메뉴 건너뛰기




Volumn 21, Issue 2-3, 2008, Pages 427-436

Training neural network classifiers for medical decision making: The effects of imbalanced datasets on classification performance

Author keywords

Class imbalance; Classification; Computer aided diagnosis; Feed forward neural networks

Indexed keywords

CLASSIFICATION (OF INFORMATION); COMPUTER AIDED DIAGNOSIS; CORRELATION METHODS; FEEDFORWARD NEURAL NETWORKS; MEDICAL APPLICATIONS; PARTICLE SWARM OPTIMIZATION (PSO);

EID: 40649126091     PISSN: 08936080     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neunet.2007.12.031     Document Type: Article
Times cited : (683)

References (40)
  • 4
    • 33746902328 scopus 로고    scopus 로고
    • Feature subset selection for improving the performance of false positive reduction in lung nodule CAD
    • Boroczky L., Zhao L., and Lee K.P. Feature subset selection for improving the performance of false positive reduction in lung nodule CAD. IEEE Transactions Information Technology in Biomedicine 10 (2006) 504-511
    • (2006) IEEE Transactions Information Technology in Biomedicine , vol.10 , pp. 504-511
    • Boroczky, L.1    Zhao, L.2    Lee, K.P.3
  • 5
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the roc curve in the evaluation of machine learning algorithms
    • Bradley A.P. The use of the area under the roc curve in the evaluation of machine learning algorithms. Pattern Recognition 30 (1997) 1145-1159
    • (1997) Pattern Recognition , vol.30 , pp. 1145-1159
    • Bradley, A.P.1
  • 6
    • 85120227669 scopus 로고    scopus 로고
    • Chan, H.-P., Sahiner, B., & Hadjiiski, L. (2004). Sample size and validation issues on the development of CAD systems. In Proceedings of the 18th international congress and exhibition on computer assisted radiology and surgery
    • Chan, H.-P., Sahiner, B., & Hadjiiski, L. (2004). Sample size and validation issues on the development of CAD systems. In Proceedings of the 18th international congress and exhibition on computer assisted radiology and surgery
  • 8
    • 0036464756 scopus 로고    scopus 로고
    • The particle swarm-explosion, stability, and convergence in a multidimensional complex space
    • Clerc M., and Kennedy J. The particle swarm-explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation 6 (2002) 58-73
    • (2002) IEEE Transactions on Evolutionary Computation , vol.6 , pp. 58-73
    • Clerc, M.1    Kennedy, J.2
  • 12
    • 0347993884 scopus 로고    scopus 로고
    • On the repeated use of databases for testing incremental improvement of computer-aided detection schemes
    • Gur D., Wagner R.F., and Chan H.-P. On the repeated use of databases for testing incremental improvement of computer-aided detection schemes. Academic Radiology 11 (2004) 103-105
    • (2004) Academic Radiology , vol.11 , pp. 103-105
    • Gur, D.1    Wagner, R.F.2    Chan, H.-P.3
  • 13
    • 35248840614 scopus 로고    scopus 로고
    • Habas, P. A., Zurada, J. M., Elmaghraby, A. S., & Tourassi, G. D. (2007). Particle swarm optimization of neural network CAD systems with clinically relevant objectives. In Proceedings of medical imaging 2007: Computer-aided diagnosis (pp. 65140M)
    • Habas, P. A., Zurada, J. M., Elmaghraby, A. S., & Tourassi, G. D. (2007). Particle swarm optimization of neural network CAD systems with clinically relevant objectives. In Proceedings of medical imaging 2007: Computer-aided diagnosis (pp. 65140M)
  • 16
    • 40649112959 scopus 로고    scopus 로고
    • Japkowicz, N. (2000). Learning from imbalanced data sets: a comparison of various strategies. In AAAI workshop on learning from imbalanced data sets (pp. 00-05)
    • Japkowicz, N. (2000). Learning from imbalanced data sets: a comparison of various strategies. In AAAI workshop on learning from imbalanced data sets (pp. 00-05)
  • 18
    • 34447514175 scopus 로고    scopus 로고
    • Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors
    • Jesneck J.L., Lo J.Y., and Baker J.A. Breast mass lesions: computer-aided diagnosis models with mammographic and sonographic descriptors. Radiology 244 (2007) 390-398
    • (2007) Radiology , vol.244 , pp. 390-398
    • Jesneck, J.L.1    Lo, J.Y.2    Baker, J.A.3
  • 19
    • 0029824432 scopus 로고    scopus 로고
    • A receiver operating characteristic partial area index for highly sensitive diagnostic tests
    • Jiang Y., Metz C.E., and Nishikawa R.M. A receiver operating characteristic partial area index for highly sensitive diagnostic tests. Radiology 201 (1996) 745-750
    • (1996) Radiology , vol.201 , pp. 745-750
    • Jiang, Y.1    Metz, C.E.2    Nishikawa, R.M.3
  • 20
    • 17144362818 scopus 로고    scopus 로고
    • Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success
    • Kawamoto K., Houlihan C.A., Balas E.A., and Lobach D.F. Improving clinical practice using clinical decision support systems: a systematic review of trials to identify features critical to success. British Medical Journal 330 (2005) 765-772
    • (2005) British Medical Journal , vol.330 , pp. 765-772
    • Kawamoto, K.1    Houlihan, C.A.2    Balas, E.A.3    Lobach, D.F.4
  • 21
    • 0029535737 scopus 로고    scopus 로고
    • Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of IEEE international conference on neural networks (pp. 1942-1948)
    • Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. In Proceedings of IEEE international conference on neural networks (pp. 1942-1948)
  • 22
    • 33645506499 scopus 로고    scopus 로고
    • Reduction of bias and variance for evaluation of computer-aided diagnostic schemes
    • Li Q., and Doi K. Reduction of bias and variance for evaluation of computer-aided diagnostic schemes. Medical Physics 33 (2006) 868-875
    • (2006) Medical Physics , vol.33 , pp. 868-875
    • Li, Q.1    Doi, K.2
  • 23
    • 33847686259 scopus 로고    scopus 로고
    • Comparison of typical evaluation methods for computer-aided diagnostic schemes: Monte Carlo simulation study
    • Li Q., and Doi K. Comparison of typical evaluation methods for computer-aided diagnostic schemes: Monte Carlo simulation study. Medical Physics 34 (2007) 871-876
    • (2007) Medical Physics , vol.34 , pp. 871-876
    • Li, Q.1    Doi, K.2
  • 24
    • 0036127092 scopus 로고    scopus 로고
    • A review of evidence of health benefit from artificial neural networks in medical intervention
    • Lisboa P.J. A review of evidence of health benefit from artificial neural networks in medical intervention. Neural Networks 15 (2002) 11-39
    • (2002) Neural Networks , vol.15 , pp. 11-39
    • Lisboa, P.J.1
  • 25
    • 33746901239 scopus 로고    scopus 로고
    • The use of artificial neural networks in decision support in cancer: a systematic review
    • Lisboa P.J., and Taktak A.F.G. The use of artificial neural networks in decision support in cancer: a systematic review. Neural Networks 19 (2006) 408-415
    • (2006) Neural Networks , vol.19 , pp. 408-415
    • Lisboa, P.J.1    Taktak, A.F.G.2
  • 26
    • 40649107951 scopus 로고    scopus 로고
    • Maloof, M. A. (2003). Learning when data sets are imbalanced and when costs are unequal and unknown. In Proceedings of workshop on learning from imbalanced data sets
    • Maloof, M. A. (2003). Learning when data sets are imbalanced and when costs are unequal and unknown. In Proceedings of workshop on learning from imbalanced data sets
  • 27
    • 51749123990 scopus 로고    scopus 로고
    • Mazurowski, M. A., Habas, P. A., Zurada, J. M., & Tourassi, G. D. (2007). Impact of low class prevalence on the performance evaluation of neural network based classifiers: Experimental study in the context of computer-assisted medical diagnosis. In Proceedings of international joint conference on neural networks (pp. 2005-2009)
    • Mazurowski, M. A., Habas, P. A., Zurada, J. M., & Tourassi, G. D. (2007). Impact of low class prevalence on the performance evaluation of neural network based classifiers: Experimental study in the context of computer-assisted medical diagnosis. In Proceedings of international joint conference on neural networks (pp. 2005-2009)
  • 28
    • 0032525017 scopus 로고    scopus 로고
    • Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuously-distributed data
    • Metz C.E., Herman B.A., and Shen J.-H. Maximum likelihood estimation of receiver operating characteristic (ROC) curves from continuously-distributed data. Statistics in Medicine 17 (1998) 1033-1053
    • (1998) Statistics in Medicine , vol.17 , pp. 1033-1053
    • Metz, C.E.1    Herman, B.A.2    Shen, J.-H.3
  • 30
    • 0141518516 scopus 로고    scopus 로고
    • Receiver operating characteristic curves and their use in radiology
    • Obuchowski N.A. Receiver operating characteristic curves and their use in radiology. Radiology 229 (2003) 3-8
    • (2003) Radiology , vol.229 , pp. 3-8
    • Obuchowski, N.A.1
  • 31
    • 0031162662 scopus 로고    scopus 로고
    • On dimensionality, sample size, and classification error of nonparametric linear classification algorithms
    • Raudys S. On dimensionality, sample size, and classification error of nonparametric linear classification algorithms. IEEE Transactions on Pattern Analysis and Machine Intelligence 19 (1997) 667-671
    • (1997) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.19 , pp. 667-671
    • Raudys, S.1
  • 32
    • 0026120032 scopus 로고
    • Small sample size effects in statistical pattern recognition: recommendations for practitioners
    • Raudys S.J., and Jain A.K. Small sample size effects in statistical pattern recognition: recommendations for practitioners. IEEE Transactions on Pattern Analysis and Machine Intelligence 13 (1991) 252-264
    • (1991) IEEE Transactions on Pattern Analysis and Machine Intelligence , vol.13 , pp. 252-264
    • Raudys, S.J.1    Jain, A.K.2
  • 34
    • 0033863591 scopus 로고    scopus 로고
    • Feature selection and classifier performance in computer-aided diagnosis: the effect of finite sample size
    • Sahiner B., Chan H.P., Petrick N., Wagner R.F., and Hadjiiski L. Feature selection and classifier performance in computer-aided diagnosis: the effect of finite sample size. Medical Physics 27 (2000) 1509-1522
    • (2000) Medical Physics , vol.27 , pp. 1509-1522
    • Sahiner, B.1    Chan, H.P.2    Petrick, N.3    Wagner, R.F.4    Hadjiiski, L.5
  • 38
    • 40649086754 scopus 로고    scopus 로고
    • Weiss, G. M., & Provost, F. (2001). The effect of class distribution on classifier learning: an empirical study. Technical report, Department of Computer Science, Rutgers University
    • Weiss, G. M., & Provost, F. (2001). The effect of class distribution on classifier learning: an empirical study. Technical report, Department of Computer Science, Rutgers University
  • 40
    • 31344442851 scopus 로고    scopus 로고
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem
    • Zhou Z.-H., and Liu X.-Y. Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Transactions on Knowledge and Data Engineering 18 (2006) 63-77
    • (2006) IEEE Transactions on Knowledge and Data Engineering , vol.18 , pp. 63-77
    • Zhou, Z.-H.1    Liu, X.-Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.