-
2
-
-
33845536164
-
The class imbalance problem: A systematic study
-
N. Japkowicz, and S. Stephen The class imbalance problem: a systematic study Intelligent Data Analysis 6 5 2002 429 449
-
(2002)
Intelligent Data Analysis
, vol.6
, Issue.5
, pp. 429-449
-
-
Japkowicz, N.1
Stephen, S.2
-
3
-
-
54949132937
-
A comparative study on rough set based class imbalance learning
-
J. Liu, Q. Hu, and D. Yu A comparative study on rough set based class imbalance learning Knowledge-Based Systems 21 8 2008 753 763
-
(2008)
Knowledge-Based Systems
, vol.21
, Issue.8
, pp. 753-763
-
-
Liu, J.1
Hu, Q.2
Yu, D.3
-
4
-
-
33646107181
-
Learning from imbalanced data in surveillance of nosocomial infection
-
G. Cohen, M. Hilario, H. Sax, S. Hugonnet, and A. Geissbuhler Learning from imbalanced data in surveillance of nosocomial infection Artificial Intelligence in Medicine 37 1 2006 7 18
-
(2006)
Artificial Intelligence in Medicine
, vol.37
, Issue.1
, pp. 7-18
-
-
Cohen, G.1
Hilario, M.2
Sax, H.3
Hugonnet, S.4
Geissbuhler, A.5
-
6
-
-
51149102669
-
An application of supervised and unsupervised learning approaches to telecommunications fraud detection
-
C.S. Hilas, and P.A. Mastorocostas An application of supervised and unsupervised learning approaches to telecommunications fraud detection Knowledge-Based Systems 21 7 2008 721 726
-
(2008)
Knowledge-Based Systems
, vol.21
, Issue.7
, pp. 721-726
-
-
Hilas, C.S.1
Mastorocostas, P.A.2
-
7
-
-
0033336136
-
Distributed data mining in credit card fraud detection
-
P.K. Chan, F. Wei, A. Prodromidis, and S.J. Stolfo Distributed data mining in credit card fraud detection IEEE Intelligent Systems 14 6 1999 67 74 (Pubitemid 30535784)
-
(1999)
IEEE Intelligent Systems and Their Applications
, vol.14
, Issue.6
, pp. 67-74
-
-
Chan, P.K.1
Fan, W.2
Prodromidis, A.L.3
Stolfo, S.J.4
-
8
-
-
0031998121
-
Machine learning for the detection of oil spills in satellite radar images
-
M. Kubat, R.C. Holte, and S. Matwin Machine learning for the detection of oil spills in satellite radar images Machine Learning 30 2-3 1998 195 215
-
(1998)
Machine Learning
, vol.30
, Issue.23
, pp. 195-215
-
-
Kubat, M.1
Holte, R.C.2
Matwin, S.3
-
9
-
-
17844387127
-
Neighbor-weighted K-nearest neighbor for unbalanced text corpus
-
DOI 10.1016/j.eswa.2004.12.023, PII S0957417404001708
-
S. Tan Neighbor-weighted K-nearest neighbor for unbalanced text corpus Expert Systems with Applications 28 4 2005 667 671 (Pubitemid 40583844)
-
(2005)
Expert Systems with Applications
, vol.28
, Issue.4
, pp. 667-671
-
-
Tan, S.1
-
10
-
-
16644402628
-
Feature selection for text categorization on imbalanced data
-
Z. Zheng, X. Wu, and R. Srihari Feature selection for text categorization on imbalanced data SIGKDD Explorations Newsletter 6 1 2004 80 89
-
(2004)
SIGKDD Explorations Newsletter
, vol.6
, Issue.1
, pp. 80-89
-
-
Zheng, Z.1
Wu, X.2
Srihari, R.3
-
11
-
-
33646142788
-
Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem
-
Y.-M. Huang, C.-M. Hung, and H.C. Jiau Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem Nonlinear Analysis: Real World Applications 7 4 2006 720 757
-
(2006)
Nonlinear Analysis: Real World Applications
, vol.7
, Issue.4
, pp. 720-757
-
-
Huang, Y.-M.1
Hung, C.-M.2
Jiau, H.C.3
-
12
-
-
33646421421
-
Evaluation of classifiers for an uneven class distribution problem
-
S. Daskalaki, I. Kopanas, and N. Avouris Evaluation of classifiers for an uneven class distribution problem Applied Artificial Intelligence 20 5 2006 381 417
-
(2006)
Applied Artificial Intelligence
, vol.20
, Issue.5
, pp. 381-417
-
-
Daskalaki, S.1
Kopanas, I.2
Avouris, N.3
-
13
-
-
80052415991
-
Class imbalance methods for translation initiation site recognition in DNA sequences
-
N. García-Pedrajas, J. Pérez-Rodríguez, M. García-Pedrajas, D. Ortiz-Boyer, and C. Fyfe Class imbalance methods for translation initiation site recognition in DNA sequences Knowledge-Based Systems 25 1 2012 22 34
-
(2012)
Knowledge-Based Systems
, vol.25
, Issue.1
, pp. 22-34
-
-
García-Pedrajas, N.1
Pérez-Rodríguez, J.2
García-Pedrajas, M.3
Ortiz-Boyer, D.4
Fyfe, C.5
-
14
-
-
0036522693
-
Strategies for learning in class imbalance problems
-
R. Barandela, J.S. Sánchez, V. García, and E. Rangel Strategies for learning in class imbalance problems Pattern Recognition 36 3 2003 849 851
-
(2003)
Pattern Recognition
, vol.36
, Issue.3
, pp. 849-851
-
-
Barandela, R.1
Sánchez, J.S.2
García, V.3
Rangel, E.4
-
16
-
-
80052414830
-
Evolutionary-based selection of generalized instances for imbalanced classification
-
S. García, J. Derrac, I. Triguero, C.J. Carmona, and F. Herrera Evolutionary-based selection of generalized instances for imbalanced classification Knowledge-Based Systems 25 1 2012 3 12
-
(2012)
Knowledge-Based Systems
, vol.25
, Issue.1
, pp. 3-12
-
-
García, S.1
Derrac, J.2
Triguero, I.3
Carmona, C.J.4
Herrera, F.5
-
17
-
-
14644390912
-
Using AUC and accuracy in evaluating learning algorithms
-
DOI 10.1109/TKDE.2005.50
-
H. Jin, and C.X. Ling Using AUC and accuracy in evaluating learning algorithms IEEE Transactions on Knowledge and Data Engineering 17 3 2005 299 310 (Pubitemid 40320164)
-
(2005)
IEEE Transactions on Knowledge and Data Engineering
, vol.17
, Issue.3
, pp. 299-310
-
-
Huang, J.1
Ling, C.X.2
-
18
-
-
34547372256
-
Optimized precision - A new measure for classifier performance evaluation
-
1688586, 2006 IEEE Congress on Evolutionary Computation, CEC 2006
-
R. Ranawana, V. Palade, Optimized precision - a new measure for classifier performance evaluation, in: Proceedings of the IEEE Congress on Computational Intelligence, Vancouver, Canada, 2006, pp. 2254-2261. (Pubitemid 47130775)
-
(2006)
2006 IEEE Congress on Evolutionary Computation, CEC 2006
, pp. 2254-2261
-
-
Ranawana, R.1
Palade, V.2
-
20
-
-
35048878309
-
Learning with class skews and small disjuncts
-
R.C. Prati, G.E.A.P.A. Batista, M.C. Monard, Learning with class skews and small disjuncts, in: Proceedings of the 17th Brazilian Symposium on Artificial Intelligence, Sao Luiz, Brazil, 2004, pp. 296-306. (Pubitemid 39751639)
-
(2004)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.3171
, pp. 296-306
-
-
Prati, R.C.1
Batista, G.E.A.P.A.2
Monard, M.C.3
-
21
-
-
64049108468
-
Exploratory undersampling for class-imbalance learning
-
X.-Y. Liu, J. Wu, and Z.-H. Zhou Exploratory undersampling for class-imbalance learning IEEE Transactions on Systems, Man, and Cybernetics - Part B 39 2 2009 539 550
-
(2009)
IEEE Transactions on Systems, Man, and Cybernetics - Part B
, vol.39
, Issue.2
, pp. 539-550
-
-
Liu, X.-Y.1
Wu, J.2
Zhou, Z.-H.3
-
22
-
-
34547995826
-
Experimental perspectives on learning from imbalanced data
-
Corvalis, Oregon
-
J.V. Hulse, T.M. Khoshgoftaar, A. Napolitano, Experimental perspectives on learning from imbalanced data, in: Proceedings of the 24th International Conference on Machine Learning, Corvalis, Oregon, 2007, pp. 935-942.
-
(2007)
Proceedings of the 24th International Conference on Machine Learning
, pp. 935-942
-
-
Hulse, J.V.1
Khoshgoftaar, T.M.2
Napolitano, A.3
-
23
-
-
27144531570
-
A study of the behavior of several methods for balancing machine learning training data
-
G.E.A.P.A. Batista, R.C. Prati, and M.C. Monard A study of the behavior of several methods for balancing machine learning training data ACM SIGKDD Explorations Newsletter 6 1 2004 20 29
-
(2004)
ACM SIGKDD Explorations Newsletter
, vol.6
, Issue.1
, pp. 20-29
-
-
Batista, G.E.A.P.A.1
Prati, R.C.2
Monard, M.C.3
-
24
-
-
34547973397
-
The imbalance training sample problem: Under or over sampling
-
Springer-Verlag
-
R. Barandela, R.M. Valdovinos, J.S. Sánchez, and F.J. Ferri The imbalance training sample problem: under or over sampling Structural, Syntactic, and Statistical Pattern Recognition 2004 Springer-Verlag 806 814
-
(2004)
Structural, Syntactic, and Statistical Pattern Recognition
, pp. 806-814
-
-
Barandela, R.1
Valdovinos, R.M.2
Sánchez, J.S.3
Ferri, F.J.4
-
25
-
-
1442356040
-
A multiple resampling method for learning from imbalanced data sets
-
A. Estabrooks, T. Jo, and N. Japkowicz A multiple resampling method for learning from imbalanced data sets Computational Intelligence 20 1 2004 18 36
-
(2004)
Computational Intelligence
, vol.20
, Issue.1
, pp. 18-36
-
-
Estabrooks, A.1
Jo, T.2
Japkowicz, N.3
-
26
-
-
79957446849
-
A novel virtual sample generation method based on Gaussian distribution
-
J. Yang, X. Yu, Z.-Q. Xie, and J.-P. Zhang A novel virtual sample generation method based on Gaussian distribution Knowledge-Based Systems 24 6 2011 740 748
-
(2011)
Knowledge-Based Systems
, vol.24
, Issue.6
, pp. 740-748
-
-
Yang, J.1
Yu, X.2
Xie, Z.-Q.3
Zhang, J.-P.4
-
27
-
-
1442275185
-
Learning when training data are costly: The effect of class distribution on tree induction
-
G.M. Weiss, and F.J. Provost Learning when training data are costly: the effect of class distribution on tree induction Journal of Artificial Intelligence Research 19 2003 315 354 (Pubitemid 41525924)
-
(2003)
Journal of Artificial Intelligence Research
, vol.19
, pp. 315-354
-
-
Weiss, G.M.1
Provost, F.2
-
28
-
-
33745789237
-
Boosting prediction accuracy on imbalanced datasets with SVM ensembles
-
Advances in Knowledge Discovery and Data Mining - 10th Pacific-Asia Conference, PAKDD 2006, Proceedings
-
Y. Liu, A. An, X. Huang, Boosting prediction accuracy on imbalanced datasets with SVM ensembles, in: Proceedings of the 10th Pacific-Asia Conference on Knowledge Discovery and Data Mining, Singapore, 2006, pp. 107-118. (Pubitemid 44019410)
-
(2006)
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
, vol.3918
, pp. 107-118
-
-
Liu, Y.1
An, A.2
Huang, X.3
-
29
-
-
9444297357
-
SMOTEBoost: Improving Prediction of the Minority Class in Boosting
-
Knowledge Discovery in Databases: PKDD 2003
-
N.V. Chawla, A. Lazarevic, L.O. Hall, K.W. Bowyer, SMOTEBoost: improving prediction of the minority class in boosting, in: Proceedings of the 7th European Conference on Principles and Practice of Knowledge Discovery in Databases, Dubrovnik, Croatia, 2003, pp. 107-119. (Pubitemid 37231089)
-
(2003)
Proceedings of the 7th European Conference on Principles and Practice of Knowledge Discovery in Databases
, Issue.2838
, pp. 107-119
-
-
Chawla, N.V.1
Lazarevic, A.2
Hall, L.O.3
Bowyer, K.W.4
-
30
-
-
77954364694
-
On the use of surrounding neighbors for synthetic over-sampling of the minority class
-
Santander, Spain
-
V. García, J.S. Sánchez, R.A. Mollineda, On the use of surrounding neighbors for synthetic over-sampling of the minority class, in: Proceedings of the 8th WSEAS International Conference on Simulation, Modelling and Optimization, Santander, Spain, 2008, pp. 389-394.
-
(2008)
Proceedings of the 8th WSEAS International Conference on Simulation, Modelling and Optimization
, pp. 389-394
-
-
V. García1
-
31
-
-
27144501672
-
Borderline-SMOTE: A new over-sampling method in imbalanced data sets learning
-
Advances in Intelligent Computing: International Conference on Intelligent Computing, ICIC 2005. Proceedings
-
H. Han, W.-Y. Wang, B.-H. Mao, Borderline-SMOTE: a new over-sampling method in imbalanced data sets learning, in: Proceedings of the 1th International Conference on Intelligent Computing, Hefei, China, 2005, pp. 878-887. (Pubitemid 41491129)
-
(2005)
Lecture Notes in Computer Science
, vol.3644
, Issue.PART I
, pp. 878-887
-
-
Han, H.1
Wang, W.-Y.2
Mao, B.-H.3
-
32
-
-
77950231896
-
MSMOTE: Improving classification performance when training data is imbalanced
-
Qingdao, China
-
S. Hu, Y. Liang, L. Ma, Y. He, MSMOTE: improving classification performance when training data is imbalanced, in: Proceedings of the 2nd International Workshop on Computer Science and Engineering, Qingdao, China, 2009, pp. 13-17.
-
(2009)
Proceedings of the 2nd International Workshop on Computer Science and Engineering
, pp. 13-17
-
-
Hu, S.1
Liang, Y.2
Ma, L.3
He, Y.4
-
33
-
-
27144479454
-
Learning from imbalanced data sets with boosting and data generation: The DataBoost-IM approach
-
G. Hongyu, and V.L. Herna Learning from imbalanced data sets with boosting and data generation: the DataBoost-IM approach SIGKDD Explorations Newsletter 6 1 2004 30 39
-
(2004)
SIGKDD Explorations Newsletter
, vol.6
, Issue.1
, pp. 30-39
-
-
Hongyu, G.1
Herna, V.L.2
-
34
-
-
34547659409
-
KNN approach to unbalanced data distributions: A case study involving information extraction
-
Washington DC, USA
-
J. Zhang, I. Mani, kNN approach to unbalanced data distributions: a case study involving information extraction, in: Proceedings of the Workshop on Learning from Imbalanced Datasets, Washington DC, USA, 2003.
-
(2003)
Proceedings of the Workshop on Learning from Imbalanced Datasets
-
-
Zhang, J.1
Mani, I.2
-
35
-
-
0001972236
-
Addressing the curse of imbalanced training sets: One-sided selection
-
Nashville, USA
-
M. Kubat, S. Matwin, Addressing the curse of imbalanced training sets: one-sided selection, in: Proceedings of the 14th International Conference on Machine Learning, Nashville, USA, 1997, p. 179-186.
-
(1997)
Proceedings of the 14th International Conference on Machine Learning
, pp. 179-186
-
-
Kubat, M.1
Matwin, S.2
-
38
-
-
84947425690
-
Improving Identification of Difficult Small Classes by Balancing Class Distribution
-
Artificial Intelligence in Medicine
-
J. Laurikkala, Improving identification of difficult small classes by balancing class distribution, in: Proceedings of the 8th Conference on Artificial Intelligence in Medicine, Cascais, Portugal, 2001, pp. 63-66. (Pubitemid 33301585)
-
(2001)
Lecture Notes in Computer Science
, Issue.2101
, pp. 63-66
-
-
Laurikkala, J.1
-
39
-
-
0015361129
-
Asymptotic properties of nearest neighbour rules using edited data
-
D.L. Wilson Asymptotic properties of nearest neighbour rules using edited data IEEE Transactions on Systems, Man and Cybernetics 2 1972 408 421
-
(1972)
IEEE Transactions on Systems, Man and Cybernetics
, vol.2
, pp. 408-421
-
-
Wilson, D.L.1
-
41
-
-
34548131588
-
Investigating the effect of sampling methods for imbalanced data distributions
-
Taipei, Taiwan
-
S.-J. Yen, Y.-S. Lee, C.-H. Lin, J.-C. Ying, Investigating the effect of sampling methods for imbalanced data distributions, in: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, vol. 5, Taipei, Taiwan, 2006, pp. 4163-4168.
-
(2006)
Proceedings of the IEEE International Conference on Systems, Man and Cybernetics
, vol.5
, pp. 4163-4168
-
-
Yen, S.-J.1
Lee, Y.-S.2
Lin, C.-H.3
Ying, J.-C.4
-
42
-
-
70349617264
-
Evolutionary undersampling for classification with imbalanced datasets: Proposals and taxonomy
-
S. García, and F. Herrera Evolutionary undersampling for classification with imbalanced datasets: proposals and taxonomy Evolutionary Computation 17 3 2009 275 306
-
(2009)
Evolutionary Computation
, vol.17
, Issue.3
, pp. 275-306
-
-
García, S.1
Herrera, F.2
-
43
-
-
33750117549
-
Pruning support vectors for imbalanced data classification
-
DOI 10.1109/IJCNN.2005.1556167, 1556167, Proceedings of the International Joint Conference on Neural Networks, IJCNN 2005
-
X. Chen, B. Gerlach, D. Casasent, Pruning support vectors for imbalanced data classification, in: Proceedings of the International Joint Conference on Neural Networks, Montreal, Canada, 2005, pp. 1883-1888. (Pubitemid 44591487)
-
(2005)
Proceedings of the International Joint Conference on Neural Networks
, vol.3
, pp. 1883-1888
-
-
Chen, X.-W.1
Gerlach, B.2
Casasent, D.3
-
44
-
-
0035283313
-
Robust classification for imprecise environments
-
DOI 10.1023/A:1007601015854
-
F. Provost, and T. Fawcett Robust classification for imprecise environments Machine Learning 42 3 2001 203 231 (Pubitemid 32188799)
-
(2001)
Machine Learning
, vol.42
, Issue.3
, pp. 203-231
-
-
Provost, F.1
Fawcett, T.2
-
45
-
-
0031191630
-
The use of the area under the ROC curve in the evaluation of machine learning algorithms
-
PII S0031320396001422
-
A.P. Bradley The use of the area under the ROC curve in the evaluation of machine learning algorithms Pattern Recognition 30 7 1997 1145 1159 (Pubitemid 127406521)
-
(1997)
Pattern Recognition
, vol.30
, Issue.7
, pp. 1145-1159
-
-
Bradley, A.P.1
-
46
-
-
51849156137
-
Beyond accuracy, F-score and ROC: A family of discriminant measures for performance evaluation
-
Hobart, Australia
-
M. Sokolova, N. Japkowicz, S. Szpakowicz, Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation, in: Proceedings of the 19th ACS Australian Joint Conference on Artificial Intelligence, Hobart, Australia, 2006, pp. 1015-1021.
-
(2006)
Proceedings of the 19th ACS Australian Joint Conference on Artificial Intelligence
, pp. 1015-1021
-
-
Sokolova, M.1
Japkowicz, N.2
Szpakowicz, S.3
-
48
-
-
78149483936
-
Theoretical analysis of a performance measure for imbalanced data
-
Istanbul, Turkey
-
V. García, R.A. Mollineda, J.S. Sánchez, Theoretical analysis of a performance measure for imbalanced data, in: Proceedings of the 20th International Conference on Pattern Recognition, Istanbul, Turkey, 2010, pp. 617-620.
-
(2010)
Proceedings of the 20th International Conference on Pattern Recognition
, pp. 617-620
-
-
V. García1
-
49
-
-
76749092270
-
The WEKA data mining software: An update
-
M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H. Witten The WEKA data mining software: an update SIGKDD Explorations Newsletter 11 2009 10 18
-
(2009)
SIGKDD Explorations Newsletter
, vol.11
, pp. 10-18
-
-
Hall, M.1
Frank, E.2
Holmes, G.3
Pfahringer, B.4
Reutemann, P.5
Witten, I.H.6
-
50
-
-
56049098839
-
A visualization-based exploratory technique for classifier comparison with respect to multiple metrics and multiple domains
-
Antwerp, Belgium
-
R. Alaiz-Rodríguez, N. Japkowicz, P. Tischer, A visualization-based exploratory technique for classifier comparison with respect to multiple metrics and multiple domains, in: Proceedings of the 15th European Conference on Machine Learning, Antwerp, Belgium, 2008, pp. 660-665.
-
(2008)
Proceedings of the 15th European Conference on Machine Learning
, pp. 660-665
-
-
Alaiz-Rodríguez, R.1
-
51
-
-
12244279570
-
Data mining in metric space: An empirical analysis of supervised learning performance criteria
-
KDD-2004 - Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
-
R. Caruana, A. Niculescu-Mizil, Data mining in metric space: an empirical analysis of supervised learning performance criteria, in: Proceedings of the 10th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Seattle, USA, 2004, pp. 69-78. (Pubitemid 40114917)
-
(2004)
KDD-2004 - Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 69-78
-
-
Caruana, R.1
Niculescu-Mizil, A.2
-
52
-
-
50549093573
-
On the k-NN performance in a challenging scenario of imbalance and overlapping
-
V. García, R.A. Mollineda, and J.S. Sánchez On the k-NN performance in a challenging scenario of imbalance and overlapping Pattern Analysis and Applications 11 3 2008 269 280
-
(2008)
Pattern Analysis and Applications
, vol.11
, Issue.3
, pp. 269-280
-
-
García, V.1
Mollineda, R.A.2
Sánchez, J.S.3
-
53
-
-
71749101234
-
Knowledge discovery from imbalanced and noisy data
-
J.V. Hulse, and T. Khoshgoftaar Knowledge discovery from imbalanced and noisy data Data & Knowledge Engineering 68 12 2009 1513 1542
-
(2009)
Data & Knowledge Engineering
, vol.68
, Issue.12
, pp. 1513-1542
-
-
Hulse, J.V.1
Khoshgoftaar, T.2
-
55
-
-
77956198600
-
The impact of small disjuncts on classifier learning
-
R. Stahlbock, S.F. Crone, S. Lessmann, Annals of Information Systems Springer US (chapter 9)
-
G.M. Weiss The impact of small disjuncts on classifier learning R. Stahlbock, S.F. Crone, S. Lessmann, Data Mining Annals of Information Systems vol. 8 2010 Springer US 193 226 (chapter 9)
-
(2010)
Data Mining
, vol.8
, pp. 193-226
-
-
Weiss, G.M.1
-
56
-
-
79957915328
-
Addressing data complexity for imbalanced data sets: Analysis of SMOTE-based oversampling and evolutionary undersampling
-
doi:10.1007/s00500-010-0625-8 in press
-
J. Luengo, A. Fernández, S. García, F. Herrera, Addressing data complexity for imbalanced data sets: analysis of SMOTE-based oversampling and evolutionary undersampling, Soft Computing - A Fusion of Foundations, Methodologies and Applications, in press, doi:10.1007/s00500-010-0625-8.
-
Soft Computing - A Fusion of Foundations, Methodologies and Applications
-
-
J. Luengo1
|