메뉴 건너뛰기




Volumn 14, Issue 1, 2013, Pages 13-26

Class-imbalanced classifiers for high-dimensional data

Author keywords

Class imbalanced prediction; Feature selection; Lack of data; Performance metrics; Threshold adjustment; Under sampling ensemble

Indexed keywords


EID: 84872812260     PISSN: 14675463     EISSN: 14774054     Source Type: Journal    
DOI: 10.1093/bib/bbs006     Document Type: Review
Times cited : (229)

References (49)
  • 1
    • 0038156116 scopus 로고    scopus 로고
    • A survey of the Predictive Toxicology Challenge 2000-2001
    • Helma C, Kramer S. A survey of the Predictive Toxicology Challenge 2000-2001. Bioinformatics 2003;19:1179-82.
    • (2003) Bioinformatics , vol.19 , pp. 1179-1182
    • Helma, C.1    Kramer, S.2
  • 2
    • 2942705206 scopus 로고    scopus 로고
    • Building an organ-specific carcinogenic database for SAR analyses
    • Young J, Tong W, Fang H, et al. Building an organ-specific carcinogenic database for SAR analyses. J Toxicol Environ Health A 2004;67:1363-89.
    • (2004) J Toxicol Environ Health A , vol.67 , pp. 1363-1389
    • Young, J.1    Tong, W.2    Fang, H.3
  • 3
    • 4444273205 scopus 로고    scopus 로고
    • Assessment of prediction confidence and domain extrapolation of two structure- activity relationship models for predicting estrogen receptor binding activity
    • Tong W, Xie Q, Hong H, et al. Assessment of prediction confidence and domain extrapolation of two structure- activity relationship models for predicting estrogen receptor binding activity. Environ Health Perspect 2004;112: 1249-54.
    • (2004) Environ Health Perspect , vol.112 , pp. 1249-1254
    • Tong, W.1    Xie, Q.2    Hong, H.3
  • 4
    • 1842579636 scopus 로고    scopus 로고
    • SAR modeling of genotoxic phenomena: the consequence on predictive performance of deviation from a unity ratio of genotoxicants/non-genotoxicants
    • Rosenkranz HS. SAR modeling of genotoxic phenomena: the consequence on predictive performance of deviation from a unity ratio of genotoxicants/non-genotoxicants. Mutat Res 2004;559:67-71.
    • (2004) Mutat Res , vol.559 , pp. 67-71
    • Rosenkranz, H.S.1
  • 5
    • 77956832881 scopus 로고    scopus 로고
    • Evaluation of pulsed-field gel electrophoresis profiles for identification of Salmonella serotypes
    • Zou W, Lin WJ, Foley SL, et al. Evaluation of pulsed-field gel electrophoresis profiles for identification of Salmonella serotypes. JClinMicrobiol 2010;48:3122-6.
    • (2010) J Clin Microbiol , vol.48 , pp. 3122-3126
    • Zou, W.1    Lin, W.J.2    Foley, S.L.3
  • 6
    • 0037226593 scopus 로고    scopus 로고
    • A molecular signature of metastasis in primary solid tumors
    • Ramaswamy S, Ross KN, Lander ES, et al. A molecular signature of metastasis in primary solid tumors. Nat Genet 2003;33:49-54.
    • (2003) Nat Genet , vol.33 , pp. 49-54
    • Ramaswamy, S.1    Ross, K.N.2    Lander, E.S.3
  • 7
    • 0037443891 scopus 로고    scopus 로고
    • Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection
    • Iizuka N, Oka M, Yamada-Okabe H, etal. Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. Lancet 2003;361:923-9.
    • (2003) Lancet , vol.361 , pp. 923-929
    • Iizuka, N.1    Oka, M.2    Yamada-Okabe, H.3
  • 8
    • 18244409933 scopus 로고    scopus 로고
    • Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
    • Shipp MA, Ross KN, Tamayo P, et al. Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat Med 2002;8: 68-74.
    • (2002) Nat Med , vol.8 , pp. 68-74
    • Shipp, M.A.1    Ross, K.N.2    Tamayo, P.3
  • 10
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • Bradley AP. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn 1997;30:1145-59.
    • (1997) Pattern Recogn , vol.30 , pp. 1145-1159
    • Bradley, A.P.1
  • 13
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • Provost F, Fawcett T. Robust classification for imprecise environments. Mach Learn 2001;42:203-31.
    • (2001) Mach Learn , vol.42 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 14
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: a systematic study
    • Japkowicz N, Stephen S. The class imbalance problem: a systematic study. IntellData Anal 2002;6:203-31.
    • (2002) Intell Data Anal , vol.6 , pp. 203-231
    • Japkowicz, N.1    Stephen, S.2
  • 15
    • 1442275185 scopus 로고    scopus 로고
    • Learning when training data are costly: the effect of class distribution on tree induction
    • Weiss GM, Provost F. Learning when training data are costly: the effect of class distribution on tree induction. JArtif Intell Res 2003;19:315-54.
    • (2003) J Artif Intell Res , vol.19 , pp. 315-354
    • Weiss, G.M.1    Provost, F.2
  • 16
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity: a unifying framework
    • Weiss GM. Mining with rarity: a unifying framework. SIGKDDExplorations 2004;6:7-19.
    • (2004) SIGKDD Explorations , vol.6 , pp. 7-19
    • Weiss, G.M.1
  • 17
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: special issue on learning from imbalanced data sets
    • Chawla NV, Japkowicz N, Kotcz A. Editorial: special issue on learning from imbalanced data sets. SIGKDD Explorations 2004;6:1-6.
    • (2004) SIGKDD Explorations , vol.6 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kotcz, A.3
  • 18
    • 69249159556 scopus 로고    scopus 로고
    • Development of biomarker classifiers from high-dimensional data
    • Baek S, Tsai CA, Chen JJ. Development of biomarker classifiers from high-dimensional data. Brief Bioinform 2009;10: 537-46.
    • (2009) Brief Bioinform , vol.10 , pp. 537-546
    • Baek, S.1    Tsai, C.A.2    Chen, J.J.3
  • 19
    • 77957988489 scopus 로고    scopus 로고
    • Class prediction for highdimensional class-imbalanced data
    • Blagus R, Lusa L. Class prediction for highdimensional class-imbalanced data. BMC Bioinformatics 2010;11:523.
    • (2010) BMC Bioinformatics , vol.11 , pp. 523
    • Blagus, R.1    Lusa, L.2
  • 20
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumors using gene expression data. J Am Stat Assoc 2002; 97:77-87.
    • (2002) J Am Stat Assoc , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 21
    • 0035478854 scopus 로고    scopus 로고
    • Random forest
    • Breiman L. Random forest. Mach Learn 2001;45:5-32.
    • (2001) Mach Learn , vol.45 , pp. 5-32
    • Breiman, L.1
  • 23
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon I, Weston J, Barnhill S, et al. Gene selection for cancer classification using support vector machines. Mach Learn 2002;46:389-422.
    • (2002) Mach Learn , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3
  • 24
    • 31344442851 scopus 로고    scopus 로고
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem
    • Zhou ZH, Liu XY. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans KnowlData Eng 2006;18:63-77.
    • (2006) IEEE Trans Knowl Data Eng , vol.18 , pp. 63-77
    • Zhou, Z.H.1    Liu, X.Y.2
  • 25
    • 0036522693 scopus 로고    scopus 로고
    • Strategies for learning in class imbalance problems
    • Barandela R, Sánchez JS, García V, etal. Strategies for learning in class imbalance problems. Pattern Recogn 2003;36: 849-51.
    • (2003) Pattern Recogn , vol.36 , pp. 849-851
    • Barandela, R.1    Sánchez, J.S.2    García, V.3
  • 27
    • 32344438970 scopus 로고    scopus 로고
    • Extreme re-balancing for SVMs: a case study
    • Raskutti B, Kowalczyk A. Extreme re-balancing for SVMs: a case study. SIGKDDExplorations 2004;6:60-9.
    • (2004) SIGKDD Explorations , vol.6 , pp. 60-69
    • Raskutti, B.1    Kowalczyk, A.2
  • 29
    • 20844441675 scopus 로고    scopus 로고
    • KBA. kernel boundary alignment considering imbalanced data distribution
    • Wu G, Chang EY. KBA: kernel boundary alignment considering imbalanced data distribution. IEEETransKnowlData Eng 2005;17:786-95.
    • (2005) IEEE Trans Knowl Data Eng , vol.17 , pp. 786-795
    • Wu, G.1    Chang, E.Y.2
  • 33
    • 77649320234 scopus 로고    scopus 로고
    • A classification procedure for highly imbalanced class sizes
    • Byon E, Shrivastava AK, Ding Y. A classification procedure for highly imbalanced class sizes. IEEE Trans 2010;42: 288-303.
    • (2010) IEEE Trans , vol.42 , pp. 288-303
    • Byon, E.1    Shrivastava, A.K.2    Ding, Y.3
  • 34
    • 0346586663 scopus 로고    scopus 로고
    • SMOTE: Synthetic minority over-sampling technique
    • Chawla NV, Bowyer KW, Hall LO, et al. SMOTE: Synthetic minority over-sampling technique. J Artif Intell Res 2002;16:321-57.
    • (2002) J Artif Intell Res , vol.16 , pp. 321-357
    • Chawla, N.V.1    Bowyer, K.W.2    Hall, L.O.3
  • 36
    • 31544483641 scopus 로고    scopus 로고
    • Classification ensembles for unbalanced class sizes in predictive toxicology
    • Chen JJ, Tsai CA, Young JF, et al. Classification ensembles for unbalanced class sizes in predictive toxicology. SAR QSAR EnvironRes 2005;16:517-29.
    • (2005) SAR QSAR EnvironRes , vol.16 , pp. 517-529
    • Chen, J.J.1    Tsai, C.A.2    Young, J.F.3
  • 37
    • 33745855143 scopus 로고    scopus 로고
    • Decision threshold adjustment in class prediction
    • Chen JJ, Tsai CA, Moon H, et al. Decision threshold adjustment in class prediction. SARQSAR Environ Res 2006; 17:337-52.
    • (2006) SARQSAR Environ Res , vol.17 , pp. 337-352
    • Chen, J.J.1    Tsai, C.A.2    Moon, H.3
  • 40
    • 70350719232 scopus 로고    scopus 로고
    • Meta-learning for imbalanced data and classification ensemble in binary classification
    • Lin SC, Chang YCI, Yang WN. Meta-learning for imbalanced data and classification ensemble in binary classification. Neurocomputing 2009;73:484-94.
    • (2009) Neurocomputing , vol.73 , pp. 484-494
    • Lin, S.C.1    Chang, Y.C.I.2    Yang, W.N.3
  • 41
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon U, Barkai N, Notterman DA, et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad SciUSA 1999;96:6745-50.
    • (1999) Proc Natl Acad SciUSA , vol.96 , pp. 6745-6750
    • Alon, U.1    Barkai, N.2    Notterman, D.A.3
  • 42
    • 0035234557 scopus 로고    scopus 로고
    • Genomic imprinting: parental influence on the genome
    • Reik W, Walter J. Genomic imprinting: parental influence on the genome. Nat RevGenet 2001;2:21-32.
    • (2001) Nat RevGenet , vol.2 , pp. 21-32
    • Reik, W.1    Walter, J.2
  • 43
    • 0037039323 scopus 로고    scopus 로고
    • Short interspersed transposable elements (SINEs) are excluded from imprinted regions in the human genome
    • Greally JM. Short interspersed transposable elements (SINEs) are excluded from imprinted regions in the human genome. ProcNatl Acad SciUSA 2002;99:327-32.
    • (2002) Proc Natl Acad Sci USA , vol.99 , pp. 327-332
    • Greally, J.M.1
  • 44
    • 0042838307 scopus 로고    scopus 로고
    • Breast cancer classification and prognosis based on gene expression profiles from a population-based study
    • Sotiriou C, Neo SY, McShane LM, et al. Breast cancer classification and prognosis based on gene expression profiles from a population-based study. ProcNatlAcadSciUSA 2003; 100:10393-8.
    • (2003) Proc Natl Acad Sci USA , vol.100 , pp. 10393-10398
    • Sotiriou, C.1    Neo, S.Y.2    McShane, L.M.3
  • 46
    • 0018646480 scopus 로고
    • Relationship of oestrogen-receptor status to survival in breast cancer
    • Bishop HM, Blamey RW, Elston CW, etal. Relationship of oestrogen-receptor status to survival in breast cancer. Lancet 1979;2:283-4.
    • (1979) Lancet , vol.2 , pp. 283-284
    • Bishop, H.M.1    Blamey, R.W.2    Elston, C.W.3
  • 47
    • 0035923521 scopus 로고    scopus 로고
    • Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses
    • Bhattacharjee A, Richards WG, Staunton J, et al. Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. ProcNatl Acad SciUSA 2001;98:13790-5.
    • (2001) Proc Natl Acad Sci USA , vol.98 , pp. 13790-13795
    • Bhattacharjee, A.1    Richards, W.G.2    Staunton, J.3
  • 48
    • 0000069532 scopus 로고    scopus 로고
    • The Non-Hodgkin's Lymphoma Classification Project, A., clinical evaluation of the international lymphoma study group classification of non-Hodgkin's, lymphoma
    • The Non-Hodgkin's Lymphoma Classification Project A clinical evaluation of the international lymphoma study group classification of non-Hodgkin's lymphoma. Blood 1997;89:3909-18.
    • (1997) Blood , vol.89 , pp. 3909-3918
  • 49
    • 63449142392 scopus 로고    scopus 로고
    • Filtering for increased power for microarray data analysis
    • Hackstadt AJ, Hess AM. Filtering for increased power for microarray data analysis. BMC Bioinformatics 2009;10:11.
    • (2009) BMC Bioinformatics , vol.10 , pp. 11
    • Hackstadt, A.J.1    Hess, A.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.