메뉴 건너뛰기




Volumn 25, Issue 1, 2012, Pages 3-12

Evolutionary-based selection of generalized instances for imbalanced classification

Author keywords

Evolutionary algorithms; Imbalanced classification; Instance selection; Nested generalized exemplar learning; Rule induction

Indexed keywords

EUCLIDEAN; EXPERIMENTAL ANALYSIS; IMBALANCED CLASSIFICATION; IMBALANCED DATA SETS; INSTANCE SELECTION; LEARNING PROCESS; NESTED GENERALIZED EXEMPLAR LEARNING; NESTED GENERALIZED EXEMPLARS; REAL-WORLD PROBLEM; RULE INDUCTION; SUPERVISED CLASSIFICATION;

EID: 80052414830     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2011.01.012     Document Type: Article
Times cited : (129)

References (50)
  • 1
    • 0025725905 scopus 로고
    • Instance-based learning algorithms
    • DOI 10.1023/A:1022689900470
    • D.W. Aha, D. Kibler, and M.K. Albert Instance-based learning algorithms Machine Learning 6 1 1991 37 66 (Pubitemid 21727227)
    • (1991) Machine Learning , vol.6 , Issue.1 , pp. 37-66
    • Aha David, W.1    Kibler Dennis2    Albert Marc, K.3
  • 5
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behavior of several methods for balancing machine learning training data
    • G.E.A.P.A. Batista, R.C. Prati, and M.C. Monard A study of the behavior of several methods for balancing machine learning training data Sigkdd Explorations 6 1 2004 20 29
    • (2004) Sigkdd Explorations , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.E.A.P.A.1    Prati, R.C.2    Monard, M.C.3
  • 6
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • PII S0031320396001422
    • A.P. Bradley The use of the area under the roc curve in the evaluation of machine learning algorithms Pattern Recognition 30 7 1997 1145 1159 (Pubitemid 127406521)
    • (1997) Pattern Recognition , vol.30 , Issue.7 , pp. 1145-1159
    • Bradley, A.P.1
  • 7
    • 0347763609 scopus 로고    scopus 로고
    • Using evolutionary algorithms as instance selection for data reduction in KDD: An experimental study
    • J.R. Cano, F. Herrera, and M. Lozano Using evolutionary algorithms as instance selection for data reduction in KDD: an experimental study IEEE Transactions on Evolutionary Computation 7 6 2003 561 575
    • (2003) IEEE Transactions on Evolutionary Computation , vol.7 , Issue.6 , pp. 561-575
    • Cano, J.R.1    Herrera, F.2    Lozano, M.3
  • 8
    • 77955418795 scopus 로고    scopus 로고
    • Mining associative classification rules with stock trading data - A ga-based method
    • Y.-W. Chang Chien, and Y.-L. Chen Mining associative classification rules with stock trading data - a ga-based method Knowledge-Based Systems 23 6 2010 605 614
    • (2010) Knowledge-Based Systems , vol.23 , Issue.6 , pp. 605-614
    • Chang Chien, Y.-W.1    Chen, Y.-L.2
  • 10
    • 50549101751 scopus 로고    scopus 로고
    • Automatically countering imbalance and its empirical relationship to cost
    • N. Chawla, D. Cieslak, L. Hall, and A. Joshi Automatically countering imbalance and its empirical relationship to cost Data Mining and Knowledge Discovery 17 2 2008 225 252
    • (2008) Data Mining and Knowledge Discovery , vol.17 , Issue.2 , pp. 225-252
    • Chawla, N.1    Cieslak, D.2    Hall, L.3    Joshi, A.4
  • 11
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: Special issue on learning from imbalanced data sets
    • N.V. Chawla, N. Japkowicz, and A. Kotcz Editorial: special issue on learning from imbalanced data sets SIGKDD Explorations Newsletter 6 1 2004 1 6
    • (2004) SIGKDD Explorations Newsletter , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kotcz, A.3
  • 14
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar Statistical comparisons of classifiers over multiple data sets Journal of Machine Learning Research 7 2006 1 30 (Pubitemid 43022939)
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demsar, J.1
  • 15
    • 76749096459 scopus 로고    scopus 로고
    • IFS-CoCo: Instance and feature selection based on cooperative coevolution with nearest neighbor rule
    • J. Derrac, S. García, and F. Herrera IFS-CoCo: Instance and feature selection based on cooperative coevolution with nearest neighbor rule Pattern Recognition 43 6 2010 2082 2105
    • (2010) Pattern Recognition , vol.43 , Issue.6 , pp. 2082-2105
    • Derrac, J.1    García, S.2    Herrera, F.3
  • 16
    • 0030216565 scopus 로고    scopus 로고
    • Unifying instance-based and rule-based induction
    • P. Domingos Unifying instance-based and rule-based induction Machine Learning 24 1996 141 168 (Pubitemid 126724383)
    • (1996) Machine Learning , vol.24 , Issue.2 , pp. 141-168
    • Domingos, P.1
  • 18
    • 0001334115 scopus 로고
    • The CHC adaptive search algorithm: How to safe search when engaging in nontraditional genetic recombination
    • G.J.E. Rawlings (Ed.)
    • L.J. Eshelman, The CHC adaptive search algorithm: how to safe search when engaging in nontraditional genetic recombination, in: G.J.E. Rawlings (Ed.), Foundations of genetic algorithms, 1991, pp. 265-283.
    • (1991) Foundations of Genetic Algorithms , pp. 265-283
    • Eshelman, L.J.1
  • 19
    • 75149159107 scopus 로고    scopus 로고
    • On the 2-tuples based genetic tuning performance for fuzzy rule based classification systems in imbalanced data-sets
    • A. Fernández, M.J. del Jesus, and F. Herrera On the 2-tuples based genetic tuning performance for fuzzy rule based classification systems in imbalanced data-sets Information Sciences 180 8 2010 1268 1291
    • (2010) Information Sciences , vol.180 , Issue.8 , pp. 1268-1291
    • Fernández, A.1    Del Jesus, M.J.2    Herrera, F.3
  • 20
    • 78649815360 scopus 로고    scopus 로고
    • Genetics-based machine learning for rule induction: Taxonomy, experimental study and state of the art
    • A. Fernández, S. García, J. Luengo, E. Bernadó- Mansilla, F. Herrera, Genetics-based machine learning for rule induction: Taxonomy, experimental study and state of the art, in: IEEE Transactions on Evolutionary Computation 4 (6) (2010) 913-941.
    • (2010) IEEE Transactions on Evolutionary Computation , vol.4 , Issue.6 , pp. 913-941
    • A. Fernández1
  • 23
  • 24
    • 42749092345 scopus 로고    scopus 로고
    • A memetic algorithm for evolutionary prototype selection: A scaling up approach
    • S. García, J.R. Cano, and F. Herrera A memetic algorithm for evolutionary prototype selection: a scaling up approach Pattern Recognition 41 8 2008 2693 2709
    • (2008) Pattern Recognition , vol.41 , Issue.8 , pp. 2693-2709
    • García, S.1    Cano, J.R.2    Herrera, F.3
  • 25
    • 68849109676 scopus 로고    scopus 로고
    • Enhancing the effectiveness and interpretability of decision tree and rule induction classifiers with evolutionary training set selection over imbalanced problems
    • S. García, A. Fernández, and F. Herrera Enhancing the effectiveness and interpretability of decision tree and rule induction classifiers with evolutionary training set selection over imbalanced problems Applied Soft Computing 9 4 2009 1304 1314
    • (2009) Applied Soft Computing , vol.9 , Issue.4 , pp. 1304-1314
    • García, S.1    Fernández, A.2    Herrera, F.3
  • 26
    • 64549120231 scopus 로고    scopus 로고
    • A study of statistical techniques and performance measures for genetics-based machine learning: Accuracy and interpretability
    • S. García, A. Fernández, J. Luengo, and F. Herrera A study of statistical techniques and performance measures for genetics-based machine learning: accuracy and interpretability Soft Computing 13 10 2009 959 977
    • (2009) Soft Computing , vol.13 , Issue.10 , pp. 959-977
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 27
    • 77549084648 scopus 로고    scopus 로고
    • Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: Experimental analysis of power
    • S. García, A. Fernández, J. Luengo, and F. Herrera Advanced nonparametric tests for multiple comparisons in the design of experiments in computational intelligence and data mining: experimental analysis of power Information Sciences 180 2010 2044 2064
    • (2010) Information Sciences , vol.180 , pp. 2044-2064
    • García, S.1    Fernández, A.2    Luengo, J.3    Herrera, F.4
  • 28
    • 58149287952 scopus 로고    scopus 로고
    • An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons
    • S. García, and F. Herrera An extension on statistical comparisons of classifiers over multiple data sets for all pairwise comparisons Journal of Machine Learning Research 9 2008 2677 2694
    • (2008) Journal of Machine Learning Research , vol.9 , pp. 2677-2694
    • García, S.1    Herrera, F.2
  • 29
    • 70349617264 scopus 로고    scopus 로고
    • Evolutionary under-sampling for classification with imbalanced data sets: Proposals and taxonomy
    • S. García, and F. Herrera Evolutionary under-sampling for classification with imbalanced data sets: proposals and taxonomy Evolutionary Computation 17 3 2009 275 306
    • (2009) Evolutionary Computation , vol.17 , Issue.3 , pp. 275-306
    • García, S.1    Herrera, F.2
  • 30
    • 27744463461 scopus 로고    scopus 로고
    • A comparison of two approaches to data mining from imbalanced data
    • DOI 10.1007/s10845-005-4362-2
    • J. Grzymala-Busse, J. Stefanowski, and S. Wilk A comparison of two approaches to data mining from imbalanced data Journal of Intelligent Manufacturing 16 6 2005 565 573 (Pubitemid 41605674)
    • (2005) Journal of Intelligent Manufacturing , vol.16 , Issue.6 , pp. 565-573
    • Grzymala-Busse, J.W.1    Stefanowski, J.2    Wilk, S.3
  • 31
    • 55349091246 scopus 로고    scopus 로고
    • Fast and accurate feature selection using hybrid genetic strategies
    • C. Guerra-Salcedo, S. Chen, D. Whitley, S. Smith, Fast and accurate feature selection using hybrid genetic strategies, in: CEC, 1999, pp. 177-184.
    • (1999) CEC , pp. 177-184
    • Guerra-Salcedo, C.1    Chen, S.2    Whitley, D.3    Smith, S.4
  • 35
    • 50949107928 scopus 로고    scopus 로고
    • Local distance-based classification
    • M. Laguia, and J.L. Castro Local distance-based classification Knowledge-Based Systems 21 7 2008 692 703
    • (2008) Knowledge-Based Systems , vol.21 , Issue.7 , pp. 692-703
    • Laguia, M.1    Castro, J.L.2
  • 36
    • 77957990796 scopus 로고    scopus 로고
    • An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine
    • S. Li, H. Wu, D. Wan, and J. Zhu An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine Knowledge-Based Systems 24 1 2011 40 48
    • (2011) Knowledge-Based Systems , vol.24 , Issue.1 , pp. 40-48
    • Li, S.1    Wu, H.2    Wan, D.3    Zhu, J.4
  • 39
    • 40649126091 scopus 로고    scopus 로고
    • Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance
    • M.A. Mazurowski, P.A. Habas, J.M. Zurada, J.Y. Lo, J.A. Baker, and G.D. Tourassi Training neural network classifiers for medical decision making: the effects of imbalanced datasets on classification performance Neural Networks 21 2-3 2008 427 436
    • (2008) Neural Networks , vol.21 , Issue.23 , pp. 427-436
    • Mazurowski, M.A.1    Habas, P.A.2    Zurada, J.M.3    Lo, J.Y.4    Baker, J.A.5    Tourassi, G.D.6
  • 40
    • 0342973074 scopus 로고
    • Context theory of classification learning
    • D. Medin, and M. Schaffer Context theory of classification learning Psychological Review 85 1978 207 238
    • (1978) Psychological Review , vol.85 , pp. 207-238
    • Medin, D.1    Schaffer, M.2
  • 41
    • 55549116330 scopus 로고    scopus 로고
    • Evolutionary rule-based systems for imbalanced data sets
    • A. Orriols-Puig, and E. Bernadó-Mansilla Evolutionary rule-based systems for imbalanced data sets Soft Computing 13 3 2009 213 225
    • (2009) Soft Computing , vol.13 , Issue.3 , pp. 213-225
    • Orriols-Puig, A.1    Bernadó-Mansilla, E.2
  • 43
    • 0026156490 scopus 로고
    • A nearest hyperrectangle method
    • S. Salzberg A nearest hyperrectangle method Machine Learning 6 1991 151 276
    • (1991) Machine Learning , vol.6 , pp. 151-276
    • Salzberg, S.1
  • 44
    • 77955415855 scopus 로고    scopus 로고
    • A novel hybrid feature selection via symmetrical uncertainty ranking based local memetic search algorithm
    • S. Senthamarai Kannan, and N. Ramaraj A novel hybrid feature selection via symmetrical uncertainty ranking based local memetic search algorithm Knowledge-Based Systems 23 6 2010 580 585
    • (2010) Knowledge-Based Systems , vol.23 , Issue.6 , pp. 580-585
    • Senthamarai Kannan, S.1    Ramaraj, N.2
  • 46
    • 78650282967 scopus 로고    scopus 로고
    • Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification
    • I. Triguero, S. García, and F. Herrera Differential evolution for optimizing the positioning of prototypes in nearest neighbor classification Pattern Recognition 44 4 2011 901 916
    • (2011) Pattern Recognition , vol.44 , Issue.4 , pp. 901-916
    • Triguero, I.1    García, S.2    Herrera, F.3
  • 47
    • 78650064965 scopus 로고    scopus 로고
    • IPADE: Iterative prototype adjustment for nearest neighbor classification
    • I. Triguero, S. García, and F. Herrera IPADE: Iterative prototype adjustment for nearest neighbor classification IEEE Transactions on Neural Networks 21 12 2010 1984 1990
    • (2010) IEEE Transactions on Neural Networks , vol.21 , Issue.12 , pp. 1984-1990
    • Triguero, I.1    García, S.2    Herrera, F.3
  • 48
    • 0002564447 scopus 로고
    • An experimental comparison of the nearest-neighbor and nearest-hyperrectangle algorithms
    • D. Wettschereck, and T.G. Dietterich An experimental comparison of the nearest-neighbor and nearest-hyperrectangle algorithms Machine Learning 19 1995 5 27
    • (1995) Machine Learning , vol.19 , pp. 5-27
    • Wettschereck, D.1    Dietterich, T.G.2
  • 50
    • 77955227108 scopus 로고    scopus 로고
    • Cost-sensitive classification with respect to waiting cost
    • S. Zhang Cost-sensitive classification with respect to waiting cost Knowledge-Based Systems 23 5 2010 369 378
    • (2010) Knowledge-Based Systems , vol.23 , Issue.5 , pp. 369-378
    • Zhang, S.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.