메뉴 건너뛰기




Volumn 2972, Issue , 2004, Pages 312-321

Class imbalances versus class overlapping: An analysis of a learning system behavior

Author keywords

[No Author keywords available]

Indexed keywords

AUTOMATION; DATA ACQUISITION; DATABASE SYSTEMS; LEARNING ALGORITHMS; PROBLEM SOLVING; ALGORITHMS; ARTIFICIAL INTELLIGENCE; LEARNING SYSTEMS;

EID: 9444270977     PISSN: 03029743     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1007/978-3-540-24694-7_32     Document Type: Conference Paper
Times cited : (292)

References (12)
  • 7
    • 33845536164 scopus 로고    scopus 로고
    • The class imbalance problem: A systematic study
    • N. Japkowicz and S. Stephen. The class imbalance problem: A systematic study. Intelligent Data Analysis, 6(5):429-450, 2002.
    • (2002) Intelligent Data Analysis , vol.6 , Issue.5 , pp. 429-450
    • Japkowicz, N.1    Stephen, S.2
  • 8
    • 9444298027 scopus 로고    scopus 로고
    • Improving identification of difficult small classes by balancing class distributions
    • University of Tampere, Finland
    • J. Laurikkala. Improving Identification of Difficult Small Classes by Balancing Class Distributions. Technical Report A-2001-2, University of Tampere, Finland, 2001.
    • (2001) Technical Report , vol.A-2001-2
    • Laurikkala, J.1
  • 10
    • 85101511266 scopus 로고    scopus 로고
    • Analysis and visualization of classifier performance: Comparison under imprecise class and cost distributions
    • F. J. Provost and T. Fawcett. Analysis and Visualization of Classifier Performance: Comparison under Imprecise Class and Cost Distributions. In Knowledge Discovery and Data Mining, pages 43-48, 1997.
    • (1997) Knowledge Discovery and Data Mining , pp. 43-48
    • Provost, F.J.1    Fawcett, T.2
  • 12
    • 0003790115 scopus 로고    scopus 로고
    • The effect of class distribution on classifier learning: An empirical study
    • Rutgers University, Department of Computer Science
    • G. M. Weiss and F. Provost. The Effect of Class Distribution on Classifier Learning: An Empirical Study. Technical Report ML-TR-44, Rutgers University, Department of Computer Science, 2001.
    • (2001) Technical Report , vol.ML-TR-44
    • Weiss, G.M.1    Provost, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.