메뉴 건너뛰기




Volumn 67, Issue 3, 2008, Pages 413-429

Conceptual equivalence for contrast mining in classification learning

Author keywords

Classification learning; Conceptual equivalence; Contrasting data groups; Knowledge discovery and representation

Indexed keywords

EDUCATION; KNOWLEDGE BASED SYSTEMS; KNOWLEDGE REPRESENTATION;

EID: 54349101200     PISSN: 0169023X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.datak.2008.07.001     Document Type: Article
Times cited : (16)

References (33)
  • 1
    • 54349124874 scopus 로고    scopus 로고
    • S.D. Bay, M.J. Pazzani, Detecting change in categorical data: Mining contrast sets, in: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1999, pp. 302-306.
    • S.D. Bay, M.J. Pazzani, Detecting change in categorical data: Mining contrast sets, in: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 1999, pp. 302-306.
  • 2
    • 33751367519 scopus 로고    scopus 로고
    • G.I. Webb, S. Butler, D. Newlands, On detecting differences between groups, in: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003, pp. 256-265.
    • G.I. Webb, S. Butler, D. Newlands, On detecting differences between groups, in: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003, pp. 256-265.
  • 3
    • 0030354375 scopus 로고    scopus 로고
    • C.E. Brodley, M.A. Friedl, Identifying and eliminating mislabeled training instances, in: Proceedings of the 13th National Conference on Artificial Intelligence (AAAI), 1996, pp. 799-805.
    • C.E. Brodley, M.A. Friedl, Identifying and eliminating mislabeled training instances, in: Proceedings of the 13th National Conference on Artificial Intelligence (AAAI), 1996, pp. 799-805.
  • 5
    • 0034143132 scopus 로고    scopus 로고
    • Noise detection and elimination in data preprocessing: experiments in medical domains
    • Gamberger D., Lavrac N., and Dzeroski S. Noise detection and elimination in data preprocessing: experiments in medical domains. Applied Artificial Intelligence 14 (2000) 205-223
    • (2000) Applied Artificial Intelligence , vol.14 , pp. 205-223
    • Gamberger, D.1    Lavrac, N.2    Dzeroski, S.3
  • 6
    • 54349108416 scopus 로고    scopus 로고
    • D. Gamberger, N. Lavrac, C. Groselj, Experiments with noise filtering in a medical domain. In: Proceedings of the 16th International Conference on Machine Learning (ICML), 1999, pp. 143-151.
    • D. Gamberger, N. Lavrac, C. Groselj, Experiments with noise filtering in a medical domain. In: Proceedings of the 16th International Conference on Machine Learning (ICML), 1999, pp. 143-151.
  • 8
    • 54349086368 scopus 로고    scopus 로고
    • S. Verbaeten, Identifying mislabeled training examples in ILP classification problems, in: Proceedings of the 12th Belgian-Dutch Conference on Machine Learning, 2002, pp. 1-8.
    • S. Verbaeten, Identifying mislabeled training examples in ILP classification problems, in: Proceedings of the 12th Belgian-Dutch Conference on Machine Learning, 2002, pp. 1-8.
  • 9
    • 1942484424 scopus 로고    scopus 로고
    • X. Zhu, X. Wu, Q. Chen, Eliminating class noise in large datasets, in: Proceedings of the 20th International Conference on Machine Learning (ICML), 2003, pp. 920-927.
    • X. Zhu, X. Wu, Q. Chen, Eliminating class noise in large datasets, in: Proceedings of the 20th International Conference on Machine Learning (ICML), 2003, pp. 920-927.
  • 10
    • 78149286827 scopus 로고    scopus 로고
    • J. Kubica, A. Moore, Probabilistic noise identification and data cleaning, in: Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM), 2003, pp. 131-138.
    • J. Kubica, A. Moore, Probabilistic noise identification and data cleaning, in: Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM), 2003, pp. 131-138.
  • 11
    • 54349103305 scopus 로고    scopus 로고
    • C.M. Tengm, Correcting noisy data, in: Proceedings of the 16th International Conference on Machine Learning, 1999, pp. 239-248.
    • C.M. Tengm, Correcting noisy data, in: Proceedings of the 16th International Conference on Machine Learning, 1999, pp. 239-248.
  • 12
    • 35048874948 scopus 로고    scopus 로고
    • Y. Yang, X. Wu, X. Zhu, Dealing with predictive-but-unpredictable attributes in noisy data sources, in: Proceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD), 2004, pp. 471-483.
    • Y. Yang, X. Wu, X. Zhu, Dealing with predictive-but-unpredictable attributes in noisy data sources, in: Proceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD), 2004, pp. 471-483.
  • 13
    • 0035789299 scopus 로고    scopus 로고
    • G. Hulten, L. Spencer, P. Domingos, Mining time-changing data streams, in: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2001, pp. 97-106.
    • G. Hulten, L. Spencer, P. Domingos, Mining time-changing data streams, in: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2001, pp. 97-106.
  • 14
    • 0035788947 scopus 로고    scopus 로고
    • W.N. Street, Y. Kim, A streaming ensemble algorithm (sea) for largescale classification, in: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2001, pp. 377-382.
    • W.N. Street, Y. Kim, A streaming ensemble algorithm (sea) for largescale classification, in: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2001, pp. 377-382.
  • 15
    • 78149292125 scopus 로고    scopus 로고
    • J.Z. Kolter, M.A. Maloof, Dynamic weighted majority: a new ensemble method for tracking concept drift, in: Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM), 2003, p. 123.
    • J.Z. Kolter, M.A. Maloof, Dynamic weighted majority: a new ensemble method for tracking concept drift, in: Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM), 2003, p. 123.
  • 16
    • 77952415079 scopus 로고    scopus 로고
    • H. Wang, W. Fan, P.S. Yu, J. Han, Mining concept drifting data streams using ensemble classifiers, in: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003, pp. 226-235.
    • H. Wang, W. Fan, P.S. Yu, J. Han, Mining concept drifting data streams using ensemble classifiers, in: Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2003, pp. 226-235.
  • 17
    • 32344442287 scopus 로고    scopus 로고
    • Y. Yang, X. Wu, X. Zhu, Combining proactive and reactive predictions for data streams, in: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2005, pp. 710-715.
    • Y. Yang, X. Wu, X. Zhu, Combining proactive and reactive predictions for data streams, in: Proceedings of the 11th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2005, pp. 710-715.
  • 18
    • 33749017306 scopus 로고    scopus 로고
    • Mining in anticipation for concept change: proactive-reactive prediction in data streams
    • Yang Y., Wu X., and Zhu X. Mining in anticipation for concept change: proactive-reactive prediction in data streams. Data Mining and Knowledge Discovery (DMKD) 13 3 (2006) 261-289
    • (2006) Data Mining and Knowledge Discovery (DMKD) , vol.13 , Issue.3 , pp. 261-289
    • Yang, Y.1    Wu, X.2    Zhu, X.3
  • 19
    • 54349108174 scopus 로고    scopus 로고
    • K. Wang, S. Zhou, C.A. Fu, J.X. Yu, Mining changes of classification by correspondence tracing, in: Proceedings of SIAM International Conference on Data Mining (SDM), 2003, pp. 95-106.
    • K. Wang, S. Zhou, C.A. Fu, J.X. Yu, Mining changes of classification by correspondence tracing, in: Proceedings of SIAM International Conference on Data Mining (SDM), 2003, pp. 95-106.
  • 20
    • 15544384582 scopus 로고    scopus 로고
    • S. Tsumoto, S. Hirano, Visualization of rule's similarity using multidimensional scaling, in: Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM), 2003, pp. 339-346.
    • S. Tsumoto, S. Hirano, Visualization of rule's similarity using multidimensional scaling, in: Proceedings of the 3rd IEEE International Conference on Data Mining (ICDM), 2003, pp. 339-346.
  • 21
    • 0030362215 scopus 로고    scopus 로고
    • B. Liu, W. Hsu, Post-analysis of learned rules, in: Proceedings of the 13th National Conference on Artificial Intelligence (AAAI), 1996, pp. 828-834.
    • B. Liu, W. Hsu, Post-analysis of learned rules, in: Proceedings of the 13th National Conference on Artificial Intelligence (AAAI), 1996, pp. 828-834.
  • 22
    • 0035789625 scopus 로고    scopus 로고
    • B. Liu, W. Hsu, Y. Ma, Discovering the set of fundamental rule changes, in: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2001, pp. 335-340.
    • B. Liu, W. Hsu, Y. Ma, Discovering the set of fundamental rule changes, in: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2001, pp. 335-340.
  • 24
    • 0028401306 scopus 로고
    • Case-based reasoning: foundational issues methodological variations and system approaches
    • Aamodt A., and Plaza E. Case-based reasoning: foundational issues methodological variations and system approaches. AI Communications 7 1 (1994) 39-59
    • (1994) AI Communications , vol.7 , Issue.1 , pp. 39-59
    • Aamodt, A.1    Plaza, E.2
  • 25
    • 54349088301 scopus 로고    scopus 로고
    • M.M. Richter, Classification and learning of similarity measures, Technical Report SR-92-18, University of Kaiserslautern, Federal Republic of Germany, 1992.
    • M.M. Richter, Classification and learning of similarity measures, Technical Report SR-92-18, University of Kaiserslautern, Federal Republic of Germany, 1992.
  • 26
    • 54349129355 scopus 로고    scopus 로고
    • K.P. Jantke, Nonstandard concepts of similarity in case-based reasoning, in: Proceedings of the 17th Annual Conference on Information Systems and Data Analysis: Prospects-Foundations-Applications, 1994, pp. 28-43.
    • K.P. Jantke, Nonstandard concepts of similarity in case-based reasoning, in: Proceedings of the 17th Annual Conference on Information Systems and Data Analysis: Prospects-Foundations-Applications, 1994, pp. 28-43.
  • 27
    • 33745728519 scopus 로고    scopus 로고
    • M. Gu, X. Tong, A. Aamodt, Comparing similarity calculation methods in conversational cbr, in: Proceedings of the IEEE International Conference on Information Reuse and Integration (IRI), 2005, pp. 427-432.
    • M. Gu, X. Tong, A. Aamodt, Comparing similarity calculation methods in conversational cbr, in: Proceedings of the IEEE International Conference on Information Reuse and Integration (IRI), 2005, pp. 427-432.
  • 28
    • 54349127888 scopus 로고    scopus 로고
    • C.L. Blake, C.J. Merz, UCI repository of machine learning databases, Department of Information and Computer Science, University of California, Irvine, 1998. .
    • C.L. Blake, C.J. Merz, UCI repository of machine learning databases, Department of Information and Computer Science, University of California, Irvine, 1998. .
  • 30
    • 54349097803 scopus 로고    scopus 로고
    • E. Frank, I.H. Witten, Generating accurate rule sets without global optimization, in: Proceedings of the 15th International Conference on Machine Learning (ICML), 1998, pp. 152-160.
    • E. Frank, I.H. Witten, Generating accurate rule sets without global optimization, in: Proceedings of the 15th International Conference on Machine Learning (ICML), 1998, pp. 152-160.
  • 31
    • 54349099762 scopus 로고    scopus 로고
    • W. Duch, R. Adamczak, K. Grabczewski, Extraction of logical rules from training data using backpropagation networks, in: Proceedings of the 1st Online Workshop on Soft Computing, 1996, pp. 25-30.
    • W. Duch, R. Adamczak, K. Grabczewski, Extraction of logical rules from training data using backpropagation networks, in: Proceedings of the 1st Online Workshop on Soft Computing, 1996, pp. 25-30.
  • 32
    • 54349087378 scopus 로고    scopus 로고
    • W. Duch, R. Adamczak, K. Grabczewski, M. Ishikawa, H. Ueda, Extraction of crisp logical rules using constrained backpropagation networks comparison of two new approaches, in: Proceedings of the European Symposium on Artificial Neural Networks, 1997, pp. 109-114.
    • W. Duch, R. Adamczak, K. Grabczewski, M. Ishikawa, H. Ueda, Extraction of crisp logical rules using constrained backpropagation networks comparison of two new approaches, in: Proceedings of the European Symposium on Artificial Neural Networks, 1997, pp. 109-114.
  • 33
    • 0035789299 scopus 로고    scopus 로고
    • G. Hulten, L. Spencer, P. Domingos, Mining time-changing data streams, in: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2001, pp. 97-106.
    • G. Hulten, L. Spencer, P. Domingos, Mining time-changing data streams, in: Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, 2001, pp. 97-106.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.