메뉴 건너뛰기




Volumn 159, Issue 18, 2008, Pages 2378-2398

A study of the behaviour of linguistic fuzzy rule based classification systems in the framework of imbalanced data-sets

Author keywords

Conjunction operators; Fuzzy reasoning method; Fuzzy rule based classification systems; Imbalance class problem; Imbalanced data sets; Instance selection; Over sampling; Rule weights

Indexed keywords

CLASSIFICATION (OF INFORMATION); FUZZY RULES; FUZZY SETS; REUSABILITY;

EID: 46849096083     PISSN: 01650114     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.fss.2007.12.023     Document Type: Article
Times cited : (273)

References (49)
  • 2
    • 27144531570 scopus 로고    scopus 로고
    • A study of the behaviour of several methods for balancing machine learning training data
    • Batista G., Prati R., and Monard M. A study of the behaviour of several methods for balancing machine learning training data. SIGKDD Explorations 6 1 (2004) 20-29
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 20-29
    • Batista, G.1    Prati, R.2    Monard, M.3
  • 3
    • 24344490308 scopus 로고    scopus 로고
    • Support vector machines for candidate nodules classification
    • Campadelli P., Casiraghi E., and Valentini G. Support vector machines for candidate nodules classification. Lett. Neurocomputing 68 (2005) 281-288
    • (2005) Lett. Neurocomputing , vol.68 , pp. 281-288
    • Campadelli, P.1    Casiraghi, E.2    Valentini, G.3
  • 5
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: special issue on learning from imbalanced data sets
    • Chawla N., Japkowicz N., and Kolcz A. Editorial: special issue on learning from imbalanced data sets. SIGKDD Explorations 6 1 (2004) 1-6
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.1    Japkowicz, N.2    Kolcz, A.3
  • 7
    • 0032655554 scopus 로고    scopus 로고
    • A proposal on reasoning methods in fuzzy rule-based classification systems
    • Cordón O., del Jesus M.J., and Herrera F. A proposal on reasoning methods in fuzzy rule-based classification systems. Internat. J. Approx. Reason. 20 1 (1999) 21-45
    • (1999) Internat. J. Approx. Reason. , vol.20 , Issue.1 , pp. 21-45
    • Cordón, O.1    del Jesus, M.J.2    Herrera, F.3
  • 8
    • 0035415952 scopus 로고    scopus 로고
    • Generating the knowledge base of a fuzzy rule-based system by the genetic learning of the data base
    • Cordón O., Herrera F., and Villar P. Generating the knowledge base of a fuzzy rule-based system by the genetic learning of the data base. IEEE Trans. Fuzzy Systems 9 4 (2001) 667-674
    • (2001) IEEE Trans. Fuzzy Systems , vol.9 , Issue.4 , pp. 667-674
    • Cordón, O.1    Herrera, F.2    Villar, P.3
  • 9
    • 0036475811 scopus 로고    scopus 로고
    • Linguistic modeling by hierarchical systems of linguistic rules
    • Cordón O., Herrera F., and Zwir I. Linguistic modeling by hierarchical systems of linguistic rules. IEEE Trans. Fuzzy Systems 10 1 (2002) 2-20
    • (2002) IEEE Trans. Fuzzy Systems , vol.10 , Issue.1 , pp. 2-20
    • Cordón, O.1    Herrera, F.2    Zwir, I.3
  • 11
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learning Res. 7 (2006) 1-30
    • (2006) J. Mach. Learning Res. , vol.7 , pp. 1-30
    • Demšar, J.1
  • 12
    • 84943987463 scopus 로고
    • Multiple comparisons among means
    • Dunn O. Multiple comparisons among means. J. Amer. Statist. Assoc. 56 (1961) 52-64
    • (1961) J. Amer. Statist. Assoc. , vol.56 , pp. 52-64
    • Dunn, O.1
  • 13
    • 1442356040 scopus 로고    scopus 로고
    • A multiple resampling method for learning from imbalanced data sets
    • Estabrooks A., Jo T., and Japkowicz N. A multiple resampling method for learning from imbalanced data sets. Comput. Intelligence 20 1 (2004) 18-36
    • (2004) Comput. Intelligence , vol.20 , Issue.1 , pp. 18-36
    • Estabrooks, A.1    Jo, T.2    Japkowicz, N.3
  • 15
    • 84944811700 scopus 로고
    • The use of ranks to avoid the assumption of normality implicit in the analysis of variance
    • Friedman M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Amer. Statist. Assoc. 32 (1937) 675-701
    • (1937) J. Amer. Statist. Assoc. , vol.32 , pp. 675-701
    • Friedman, M.1
  • 16
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • Friedman M. A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Statist. 11 (1940) 86-92
    • (1940) Ann. Math. Statist. , vol.11 , pp. 86-92
    • Friedman, M.1
  • 17
    • 0037332849 scopus 로고    scopus 로고
    • Increasing sensitivity of preterm birth by changing rule strengths
    • Grzymala-Busse J.W., Goodwin L.K., and Zhang X. Increasing sensitivity of preterm birth by changing rule strengths. Pattern Recognition Lett. 24 6 (2003) 903-910
    • (2003) Pattern Recognition Lett. , vol.24 , Issue.6 , pp. 903-910
    • Grzymala-Busse, J.W.1    Goodwin, L.K.2    Zhang, X.3
  • 18
    • 27144479454 scopus 로고    scopus 로고
    • Learning from imbalanced data sets with boosting and data generation: the databoost-im approach
    • Guo H., and Viktor H.L. Learning from imbalanced data sets with boosting and data generation: the databoost-im approach. SIGKDD Explorations 6 1 (2004) 30-39
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 30-39
    • Guo, H.1    Viktor, H.L.2
  • 19
    • 84931162639 scopus 로고
    • The condensed nearest neighbor rule
    • Hart P. The condensed nearest neighbor rule. IEEE Trans. Inform. Theory 14 (1968) 515-516
    • (1968) IEEE Trans. Inform. Theory , vol.14 , pp. 515-516
    • Hart, P.1
  • 20
    • 0002294347 scopus 로고
    • A simple sequentially rejective multiple test procedure
    • Holm S. A simple sequentially rejective multiple test procedure. Scand. J. Statist. 6 (1979) 65-70
    • (1979) Scand. J. Statist. , vol.6 , pp. 65-70
    • Holm, S.1
  • 21
    • 0001750957 scopus 로고
    • Approximations of the critical region of the friedman statistic
    • Iman R., and Davenport J. Approximations of the critical region of the friedman statistic. Comm. Statist. Part A Theory Methods 9 (1980) 571-595
    • (1980) Comm. Statist. Part A Theory Methods , vol.9 , pp. 571-595
    • Iman, R.1    Davenport, J.2
  • 22
    • 0035415473 scopus 로고    scopus 로고
    • Effect of rule weights in fuzzy rule-based classification systems
    • Ishibuchi H., and Nakashima T. Effect of rule weights in fuzzy rule-based classification systems. IEEE Trans. Fuzzy Systems 9 4 (2001) 506-515
    • (2001) IEEE Trans. Fuzzy Systems , vol.9 , Issue.4 , pp. 506-515
    • Ishibuchi, H.1    Nakashima, T.2
  • 24
    • 0346781550 scopus 로고    scopus 로고
    • Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining
    • Ishibuchi H., and Yamamoto T. Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining. Fuzzy Sets and Systems 141 1 (2004) 59-88
    • (2004) Fuzzy Sets and Systems , vol.141 , Issue.1 , pp. 59-88
    • Ishibuchi, H.1    Yamamoto, T.2
  • 25
    • 3543091439 scopus 로고    scopus 로고
    • Comparison of heuristic criteria for fuzzy rule selection in classification problems
    • Ishibuchi H., and Yamamoto T. Comparison of heuristic criteria for fuzzy rule selection in classification problems. Fuzzy Optim. Decision Making 3 2 (2004) 119-139
    • (2004) Fuzzy Optim. Decision Making , vol.3 , Issue.2 , pp. 119-139
    • Ishibuchi, H.1    Yamamoto, T.2
  • 26
    • 26844469668 scopus 로고    scopus 로고
    • Rule weight specification in fuzzy rule-based classification systems
    • Ishibuchi H., and Yamamoto T. Rule weight specification in fuzzy rule-based classification systems. IEEE Trans. Fuzzy Systems 13 (2005) 428-435
    • (2005) IEEE Trans. Fuzzy Systems , vol.13 , pp. 428-435
    • Ishibuchi, H.1    Yamamoto, T.2
  • 27
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: a systematic study
    • Japkowicz N., and Stephen S. The class imbalance problem: a systematic study. Intelligent Data Anal. 6 5 (2002) 429-450
    • (2002) Intelligent Data Anal. , vol.6 , Issue.5 , pp. 429-450
    • Japkowicz, N.1    Stephen, S.2
  • 28
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • Kubat M., Holte R., and Matwin S. Machine learning for the detection of oil spills in satellite radar images. Mach. Learning 30 2-3 (1998) 195-215
    • (1998) Mach. Learning , vol.30 , Issue.2-3 , pp. 195-215
    • Kubat, M.1    Holte, R.2    Matwin, S.3
  • 29
    • 0001972236 scopus 로고    scopus 로고
    • Addressing the curse of imbalanced training sets: one-sided selection
    • Kubat M., and Matwin S. Addressing the curse of imbalanced training sets: one-sided selection. Internat. Conf. Machine Learning (1997) 179-186
    • (1997) Internat. Conf. Machine Learning , pp. 179-186
    • Kubat, M.1    Matwin, S.2
  • 30
    • 33846238469 scopus 로고    scopus 로고
    • A weighting function for improving fuzzy classification systems performance
    • Mansoori E., Zolghadri M., and Katebi S. A weighting function for improving fuzzy classification systems performance. Fuzzy Sets and Systems 158 5 (2007) 583-591
    • (2007) Fuzzy Sets and Systems , vol.158 , Issue.5 , pp. 583-591
    • Mansoori, E.1    Zolghadri, M.2    Katebi, S.3
  • 32
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • Provost F., and Fawcett T. Robust classification for imprecise environments. Mach. Learning 42 3 (2001) 203-231
    • (2001) Mach. Learning , vol.42 , Issue.3 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 33
    • 32344438970 scopus 로고    scopus 로고
    • Extreme rebalancing for SVMs: a case study
    • Raskutti B., and Kowalczyk A. Extreme rebalancing for SVMs: a case study. SIGKDD Explorations 6 1 (2004) 60-69
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 60-69
    • Raskutti, B.1    Kowalczyk, A.2
  • 39
    • 23944466178 scopus 로고    scopus 로고
    • The effect of imbalanced data class distribution on fuzzy classifiers-experimental study
    • Visa S., and Ralescu A. The effect of imbalanced data class distribution on fuzzy classifiers-experimental study. IEEE Internat. Conf. on Fuzzy Systems (2005) 749-754
    • (2005) IEEE Internat. Conf. on Fuzzy Systems , pp. 749-754
    • Visa, S.1    Ralescu, A.2
  • 40
    • 0000769851 scopus 로고
    • Generating fuzzy rules by learning from examples
    • Wang L., and Mendel J. Generating fuzzy rules by learning from examples. IEEE Trans. Systems Man Cybernet. 25 2 (1992) 353-361
    • (1992) IEEE Trans. Systems Man Cybernet. , vol.25 , Issue.2 , pp. 353-361
    • Wang, L.1    Mendel, J.2
  • 41
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity: a unifying framework
    • Weiss G. Mining with rarity: a unifying framework. SIGKDD Explorations 6 1 (2004) 7-19
    • (2004) SIGKDD Explorations , vol.6 , Issue.1 , pp. 7-19
    • Weiss, G.1
  • 43
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: the effect of class distribution on tree induction
    • Weiss G., and Provost F. Learning when training data are costly: the effect of class distribution on tree induction. J. Artificial Intelligence Res. 19 (2003) 315-354
    • (2003) J. Artificial Intelligence Res. , vol.19 , pp. 315-354
    • Weiss, G.1    Provost, F.2
  • 44
    • 0001884644 scopus 로고
    • Individual comparisons by ranking methods
    • Wilcoxon F. Individual comparisons by ranking methods. Biometrics 1 (1945) 80-83
    • (1945) Biometrics , vol.1 , pp. 80-83
    • Wilcoxon, F.1
  • 45
    • 0015361129 scopus 로고
    • Asymptotic properties of nearest neighbor rules using edited data
    • Wilson D.R. Asymptotic properties of nearest neighbor rules using edited data. IEEE Trans. Systems Man Comm. 2 3 (1972) 408-421
    • (1972) IEEE Trans. Systems Man Comm. , vol.2 , Issue.3 , pp. 408-421
    • Wilson, D.R.1
  • 46
    • 0343081513 scopus 로고    scopus 로고
    • Reduction techniques for instance-based learning algorithms
    • Wilson D.R., and Martinez T.R. Reduction techniques for instance-based learning algorithms. Mach. Learning 38 3 (2000) 257-286
    • (2000) Mach. Learning , vol.38 , Issue.3 , pp. 257-286
    • Wilson, D.R.1    Martinez, T.R.2
  • 47
    • 33947326736 scopus 로고    scopus 로고
    • Power distribution fault cause identification with imbalanced data using the data mining-based fuzzy classification e-algorithm
    • Xu L., Chow M., and Taylor L. Power distribution fault cause identification with imbalanced data using the data mining-based fuzzy classification e-algorithm. IEEE Trans. Power Systems 22 1 (2007) 164-171
    • (2007) IEEE Trans. Power Systems , vol.22 , Issue.1 , pp. 164-171
    • Xu, L.1    Chow, M.2    Taylor, L.3
  • 48
    • 0004252445 scopus 로고    scopus 로고
    • Prentice-Hall, Upper Saddle River, NJ
    • Zar J. Biostatistical Analysis (1999), Prentice-Hall, Upper Saddle River, NJ
    • (1999) Biostatistical Analysis
    • Zar, J.1
  • 49
    • 33749057780 scopus 로고    scopus 로고
    • L. Zhuang, H. Dai, X. Hang, A novel field learning algorithm for dual imbalance text classification, in: International Conf. on Fuzzy Systems and Knowledge Discovery, Lecture Notes on Artificial Intelligence, Vol. 3614, 2005, pp. 39-48.
    • L. Zhuang, H. Dai, X. Hang, A novel field learning algorithm for dual imbalance text classification, in: International Conf. on Fuzzy Systems and Knowledge Discovery, Lecture Notes on Artificial Intelligence, Vol. 3614, 2005, pp. 39-48.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.