메뉴 건너뛰기




Volumn 6, Issue 5, 2002, Pages 429-449

The class imbalance problem: A systematic study

Author keywords

C5.0; class imbalances; concept learning; misclassification costs; Multi Layer Perceptrons; re sampling; Support Vector Machines

Indexed keywords

SUPPORT VECTOR MACHINES;

EID: 33845536164     PISSN: 1088467X     EISSN: 15714128     Source Type: Journal    
DOI: 10.3233/ida-2002-6504     Document Type: Article
Times cited : (2779)

References (26)
  • 11
    • 0034825091 scopus 로고    scopus 로고
    • Supervised versus unsupervised binary-learning by feedforward neural networks
    • N. Japkowicz, Supervised versus Unsupervised Binary-Learning by Feedforward Neural Networks, Machine Learning 42(1/2) (2001), 97-122.
    • (2001) Machine Learning , vol.42 , Issue.1-2 , pp. 97-122
    • Japkowicz, N.1
  • 13
    • 0001924639 scopus 로고    scopus 로고
    • Neural network classification and unequal prior class probabilities
    • Tricks of the Trade G. Orr R.-R. Muller and R. Caruana, eds Springer Verlag
    • S. Lawrence, I. Burns, A.D. Back, A.C. Tsoi and C.L. Giles, Neural Network Classification and Unequal Prior Class Probabilities, in: Tricks of the Trade, Lecture Notes in Computer Science State-of-the-Art Surveys, G. Orr, R.-R. Muller and R. Caruana, eds, Springer Verlag, 1998, pp. 299-314.
    • (1998) Lecture Notes in Computer Science State-of-the-Art Surveys , pp. 299-314
    • Lawrence, S.1    Burns, I.2    Back, A.D.3    Tsoi, A.C.4    Giles, C.L.5
  • 15
    • 0031998121 scopus 로고    scopus 로고
    • Machine learning for the detection of oil spills in satellite radar images
    • M. Kubat, R. Holte and S. Matwin, Machine Learning for the Detection of Oil Spills in Satellite Radar Images, Machine Learning 30 (1998), 195-215.
    • (1998) Machine Learning , vol.30 , pp. 195-215
    • Kubat, M.1    Holte, R.2    Matwin, S.3
  • 16
  • 23
    • 0001259758 scopus 로고
    • Overfitting avoidance as bias
    • C. Schaffer, Overfitting Avoidance as Bias, Machine Learning 10 (1993), 153-178.
    • (1993) Machine Learning , vol.10 , pp. 153-178
    • Schaffer, C.1
  • 26
    • 0003790115 scopus 로고    scopus 로고
    • The effect of class distribution on classifier learning: An empirical study
    • Department of Computer Science, Rutgers University
    • G.M. Weiss and F. Provost, The Effect of Class Distribution on Classifier Learning: An Empirical Study, Technical Report ML-TR-44, Department of Computer Science, Rutgers University, 2001.
    • (2001) Technical Report ML-TR-44
    • Weiss, G.M.1    Provost, F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.