus 로고    scopus 로고
    • Yeast ASF1 protein is required for cell cycle regulation of histone gene transcription
    • Sutton A, Bucaria J, Osley MA, Sternglanz R, (2001) Yeast ASF1 protein is required for cell cycle regulation of histone gene transcription. Genetics 158: 587-596.
    • (2001) Genetics , vol.158 , pp. 587-596
    • Sutton, A.1    Bucaria, J.2    Osley, M.A.3    Sternglanz, R.4
  • 101
    • 0037088811 scopus 로고    scopus 로고
    • A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast
    • Gueldener U, Heinisch J, Koehler GJ, Voss D, Hegemann JH, (2002) A second set of loxP marker cassettes for Cre-mediated multiple gene knockouts in budding yeast. Nucleic Acids Res 30: e23.
    • (2002) Nucleic Acids Res , vol.30
    • Gueldener, U.1    Heinisch, J.2    Koehler, G.J.3    Voss, D.4    Hegemann, J.H.5
  • 102
    • 0036270543 scopus 로고    scopus 로고
    • Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method
    • Gietz RD, Woods RA, (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method. Methods Enzymol 350: 87-96.
    • (2002) Methods Enzymol , vol.350 , pp. 87-96
    • Gietz, R.D.1    Woods, R.A.2
  • 103
    • 0001633538 scopus 로고
    • Analysis of the Luria-Delbrück distribution using discrete convolution powers
    • Ma WT, GV Sandri GV, Sarkar S, (1992) Analysis of the Luria-Delbrück distribution using discrete convolution powers. J Appl Prob 29: 255-267.
    • (1992) J Appl Prob , vol.29 , pp. 255-267
    • Ma, W.T.1    GV Sandri, G.V.2    Sarkar, S.3
  • 104
    • 0030069595 scopus 로고    scopus 로고
    • Bayesian procedures for the estimation of mutation rates from fluctuation experiments
    • Asteris G, Sarkar S, (1996) Bayesian procedures for the estimation of mutation rates from fluctuation experiments. Genetics 142: 313-326.
    • (1996) Genetics , vol.142 , pp. 313-326
    • Asteris, G.1    Sarkar, S.2
  • 105
    • 66349117823 scopus 로고    scopus 로고
    • Fluctuation analysis CalculatOR: a web tool for the determination of mutation rate using Luria-Delbruck fluctuation analysis
    • Hall BM, Ma CX, Liang P, Singh KK, (2009) Fluctuation analysis CalculatOR: a web tool for the determination of mutation rate using Luria-Delbruck fluctuation analysis. Bioinformatics 25: 1564-1565.
    • (2009) Bioinformatics , vol.25 , pp. 1564-1565
    • Hall, B.M.1    Ma, C.X.2    Liang, P.3    Singh, K.K.4
  • 106
    • 0034006621 scopus 로고    scopus 로고
    • Determining mutation rates in bacterial populations
    • Rosche WA, Foster PL, (2000) Determining mutation rates in bacterial populations. Methods 20: 4-17.
    • (2000) Methods , vol.20 , pp. 4-17
    • Rosche, W.A.1    Foster, P.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.