메뉴 건너뛰기




Volumn 2007, Issue , 2007, Pages 203-208

Classifying imbalanced data using a Bagging Ensemble Variation (BEV)

Author keywords

Classification; Decision tree; Imbalanced data; Machine learning; Support vector machine

Indexed keywords

BAGGING ENSEMBLE VARIATION (BEV); CLASSIFICATION ENSEMBLE; IMBALANCED DATA; MINORITY CLASS DATA;

EID: 34248390180     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1233341.1233378     Document Type: Conference Paper
Times cited : (64)

References (29)
  • 2
    • 0003790115 scopus 로고    scopus 로고
    • The effects of classification distribution on classifier learning: An empirical study
    • Technical Report ML-TR-44, Department of Computer Science, Rutgers University, Aug
    • Weiss, G.M. and Provost, F., The effects of classification distribution on classifier learning: an empirical study, Technical Report ML-TR-44, Department of Computer Science, Rutgers University, Aug. 2001.
    • (2001)
    • Weiss, G.M.1    Provost, F.2
  • 3
    • 0342921360 scopus 로고
    • Wheel shelling and spalling - an interpretive review, Rail Transportation 1989
    • Stone, D.H. and Moyar G.J., Wheel shelling and spalling - an interpretive review, Rail Transportation 1989, ASME, pp.19-31, 1989.
    • (1989) ASME , pp. 19-31
    • Stone, D.H.1    Moyar, G.J.2
  • 4
    • 0342487269 scopus 로고    scopus 로고
    • Wheel failures on heavy haul freight wheels due to subsurface effects
    • Qingdao, China, pp
    • Marais, J.J, Wheel failures on heavy haul freight wheels due to subsurface effects, Proc 12th International Wheelset Congress, Qingdao, China, pp. 306-314, 1998.
    • (1998) Proc 12th International Wheelset Congress , pp. 306-314
    • Marais, J.J.1
  • 5
    • 0026140719 scopus 로고
    • Rolling contact fatigue in railway wheels under high axle loads
    • Mutton, P.J., Epp, C.J. and Dudek, J., Rolling contact fatigue in railway wheels under high axle loads, Wear. Vol. 144, pp. 139-152, 1991.
    • (1991) Wear , vol.144 , pp. 139-152
    • Mutton, P.J.1    Epp, C.J.2    Dudek, J.3
  • 8
    • 27144489164 scopus 로고    scopus 로고
    • A tutorial on support vector machines for pattern recognition
    • Burges, C. J. C. A tutorial on support vector machines for pattern recognition, Knowledge discovery and Data Mining, 2, pp. 1-43, 1998.
    • (1998) Knowledge discovery and Data Mining , vol.2 , pp. 1-43
    • Burges, C.J.C.1
  • 10
    • 0002714543 scopus 로고    scopus 로고
    • Making large scale SVM learning practical
    • ed. Scholkopf, B, Burges, C. and Smola, A. MIT Press, Cambridge, USA
    • Joachims, T. Making large scale SVM learning practical. Advances in Kernel Methods - Support Vector Learning, ed. Scholkopf, B, Burges, C. and Smola, A. MIT Press, Cambridge, USA, 1998.
    • (1998) Advances in Kernel Methods - Support Vector Learning
    • Joachims, T.1
  • 11
    • 34248390447 scopus 로고    scopus 로고
    • Ding, C. H.Q. and Dubchak, I, Multi-class protein fold recognition using support vector machines and neural networks
    • Ding, C. H.Q. and Dubchak, I., Multi-class protein fold recognition using support vector machines and neural networks.
  • 12
    • 34248395882 scopus 로고    scopus 로고
    • Quinlan, J. R., C4.5: Programs for machine learning, Morgan Kaufmann Publishers, Inc. 1993.
    • Quinlan, J. R., C4.5: Programs for machine learning, Morgan Kaufmann Publishers, Inc. 1993.
  • 16
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman, L., Bagging predictors, Machine Learning, 24, pp. 123-140, 1996.
    • (1996) Machine Learning , vol.24 , pp. 123-140
    • Breiman, L.1
  • 17
    • 33747889797 scopus 로고    scopus 로고
    • Predictive learning via rule ensembles
    • Technical Report, Stanford University
    • Friedman, J. H. and Popescu, B. E., Predictive learning via rule ensembles. Technical Report, Stanford University, 2005.
    • (2005)
    • Friedman, J.H.1    Popescu, B.E.2
  • 21
    • 0346586663 scopus 로고    scopus 로고
    • Chawla, N.V., Bowyer, K.W., Hall, L.O., and Kegelmeyer, W.P., SMOTE: synthetic minority over-sampling technique, Journal of Artificial Intelligence Research. 16, pp. 341-378, 2002.
    • Chawla, N.V., Bowyer, K.W., Hall, L.O., and Kegelmeyer, W.P., SMOTE: synthetic minority over-sampling technique, Journal of Artificial Intelligence Research. Vol (16), pp. 341-378, 2002.
  • 23
    • 29144443664 scopus 로고    scopus 로고
    • Minority report in fraud detection: Classification of skewed data
    • Phua, C., Alahakoon, D., and Lee, V., Minority report in fraud detection: classification of skewed data, SigKdd Explorations. Vol 6(1), pp. 50-59.
    • SigKdd Explorations , vol.6 , Issue.1 , pp. 50-59
    • Phua, C.1    Alahakoon, D.2    Lee, V.3
  • 24
    • 84926662675 scopus 로고    scopus 로고
    • Cover, T. and Hart P., Nearest neighbor pattern classification. IEEE Transactions on Information Theory, 13, pp 21-27, 1967.
    • Cover, T. and Hart P., "Nearest neighbor pattern classification". IEEE Transactions on Information Theory, Vol (13), pp 21-27, 1967.
  • 25
    • 0003555184 scopus 로고    scopus 로고
    • Nearest-neighbor classification techniques
    • Los Alomitos, CA
    • Dasarathy, B. V., "Nearest-neighbor classification techniques". IEEE Computer Society Press, Los Alomitos, CA.
    • IEEE Computer Society Press
    • Dasarathy, B.V.1
  • 27
    • 0027698884 scopus 로고
    • An improved algorithm for neural network classification of imbalanced training set
    • November
    • Anand, R., Mehrotra, K. G., Nohan, C. K., and Ranka, S., "An improved algorithm for neural network classification of imbalanced training set". IEEE Transactions on Neural Networks, Vol. 4, No. 6, pp 962-969, November 1993.
    • (1993) IEEE Transactions on Neural Networks , vol.4 , Issue.6 , pp. 962-969
    • Anand, R.1    Mehrotra, K.G.2    Nohan, C.K.3    Ranka, S.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.