메뉴 건너뛰기




Volumn , Issue , 2013, Pages 169-204

Artificial Intelligence in Geotechnical Engineering: Applications, Modeling Aspects, and Future Directions

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84882751629     PISSN: None     EISSN: None     Source Type: Book    
DOI: 10.1016/B978-0-12-398296-4.00008-8     Document Type: Chapter
Times cited : (70)

References (202)
  • 1
    • 43049084029 scopus 로고    scopus 로고
    • Predicting compaction of cohesionless soils using ANN
    • Abdel-Rahman A.H. Predicting compaction of cohesionless soils using ANN. Ground Improv. 2008, 161:3-8.
    • (2008) Ground Improv. , vol.161 , pp. 3-8
    • Abdel-Rahman, A.H.1
  • 2
    • 79952033867 scopus 로고    scopus 로고
    • Slope stability modeling using genetic programming
    • Adarsh S.A., Jangareddy M. Slope stability modeling using genetic programming. Int. J. Earth Sci. Eng. 2010, 3:1-8.
    • (2010) Int. J. Earth Sci. Eng. , vol.3 , pp. 1-8
    • Adarsh, S.A.1    Jangareddy, M.2
  • 3
    • 0035044111 scopus 로고    scopus 로고
    • Neural networks in civil engineering: 1989-2000
    • Adeli H. Neural networks in civil engineering: 1989-2000. Comput. Aided Civ. Infrastruct. E. 2001, 16:126-142.
    • (2001) Comput. Aided Civ. Infrastruct. E. , vol.16 , pp. 126-142
    • Adeli, H.1
  • 5
    • 80054958843 scopus 로고    scopus 로고
    • Modeling of permeability and compaction characteristics of soils using evolutionary polynomial regression
    • Ahangar-Asr A., Faramarzi A., Mottaghifard N., Javadi A.A. Modeling of permeability and compaction characteristics of soils using evolutionary polynomial regression. Comput. Geosci. 2011, 37:1860-1869.
    • (2011) Comput. Geosci. , vol.37 , pp. 1860-1869
    • Ahangar-Asr, A.1    Faramarzi, A.2    Mottaghifard, N.3    Javadi, A.A.4
  • 6
    • 34247132993 scopus 로고    scopus 로고
    • Artificial neural network application to estimate kinematic soil pile interaction response parameters
    • Ahmad I., El Naggar H., Kahn A.N. Artificial neural network application to estimate kinematic soil pile interaction response parameters. Soil Dynam. Earthquake Eng. 2007, 27:892-905.
    • (2007) Soil Dynam. Earthquake Eng. , vol.27 , pp. 892-905
    • Ahmad, I.1    El Naggar, H.2    Kahn, A.N.3
  • 7
    • 80055054635 scopus 로고    scopus 로고
    • Prediction of principal ground motion parameters using a hybrid method coupling artificial neural networks and simulated annealing
    • Alavi A.H., Gandomi A.H. Prediction of principal ground motion parameters using a hybrid method coupling artificial neural networks and simulated annealing. Comput. Struct. 2011, 89:2176-2194.
    • (2011) Comput. Struct. , vol.89 , pp. 2176-2194
    • Alavi, A.H.1    Gandomi, A.H.2
  • 8
    • 79955683058 scopus 로고    scopus 로고
    • A robust data mining approach for formulation of geotechnical engineering systems
    • Alavi A.H., Gandomi A.H. A robust data mining approach for formulation of geotechnical engineering systems. Eng. Comput. Int. J. Comput. Aided Eng. Softw. 2011, 28:242-274.
    • (2011) Eng. Comput. Int. J. Comput. Aided Eng. Softw. , vol.28 , pp. 242-274
    • Alavi, A.H.1    Gandomi, A.H.2
  • 9
    • 79955683058 scopus 로고    scopus 로고
    • A robust data mining approach for formulation of geotechnical engineering systems
    • Alavi A.H., Gandomi A.H. A robust data mining approach for formulation of geotechnical engineering systems. Eng. Comput. 2011, 28:242-274.
    • (2011) Eng. Comput. , vol.28 , pp. 242-274
    • Alavi, A.H.1    Gandomi, A.H.2
  • 10
    • 84862648743 scopus 로고    scopus 로고
    • Energy-based numerical models for assessment of soil liquefaction
    • Alavi A.H., Gandomi A.H. Energy-based numerical models for assessment of soil liquefaction. Geosci. Frontiers. 2012, 3:541-555.
    • (2012) Geosci. Frontiers. , vol.3 , pp. 541-555
    • Alavi, A.H.1    Gandomi, A.H.2
  • 11
    • 77954209083 scopus 로고    scopus 로고
    • Multi expression programming: a new approach to formulation of soil classification
    • Alavi A.H., Gandomi A.H., Sahab M.G., Gandomi M. Multi expression programming: a new approach to formulation of soil classification. Eng. Comput. 2010, 26:111-118.
    • (2010) Eng. Comput. , vol.26 , pp. 111-118
    • Alavi, A.H.1    Gandomi, A.H.2    Sahab, M.G.3    Gandomi, M.4
  • 12
    • 46449108846 scopus 로고    scopus 로고
    • Prediction of geological hazardous zones in front of a tunnel face using TSP-203 and artificial neural networks
    • Alimoradi A., Moradzadeh A., Naderi R., Salehi M.Z., Etemadi A. Prediction of geological hazardous zones in front of a tunnel face using TSP-203 and artificial neural networks. Tunn. Undergr. Space Technol. 2008, 23:711-717.
    • (2008) Tunn. Undergr. Space Technol. , vol.23 , pp. 711-717
    • Alimoradi, A.1    Moradzadeh, A.2    Naderi, R.3    Salehi, M.Z.4    Etemadi, A.5
  • 13
    • 80052068571 scopus 로고    scopus 로고
    • Correlation of pile axial capacity and CPT data using gene expression programming
    • Alkroosh I., Nikraz H. Correlation of pile axial capacity and CPT data using gene expression programming. Geotech. Geol. Eng. 2011, 29:725-748.
    • (2011) Geotech. Geol. Eng. , vol.29 , pp. 725-748
    • Alkroosh, I.1    Nikraz, H.2
  • 14
    • 84882742155 scopus 로고    scopus 로고
    • Simulating pile load-settlement behavior from CPT data using intelligent computing
    • Alkroosh I., Nikraz H. Simulating pile load-settlement behavior from CPT data using intelligent computing. Cent. Eur. J. Eng. 2011, 1:295-305.
    • (2011) Cent. Eur. J. Eng. , vol.1 , pp. 295-305
    • Alkroosh, I.1    Nikraz, H.2
  • 15
    • 84857453045 scopus 로고    scopus 로고
    • Predicting axial capacity of driven piles in cohesive soils using intelligent computing
    • Alkroosh I., Nikraz H. Predicting axial capacity of driven piles in cohesive soils using intelligent computing. Eng. Appl. Artif. Intell. 2012, 25:618-627.
    • (2012) Eng. Appl. Artif. Intell. , vol.25 , pp. 618-627
    • Alkroosh, I.1    Nikraz, H.2
  • 16
    • 61749083047 scopus 로고    scopus 로고
    • Piles shaft capacity from CPT and CPTU data by polynomial neural networks and genetic algorithms
    • Ardalan H., Eslami A., Nariman-Zadeh N. Piles shaft capacity from CPT and CPTU data by polynomial neural networks and genetic algorithms. Comput. Geotech. 2009, 36:616-625.
    • (2009) Comput. Geotech. , vol.36 , pp. 616-625
    • Ardalan, H.1    Eslami, A.2    Nariman-Zadeh, N.3
  • 17
    • 0034174280 scopus 로고    scopus 로고
    • ASCE Artificial neural networks in hydrology. I: Preliminary concepts
    • ASCE Artificial neural networks in hydrology. I: Preliminary concepts. J. Hydrol. Eng. 2000, 5:115-123.
    • (2000) J. Hydrol. Eng. , vol.5 , pp. 115-123
  • 18
    • 58149308208 scopus 로고    scopus 로고
    • Free-swell and swelling pressure of unsaturated compacted clays; experiments and neural networks modelling
    • Ashayeri I., Yasrebi S. Free-swell and swelling pressure of unsaturated compacted clays; experiments and neural networks modelling. Geotech. Geol. Eng. 2009, 27:137-153.
    • (2009) Geotech. Geol. Eng. , vol.27 , pp. 137-153
    • Ashayeri, I.1    Yasrebi, S.2
  • 19
    • 23644459214 scopus 로고    scopus 로고
    • Artificial neural network for stress-strain behavior of sandy soils: knowledge based verification
    • Banimahd M., Yasrobi S.S., Woodward P.K. Artificial neural network for stress-strain behavior of sandy soils: knowledge based verification. Comput. Geotech. 2005, 32:377-386.
    • (2005) Comput. Geotech. , vol.32 , pp. 377-386
    • Banimahd, M.1    Yasrobi, S.S.2    Woodward, P.K.3
  • 20
    • 44949162150 scopus 로고    scopus 로고
    • Prediction of compressive and tensile strength of limestone via genetic programming
    • Baykasoglu A., Gullu H., Canakci H., Ozbakir L. Prediction of compressive and tensile strength of limestone via genetic programming. Expert Syst. Appl. 2008, 35:111-123.
    • (2008) Expert Syst. Appl. , vol.35 , pp. 111-123
    • Baykasoglu, A.1    Gullu, H.2    Canakci, H.3    Ozbakir, L.4
  • 21
    • 10644296344 scopus 로고    scopus 로고
    • Evaluation of lateral spreading using artificial neural networks
    • Baziar M.H., Ghorbani A. Evaluation of lateral spreading using artificial neural networks. Soil Dynam. Earthquake Eng. 2005, 25:1-9.
    • (2005) Soil Dynam. Earthquake Eng. , vol.25 , pp. 1-9
    • Baziar, M.H.1    Ghorbani, A.2
  • 22
    • 80054890052 scopus 로고    scopus 로고
    • Prediction of strain energy-based liquefaction resistance of sand-silt mixtures: an evolutionary approach
    • Baziar M.H., Jafarian Y., Shahnazari H., Movahed V., Tutunchian M.A. Prediction of strain energy-based liquefaction resistance of sand-silt mixtures: an evolutionary approach. Comput. Geotech. 2011, 37:1883-1893.
    • (2011) Comput. Geotech. , vol.37 , pp. 1883-1893
    • Baziar, M.H.1    Jafarian, Y.2    Shahnazari, H.3    Movahed, V.4    Tutunchian, M.A.5
  • 23
    • 33645989110 scopus 로고    scopus 로고
    • Machine learning in soil classification
    • Bhattacharya B., Solomatine D. Machine learning in soil classification. Neural Networks 2006, 19:186-195.
    • (2006) Neural Networks , vol.19 , pp. 186-195
    • Bhattacharya, B.1    Solomatine, D.2
  • 24
    • 78149270128 scopus 로고    scopus 로고
    • Artificial neural network application for the prediction of ground surface movements induced by shield tunnelling
    • Boubou R., Emeriault F., Kastner R. Artificial neural network application for the prediction of ground surface movements induced by shield tunnelling. Can. Geotech. J. 2010, 47:1214-1233.
    • (2010) Can. Geotech. J. , vol.47 , pp. 1214-1233
    • Boubou, R.1    Emeriault, F.2    Kastner, R.3
  • 25
    • 0036221122 scopus 로고    scopus 로고
    • Optimal division of data for neural network models in water resources applications
    • Bowden G.J., Maier H.R., Dandy G.C. Optimal division of data for neural network models in water resources applications. Water Resour. Res. 2002, 38:2.1-2.11.
    • (2002) Water Resour. Res. , vol.38
    • Bowden, G.J.1    Maier, H.R.2    Dandy, G.C.3
  • 26
    • 10644292718 scopus 로고    scopus 로고
    • Data transformation for neural network models in water resources applications
    • Bowden G.J., Dandy G.C., Maier H.R. Data transformation for neural network models in water resources applications. J. Hydroinform. 2003, 5:245-258.
    • (2003) J. Hydroinform. , vol.5 , pp. 245-258
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 27
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications: Part 1-Background and methodology
    • Bowden G.J., Dandy G.C., Maier H.R. Input determination for neural network models in water resources applications: Part 1-Background and methodology. J. Hydrol. 2005, 301:75-92.
    • (2005) J. Hydrol. , vol.301 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 28
    • 0031851620 scopus 로고    scopus 로고
    • Feed-forward artificial neural network model for forecasting rainfall run-off
    • Braddock R.D., Kremmer M.L., Sanzogni L. Feed-forward artificial neural network model for forecasting rainfall run-off. Environmetrics 1998, 9:419-432.
    • (1998) Environmetrics , vol.9 , pp. 419-432
    • Braddock, R.D.1    Kremmer, M.L.2    Sanzogni, L.3
  • 30
    • 33645651941 scopus 로고    scopus 로고
    • Application of flat DMT and ANN to Korean soft clay deposits for reliable estimation of undrained shear strength
    • Byeon W.Y., Lee S.R., Kim Y.S. Application of flat DMT and ANN to Korean soft clay deposits for reliable estimation of undrained shear strength. Int. J. Offshore Polar Eng. 2006, 16:73-80.
    • (2006) Int. J. Offshore Polar Eng. , vol.16 , pp. 73-80
    • Byeon, W.Y.1    Lee, S.R.2    Kim, Y.S.3
  • 31
    • 77953914047 scopus 로고    scopus 로고
    • Constitutive modeling of Leighton Buzzard sands using genetic programming
    • Cabalar A.F., Cevik A., Guzelbey I.H. Constitutive modeling of Leighton Buzzard sands using genetic programming. Neural Comput. Appl. 2009, 19:657-665.
    • (2009) Neural Comput. Appl. , vol.19 , pp. 657-665
    • Cabalar, A.F.1    Cevik, A.2    Guzelbey, I.H.3
  • 32
    • 34547124842 scopus 로고    scopus 로고
    • The applicability of neural networks in the determination of soil profiles
    • Caglar N., Arman H. The applicability of neural networks in the determination of soil profiles. Bull. Eng. Geol. Environ. 2007, 66:295-301.
    • (2007) Bull. Eng. Geol. Environ. , vol.66 , pp. 295-301
    • Caglar, N.1    Arman, H.2
  • 33
    • 0028449105 scopus 로고
    • Neural network based objective flow regime identification in air-water two phase flow
    • Cai S., Toral H., Qiu J., Archer J.S. Neural network based objective flow regime identification in air-water two phase flow. Can. J. Chem. Eng. 1994, 72:440-445.
    • (1994) Can. J. Chem. Eng. , vol.72 , pp. 440-445
    • Cai, S.1    Toral, H.2    Qiu, J.3    Archer, J.S.4
  • 34
    • 0032722662 scopus 로고    scopus 로고
    • Forecasting river flow rate during low-flow periods using neural networks
    • Campolo M., Soldati A., Andreuss I.P. Forecasting river flow rate during low-flow periods using neural networks. Water Resour. Res. 1999, 35:3547-3552.
    • (1999) Water Resour. Res. , vol.35 , pp. 3547-3552
    • Campolo, M.1    Soldati, A.2    Andreuss, I.P.3
  • 35
    • 52349087908 scopus 로고    scopus 로고
    • Neural network committe-based sensitivity analysis strategy for geotechnical engineering problems
    • Cao M., Qiao P. Neural network committe-based sensitivity analysis strategy for geotechnical engineering problems. Neural Comput. Appl. 2008, 17:509-519.
    • (2008) Neural Comput. Appl. , vol.17 , pp. 509-519
    • Cao, M.1    Qiao, P.2
  • 36
    • 30844447472 scopus 로고    scopus 로고
    • Determination of preconsolidation pressure with artificial neural network
    • Celik S., Tan O. Determination of preconsolidation pressure with artificial neural network. Civ. Eng. Environ. Syst. 2005, 22:217-231.
    • (2005) Civ. Eng. Environ. Syst. , vol.22 , pp. 217-231
    • Celik, S.1    Tan, O.2
  • 37
    • 78751604817 scopus 로고    scopus 로고
    • Modeling of the uniaxial compressive strength of some clay-bearing rocks using neural network
    • Cevik A., Sezer E.A., Cabalar A.F., Gokceoglu C. Modeling of the uniaxial compressive strength of some clay-bearing rocks using neural network. Appl. Soft. Comput. 2010, 11:2587-2594.
    • (2010) Appl. Soft. Comput. , vol.11 , pp. 2587-2594
    • Cevik, A.1    Sezer, E.A.2    Cabalar, A.F.3    Gokceoglu, C.4
  • 38
    • 58149310827 scopus 로고    scopus 로고
    • Studies on construction pre-control of a connection aisle between two neighbouring tunnels in Shanghai by means of 3D FEM, neural networks and fuzzy logic
    • Chen Y., Azzam R., Fernandez T.M., Li L. Studies on construction pre-control of a connection aisle between two neighbouring tunnels in Shanghai by means of 3D FEM, neural networks and fuzzy logic. Geotech. Geol. Eng. 2009, 27:155-167.
    • (2009) Geotech. Geol. Eng. , vol.27 , pp. 155-167
    • Chen, Y.1    Azzam, R.2    Fernandez, T.M.3    Li, L.4
  • 39
    • 33750975874 scopus 로고    scopus 로고
    • The displacement computation and construction pre-control of a foundation pit in Shanghai utilizing FEM and intelligent methods
    • Chen Y., Azzam R., Zhang F. The displacement computation and construction pre-control of a foundation pit in Shanghai utilizing FEM and intelligent methods. Geotech. Geol. Eng. 2006, 24:1781-1801.
    • (2006) Geotech. Geol. Eng. , vol.24 , pp. 1781-1801
    • Chen, Y.1    Azzam, R.2    Zhang, F.3
  • 40
    • 79251539256 scopus 로고    scopus 로고
    • Simulation of stress-strain behavior of saturated sand in undrained triaxial tests based on genetic adaptive neural networks
    • Chen Y., Hsieh S., Liu C. Simulation of stress-strain behavior of saturated sand in undrained triaxial tests based on genetic adaptive neural networks. Electron. J. Geotech. Eng. 2010, 15:1814-1834.
    • (2010) Electron. J. Geotech. Eng. , vol.15 , pp. 1814-1834
    • Chen, Y.1    Hsieh, S.2    Liu, C.3
  • 41
    • 33645990587 scopus 로고    scopus 로고
    • Computational intelligence in earth sciences and environmental applications: issues and challenges
    • Cherkassky V., Krasnopolsky V., Solomatine D.P., Valdes J. Computational intelligence in earth sciences and environmental applications: issues and challenges. Neural Networks 2006, 19:113-121.
    • (2006) Neural Networks , vol.19 , pp. 113-121
    • Cherkassky, V.1    Krasnopolsky, V.2    Solomatine, D.P.3    Valdes, J.4
  • 42
    • 64849106854 scopus 로고    scopus 로고
    • Probabilistic stability analyses of slopes using the ANN-based response surface
    • Cho S.E. Probabilistic stability analyses of slopes using the ANN-based response surface. Comput. Geotech. 2009, 36:787-797.
    • (2009) Comput. Geotech. , vol.36 , pp. 787-797
    • Cho, S.E.1
  • 45
    • 27444435681 scopus 로고    scopus 로고
    • Prediction of coefficient of lateral earth pressure using artificial neural networks
    • Das S.K., Basudhar P.K. Prediction of coefficient of lateral earth pressure using artificial neural networks. Electron. J. Geotech. Eng. 2005, 10.
    • (2005) Electron. J. Geotech. Eng. , vol.10
    • Das, S.K.1    Basudhar, P.K.2
  • 46
    • 37849189166 scopus 로고    scopus 로고
    • Undrained lateral load capacity of piles in clay using artificial neural network
    • Das S.K., Basudhar P.K. Undrained lateral load capacity of piles in clay using artificial neural network. Comput. Geotech. 2006, 33:454-459.
    • (2006) Comput. Geotech. , vol.33 , pp. 454-459
    • Das, S.K.1    Basudhar, P.K.2
  • 47
    • 77954930625 scopus 로고    scopus 로고
    • Discussion of: intelligent computing for modeling axial capacity of pile foundations
    • Das S.K., Sivakugan N. Discussion of: intelligent computing for modeling axial capacity of pile foundations. Can. Geotech. J. 2010, 47:928-930.
    • (2010) Can. Geotech. J. , vol.47 , pp. 928-930
    • Das, S.K.1    Sivakugan, N.2
  • 48
    • 80051666629 scopus 로고    scopus 로고
    • Classification of slopes and prediction of factor of safety using differential neural networks
    • Das S.K., Biswal R.K., Sivakugan N., Das B. Classification of slopes and prediction of factor of safety using differential neural networks. Environ. Earth Sci. 2011, 64:201-210.
    • (2011) Environ. Earth Sci. , vol.64 , pp. 201-210
    • Das, S.K.1    Biswal, R.K.2    Sivakugan, N.3    Das, B.4
  • 49
    • 79955465044 scopus 로고    scopus 로고
    • Application of artificial intelligence to maximum dry density and unconfined compressive stregth of cement stabilized soil
    • Das S.K., Samui P., Sabat A.K. Application of artificial intelligence to maximum dry density and unconfined compressive stregth of cement stabilized soil. Geotech. Geol. Eng. 2011, 29:329-342.
    • (2011) Geotech. Geol. Eng. , vol.29 , pp. 329-342
    • Das, S.K.1    Samui, P.2    Sabat, A.K.3
  • 50
    • 79953170883 scopus 로고    scopus 로고
    • Models to predict the deformation modulus and the coefficient of subgrade reaction for earth filling structure
    • Dincer I. Models to predict the deformation modulus and the coefficient of subgrade reaction for earth filling structure. Adv. Eng. Softw. 2011, 42:160-171.
    • (2011) Adv. Eng. Softw. , vol.42 , pp. 160-171
    • Dincer, I.1
  • 51
    • 54249136826 scopus 로고    scopus 로고
    • Modelling time dependent swelling potential of mudrock using laboratory tests and artificial neural network
    • Doostmohamadi R., Moosavi M., Araabi B.N. Modelling time dependent swelling potential of mudrock using laboratory tests and artificial neural network. Min. Tech. 2008, 117:32-41.
    • (2008) Min. Tech. , vol.117 , pp. 32-41
    • Doostmohamadi, R.1    Moosavi, M.2    Araabi, B.N.3
  • 52
    • 77958183722 scopus 로고    scopus 로고
    • Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-part 1: concepts and methodology
    • Elshorbagy A., Corzo G., Srinivasulu S., Solomatine D.P. Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology-part 1: concepts and methodology. Hydrol. Earth Syst. Sci. 2010, 14:1931-1941.
    • (2010) Hydrol. Earth Syst. Sci. , vol.14 , pp. 1931-1941
    • Elshorbagy, A.1    Corzo, G.2    Srinivasulu, S.3    Solomatine, D.P.4
  • 53
    • 38849209843 scopus 로고    scopus 로고
    • Artificial neural networks approach for swell pressure versus soil suction behaviour
    • Erzin Y. Artificial neural networks approach for swell pressure versus soil suction behaviour. Can. Geotech. J. 2007, 44:1215-1223.
    • (2007) Can. Geotech. J. , vol.44 , pp. 1215-1223
    • Erzin, Y.1
  • 54
    • 70349223731 scopus 로고    scopus 로고
    • Artificial neural network (ANN) models for determining hydraulic conductivity of compacted fine-grained soils
    • Erzin Y., Gumaste S.D., Gupta A.K., Singh D.N. Artificial neural network (ANN) models for determining hydraulic conductivity of compacted fine-grained soils. Can. Geotech. J. 2009, 46:955-968.
    • (2009) Can. Geotech. J. , vol.46 , pp. 955-968
    • Erzin, Y.1    Gumaste, S.D.2    Gupta, A.K.3    Singh, D.N.4
  • 55
    • 0039988139 scopus 로고    scopus 로고
    • Time series forecasting with neural networks: a comparative study using the airline data
    • Faraway J., Chatfield C. Time series forecasting with neural networks: a comparative study using the airline data. Appl. Stat. 1998, 47:231-250.
    • (1998) Appl. Stat. , vol.47 , pp. 231-250
    • Faraway, J.1    Chatfield, C.2
  • 57
    • 33645963421 scopus 로고    scopus 로고
    • Identification of visco-elastic models for rocks using genetic programming coupled with the modified particle swarm optimization algorithm
    • Feng X.T., Chen B., Yang C., Zhou H., Ding X. Identification of visco-elastic models for rocks using genetic programming coupled with the modified particle swarm optimization algorithm. Int. J. Rock Mech. Min. Sci. 2006, 43:789-801.
    • (2006) Int. J. Rock Mech. Min. Sci. , vol.43 , pp. 789-801
    • Feng, X.T.1    Chen, B.2    Yang, C.3    Zhou, H.4    Ding, X.5
  • 58
    • 34848842523 scopus 로고    scopus 로고
    • Computational intelligence tools for the prediction of slope performance
    • Ferentinou M.D., Sakellariou M.G. Computational intelligence tools for the prediction of slope performance. Comput. Geotech. 2007, 34:362-384.
    • (2007) Comput. Geotech. , vol.34 , pp. 362-384
    • Ferentinou, M.D.1    Sakellariou, M.G.2
  • 59
    • 0347499408 scopus 로고    scopus 로고
    • Gene expression programming: a new adaptive algorithm for solving problems
    • Ferreira C. Gene expression programming: a new adaptive algorithm for solving problems. Complex Systems 2001, 13:87-129.
    • (2001) Complex Systems , vol.13 , pp. 87-129
    • Ferreira, C.1
  • 60
    • 64849117838 scopus 로고    scopus 로고
    • Generalized regression neural networks and feed forward neural networks for prediction of scur depth around bridge piers
    • Firat M., Gungor M. Generalized regression neural networks and feed forward neural networks for prediction of scur depth around bridge piers. Adv. Eng. Softw. 2008, 40:731-737.
    • (2008) Adv. Eng. Softw. , vol.40 , pp. 731-737
    • Firat, M.1    Gungor, M.2
  • 61
    • 39449138855 scopus 로고    scopus 로고
    • Towards the next generation of artificial neural networks for civil engineering
    • Flood I. Towards the next generation of artificial neural networks for civil engineering. Adv. Eng. Inform. 2008, 22:4-14.
    • (2008) Adv. Eng. Inform. , vol.22 , pp. 4-14
    • Flood, I.1
  • 63
    • 34848891893 scopus 로고    scopus 로고
    • Integration of laboratory testing and constitutive modelling of soils
    • Fu Q., Hashash Y.M.A., Hung S., Ghaboussi J. Integration of laboratory testing and constitutive modelling of soils. Comput. Geotech. 2007, 34:330-345.
    • (2007) Comput. Geotech. , vol.34 , pp. 330-345
    • Fu, Q.1    Hashash, Y.M.A.2    Hung, S.3    Ghaboussi, J.4
  • 64
    • 80052923685 scopus 로고    scopus 로고
    • Multi-stage genetic programming: a new strategy to nonlinear system modeling
    • Gandomi A.H., Alavi A.H. Multi-stage genetic programming: a new strategy to nonlinear system modeling. Inf. Sci. 2011, 181:5227-5239.
    • (2011) Inf. Sci. , vol.181 , pp. 5227-5239
    • Gandomi, A.H.1    Alavi, A.H.2
  • 65
    • 84856002704 scopus 로고    scopus 로고
    • A new multi-gene genetic programming approach to non-linear system modeling, Part II: Geotechnical and earthquake engineering problems
    • Gandomi A.H., Alavi A.H. A new multi-gene genetic programming approach to non-linear system modeling, Part II: Geotechnical and earthquake engineering problems. Neural Comput. Appl. 2012, 21:189-201.
    • (2012) Neural Comput. Appl. , vol.21 , pp. 189-201
    • Gandomi, A.H.1    Alavi, A.H.2
  • 66
    • 79251646481 scopus 로고    scopus 로고
    • Formulation of uplift capacity of suction cassions using multi expression programming
    • Gandomi A.H., Alavi A.H., Gun J.Y. Formulation of uplift capacity of suction cassions using multi expression programming. KSCE J. Civ. Eng. 2011, 15:363-373.
    • (2011) KSCE J. Civ. Eng. , vol.15 , pp. 363-373
    • Gandomi, A.H.1    Alavi, A.H.2    Gun, J.Y.3
  • 67
    • 77953961177 scopus 로고    scopus 로고
    • Intelligent prediction of the stress-strain response of intact and jointed rocks
    • Garaga A., Latha G.M. Intelligent prediction of the stress-strain response of intact and jointed rocks. Comput. Geotech. 2010, 37:629-637.
    • (2010) Comput. Geotech. , vol.37 , pp. 629-637
    • Garaga, A.1    Latha, G.M.2
  • 68
    • 67349140515 scopus 로고    scopus 로고
    • Rockfill stregth evaluation using cascade correlation networks
    • Garcia S.R., Roma M.P. Rockfill stregth evaluation using cascade correlation networks. Geotech. Geol. Eng. 2009, 27:289-304.
    • (2009) Geotech. Geol. Eng. , vol.27 , pp. 289-304
    • Garcia, S.R.1    Roma, M.P.2
  • 69
    • 33644797052 scopus 로고    scopus 로고
    • Soil dynamic properties determination: a neurofuzzy system approach
    • Garcia S.R., Romo M.P., Figueroa-Nazuno J. Soil dynamic properties determination: a neurofuzzy system approach. Contr. Intell. Syst. 2006, 34:1-11.
    • (2006) Contr. Intell. Syst. , vol.34 , pp. 1-11
    • Garcia, S.R.1    Romo, M.P.2    Figueroa-Nazuno, J.3
  • 70
    • 0032146239 scopus 로고    scopus 로고
    • Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences
    • Gardner M.W., Dorling S.R. Artificial neural networks (the multilayer perceptron)-a review of applications in the atmospheric sciences. Atmos. Environ. 1998, 32:2627-2636.
    • (1998) Atmos. Environ. , vol.32 , pp. 2627-2636
    • Gardner, M.W.1    Dorling, S.R.2
  • 71
    • 0001867238 scopus 로고
    • Interpreting neural-network connection weights
    • Garson G.D. Interpreting neural-network connection weights. AI Expert 1991, 6:47-51.
    • (1991) AI Expert , vol.6 , pp. 47-51
    • Garson, G.D.1
  • 72
    • 0035673991 scopus 로고    scopus 로고
    • A comparison of self-organizing map algorithm and some conventional statistical methods for ecological community ordination
    • Giraudel J.L., Lek S. A comparison of self-organizing map algorithm and some conventional statistical methods for ecological community ordination. Ecol. Modell. 2001, 146:329-339.
    • (2001) Ecol. Modell. , vol.146 , pp. 329-339
    • Giraudel, J.L.1    Lek, S.2
  • 73
    • 33744791952 scopus 로고    scopus 로고
    • A symbolic data-driven technique based on evolutionary polynomial regression
    • Giustolisi O., Savic D.A. A symbolic data-driven technique based on evolutionary polynomial regression. J. Hydroinform. 2006, 8:207-222.
    • (2006) J. Hydroinform. , vol.8 , pp. 207-222
    • Giustolisi, O.1    Savic, D.A.2
  • 75
    • 11344291763 scopus 로고    scopus 로고
    • Bayesian neural network analysis of undrained side resistance of drilled shafts
    • Goh A.T., Kulhawy F.H., Chua C.G. Bayesian neural network analysis of undrained side resistance of drilled shafts. J. Geotech. Geoenviron. Eng. 2005, 131:84-93.
    • (2005) J. Geotech. Geoenviron. Eng. , vol.131 , pp. 84-93
    • Goh, A.T.1    Kulhawy, F.H.2    Chua, C.G.3
  • 76
    • 0028666973 scopus 로고
    • Seismic liquefaction potential assessed by neural network
    • Goh A.T.C. Seismic liquefaction potential assessed by neural network. J. Geotech. Geoenviron. Eng. 1994, 120:1467-1480.
    • (1994) J. Geotech. Geoenviron. Eng. , vol.120 , pp. 1467-1480
    • Goh, A.T.C.1
  • 77
    • 18444386490 scopus 로고    scopus 로고
    • Reliability assessment of serviceability performance of braced retaining walls using a neural network approach
    • Goh A.T.C., Kulhawy F.H. Reliability assessment of serviceability performance of braced retaining walls using a neural network approach. Int. J. Numer. Anal. Methods Geomech. 2005, 29:627-642.
    • (2005) Int. J. Numer. Anal. Methods Geomech. , vol.29 , pp. 627-642
    • Goh, A.T.C.1    Kulhawy, F.H.2
  • 78
    • 3142656652 scopus 로고    scopus 로고
    • A neuro-fuzzy model for modulus of deformation of jointed rock masses
    • Gokceoglu C., Yesilnacar E., Sonmez H., Kayabasi A. A neuro-fuzzy model for modulus of deformation of jointed rock masses. Comput. Geotech. 2004, 31:375-383.
    • (2004) Comput. Geotech. , vol.31 , pp. 375-383
    • Gokceoglu, C.1    Yesilnacar, E.2    Sonmez, H.3    Kayabasi, A.4
  • 80
    • 78049426061 scopus 로고    scopus 로고
    • Prediction of artificial soil's unconfined compression strength test using statistical analyses and artificial neural networks
    • Gunaydin O., Gokoglu A., Fener M. Prediction of artificial soil's unconfined compression strength test using statistical analyses and artificial neural networks. Adv. Eng. Softw. 2010, 41:1115-1123.
    • (2010) Adv. Eng. Softw. , vol.41 , pp. 1115-1123
    • Gunaydin, O.1    Gokoglu, A.2    Fener, M.3
  • 81
    • 68049113510 scopus 로고    scopus 로고
    • New approach for stage-discharge relationship: gene-expression programming
    • Guven A., Aytek A. New approach for stage-discharge relationship: gene-expression programming. J. Hydrol. Eng. 2009, 14:812-820.
    • (2009) J. Hydrol. Eng. , vol.14 , pp. 812-820
    • Guven, A.1    Aytek, A.2
  • 82
    • 82055172406 scopus 로고    scopus 로고
    • Prediction of surface settlements induced by NATM tunneling based on artificial neural networks
    • Hajihassani, M., Marto, A., Nazmi, E., Abad, S., Shahrbabaki, M., 2011. Prediction of surface settlements induced by NATM tunneling based on artificial neural networks. Electro. J. Geotech. Eng. 16, 1471-1480.
    • (2011) Electro. J. Geotech. Eng , vol.16 , pp. 1471-1480
    • Hajihassani, M.1    Marto, A.2    Nazmi, E.3    Abad, S.4    Shahrbabaki, M.5
  • 83
    • 0027627965 scopus 로고
    • Working with neural networks
    • Hammerstrom D. Working with neural networks. IEEE Spectr. 1993, 30:46-53.
    • (1993) IEEE Spectr. , vol.30 , pp. 46-53
    • Hammerstrom, D.1
  • 84
    • 33845594705 scopus 로고    scopus 로고
    • Evaluation of liquefaction potential of soil deposits using artificial neural networks
    • Hanna A.M., Ural D., Saygili G. Evaluation of liquefaction potential of soil deposits using artificial neural networks. Int. J. Comput. Aided Eng. Softw. 2007, 24:5-16.
    • (2007) Int. J. Comput. Aided Eng. Softw. , vol.24 , pp. 5-16
    • Hanna, A.M.1    Ural, D.2    Saygili, G.3
  • 85
    • 33846833664 scopus 로고    scopus 로고
    • Neural network model for liquefaction potential in soil deposits using Turkey and Taiwan earthquake data
    • Hanna A.M., Ural D., Saygili G. Neural network model for liquefaction potential in soil deposits using Turkey and Taiwan earthquake data. Soil Dynam. Earthquake Eng. 2007, 27:521-540.
    • (2007) Soil Dynam. Earthquake Eng. , vol.27 , pp. 521-540
    • Hanna, A.M.1    Ural, D.2    Saygili, G.3
  • 88
    • 74449084707 scopus 로고    scopus 로고
    • Prediction of swelling pressures of expansive soils using artificial neural networks
    • Ikizler S.B., Aytekin M., Vekli M., Kocabas F. Prediction of swelling pressures of expansive soils using artificial neural networks. Adv. Eng. Softw. 2009, 41:647-655.
    • (2009) Adv. Eng. Softw. , vol.41 , pp. 647-655
    • Ikizler, S.B.1    Aytekin, M.2    Vekli, M.3    Kocabas, F.4
  • 89
    • 79956105669 scopus 로고    scopus 로고
    • Modelling load-settlement behaviour of piles using high-order neural network (HON-PILE model)
    • Ismail A.M., Jeng D.S. Modelling load-settlement behaviour of piles using high-order neural network (HON-PILE model). Eng. Appl. Artif. Intell. 2011, 24:813-821.
    • (2011) Eng. Appl. Artif. Intell. , vol.24 , pp. 813-821
    • Ismail, A.M.1    Jeng, D.S.2
  • 90
    • 1542287371 scopus 로고    scopus 로고
    • Identification of physical processes inherent in artificial neural network rainfall runoff models
    • Jain A., Sudheer K.P., Srinivasulu S. Identification of physical processes inherent in artificial neural network rainfall runoff models. Hydrolog. Process 2004, 18:571-581.
    • (2004) Hydrolog. Process , vol.18 , pp. 571-581
    • Jain, A.1    Sudheer, K.P.2    Srinivasulu, S.3
  • 91
    • 70249127883 scopus 로고    scopus 로고
    • Intelligent finite element method: an evolutionary approach to constitutive modelling
    • Javadi A.A., Rezania M. Intelligent finite element method: an evolutionary approach to constitutive modelling. Adv. Eng. Inform. 2009, 23:442-451.
    • (2009) Adv. Eng. Inform. , vol.23 , pp. 442-451
    • Javadi, A.A.1    Rezania, M.2
  • 92
    • 33747786653 scopus 로고    scopus 로고
    • Evaluation of liquefaction induced lateral displacements using genetic programming
    • Javadi A., Rezania M., Mousavi N.M. Evaluation of liquefaction induced lateral displacements using genetic programming. Comput. Geotech. 2006, 33:222-233.
    • (2006) Comput. Geotech. , vol.33 , pp. 222-233
    • Javadi, A.1    Rezania, M.2    Mousavi, N.M.3
  • 93
    • 79955901976 scopus 로고    scopus 로고
    • Prediction of compressibility coefficient of soil based on RBF neural network
    • Jianping J., Changhong Y., Guangyun G. Prediction of compressibility coefficient of soil based on RBF neural network. J. Jiangsu Univ. Natural Sci. Ed. 2011, 32:232-235.
    • (2011) J. Jiangsu Univ. Natural Sci. Ed. , vol.32 , pp. 232-235
    • Jianping, J.1    Changhong, Y.2    Guangyun, G.3
  • 94
    • 33645818583 scopus 로고    scopus 로고
    • Prediction of soil-water characteristic curve using genetic programming
    • Johari A., Habibagahi G., Ghahramani A. Prediction of soil-water characteristic curve using genetic programming. J. Geotech. Geoenviron. Eng. 2006, 132:661-665.
    • (2006) J. Geotech. Geoenviron. Eng. , vol.132 , pp. 661-665
    • Johari, A.1    Habibagahi, G.2    Ghahramani, A.3
  • 95
    • 78649632791 scopus 로고    scopus 로고
    • Modelling the mechanical behaviour of unsaturated soils using a genetic algorithm-based neural network
    • Johari A., Javadi A., Habibagahi G. Modelling the mechanical behaviour of unsaturated soils using a genetic algorithm-based neural network. Comput. Geotech. 2011, 38:2-13.
    • (2011) Comput. Geotech. , vol.38 , pp. 2-13
    • Johari, A.1    Javadi, A.2    Habibagahi, G.3
  • 96
    • 78751656023 scopus 로고    scopus 로고
    • A neural network based methodology to predict site-specific spectral acce;eration values
    • Kamatchi P., Rajasankar J., Ramana G.V., Nagpal A.K. A neural network based methodology to predict site-specific spectral acce;eration values. Earthquake Eng. Vib. 2010, 9:459-472.
    • (2010) Earthquake Eng. Vib. , vol.9 , pp. 459-472
    • Kamatchi, P.1    Rajasankar, J.2    Ramana, G.V.3    Nagpal, A.K.4
  • 97
    • 33744829751 scopus 로고    scopus 로고
    • A comparative study of conventional ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas
    • Kanungo D.P., Arora M.K., Sarkar S., Gupta R.P. A comparative study of conventional ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Eng. Geol. 2006, 85:347-366.
    • (2006) Eng. Geol. , vol.85 , pp. 347-366
    • Kanungo, D.P.1    Arora, M.K.2    Sarkar, S.3    Gupta, R.P.4
  • 98
    • 84947630316 scopus 로고
    • ASMOD-An algorithm for adaptive spline modelling of observation data
    • Kavli T. ASMOD-An algorithm for adaptive spline modelling of observation data. Int. J. Control. 1993, 58:947-967.
    • (1993) Int. J. Control. , vol.58 , pp. 947-967
    • Kavli, T.1
  • 99
    • 61749101060 scopus 로고    scopus 로고
    • Residual and fully softened strength evaluation of soils using artificial neural networks
    • Kaya A. Residual and fully softened strength evaluation of soils using artificial neural networks. Geotech. Geol. Eng. 2009, 27:281-288.
    • (2009) Geotech. Geol. Eng. , vol.27 , pp. 281-288
    • Kaya, A.1
  • 100
    • 78650705343 scopus 로고    scopus 로고
    • Soil liquefaction modeling by genetic expression programming and neuro-fuzzy
    • Kayadelen C. Soil liquefaction modeling by genetic expression programming and neuro-fuzzy. Expert Syst. Appl. 2011, 38:4080-4087.
    • (2011) Expert Syst. Appl. , vol.38 , pp. 4080-4087
    • Kayadelen, C.1
  • 101
    • 67349218791 scopus 로고    scopus 로고
    • Modeling of the angle of shearing resistance of soils using soft computing systems
    • Kayadelen C., Gunaydin O., Fener M., Demir A., Ozvan A. Modeling of the angle of shearing resistance of soils using soft computing systems. Expert Syst. Appl. 2009, 36:11814-11826.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 11814-11826
    • Kayadelen, C.1    Gunaydin, O.2    Fener, M.3    Demir, A.4    Ozvan, A.5
  • 102
    • 36048947426 scopus 로고    scopus 로고
    • Predicting of liquefaction potential in soils using artificial neural networks
    • Khozaghi S.S.H., Choobbasti A.J.A. Predicting of liquefaction potential in soils using artificial neural networks. Electron. J. Geotech. Eng. 2007, 12.
    • (2007) Electron. J. Geotech. Eng. , pp. 12
    • Khozaghi, S.S.H.1    Choobbasti, A.J.A.2
  • 103
    • 42949174752 scopus 로고    scopus 로고
    • Prediction of relative crest settlement of concrete-faced rockfill dams analyzed using an artificial neural network model
    • Kim Y., Kim B. Prediction of relative crest settlement of concrete-faced rockfill dams analyzed using an artificial neural network model. Comput. Geotech. 2008, 35:313-322.
    • (2008) Comput. Geotech. , vol.35 , pp. 313-322
    • Kim, Y.1    Kim, B.2
  • 104
    • 31444455186 scopus 로고    scopus 로고
    • Bayesian parameter estimation applied to artificial neural networks used for hydrological modelling
    • Kingston G.B., Lambert M.F., Maier H.R. Bayesian parameter estimation applied to artificial neural networks used for hydrological modelling. Water Resour. Res. 2005, 41. 10.1029/2005WR004152.
    • (2005) Water Resour. Res. , pp. 41
    • Kingston, G.B.1    Lambert, M.F.2    Maier, H.R.3
  • 105
    • 28444444200 scopus 로고    scopus 로고
    • Calibration and validation of neural networks to ensure physically plausible hydrological modelling
    • Kingston G.B., Maier H.R., Lambert M.F. Calibration and validation of neural networks to ensure physically plausible hydrological modelling. J. Hydrol. 2005, 314:158-176.
    • (2005) J. Hydrol. , vol.314 , pp. 158-176
    • Kingston, G.B.1    Maier, H.R.2    Lambert, M.F.3
  • 106
    • 33745367041 scopus 로고    scopus 로고
    • A probabilistic method to assist knowledge extraction from artificial neural networks used for hydrological prediction
    • Kingston G.B., Maier H.R., Lambert M.F. A probabilistic method to assist knowledge extraction from artificial neural networks used for hydrological prediction. Math. Comput. Model. 2006, 44:499-512.
    • (2006) Math. Comput. Model. , vol.44 , pp. 499-512
    • Kingston, G.B.1    Maier, H.R.2    Lambert, M.F.3
  • 107
    • 44349171685 scopus 로고    scopus 로고
    • Bayesian model selection applied to artificial neural networks used for water resources modelling
    • Kingston G.B., Maier H.R., Lambert M.F. Bayesian model selection applied to artificial neural networks used for water resources modelling. Water Resour. Res. 2008, 44. 10.1029/2007WR006155.
    • (2008) Water Resour. Res. , pp. 44
    • Kingston, G.B.1    Maier, H.R.2    Lambert, M.F.3
  • 108
    • 0034578871 scopus 로고    scopus 로고
    • Modelling of the river flow rate: the influence of the training set selection
    • Kocjancic R., Zupan J. Modelling of the river flow rate: the influence of the training set selection. Chemomet. Intell. Lab. Syst. 2000, 54:21-34.
    • (2000) Chemomet. Intell. Lab. Syst. , vol.54 , pp. 21-34
    • Kocjancic, R.1    Zupan, J.2
  • 109
    • 34748823658 scopus 로고    scopus 로고
    • Dynamic soil profile determination with the use of a neural network
    • Kogut J. Dynamic soil profile determination with the use of a neural network. Comput. Assist. Mech. Eng. Sci. 2007, 14:209-217.
    • (2007) Comput. Assist. Mech. Eng. Sci. , vol.14 , pp. 209-217
    • Kogut, J.1
  • 111
    • 34848863752 scopus 로고    scopus 로고
    • A neural network approach to estimating deflection of diaphram walls caused by excavation in clays
    • Kung G.T., Hsiao E.C., Schuster M., Juang C. A neural network approach to estimating deflection of diaphram walls caused by excavation in clays. Comput. Geotech. 2007, 34:385-396.
    • (2007) Comput. Geotech. , vol.34 , pp. 385-396
    • Kung, G.T.1    Hsiao, E.C.2    Schuster, M.3    Juang, C.4
  • 112
    • 60549115430 scopus 로고    scopus 로고
    • ANN-based model for predicting the bearing capacity of strip footing on multi-layered cohesive soil
    • Kuo Y.L., Jaksa M.B., Lyamin A.V., Kaggwa W.S. ANN-based model for predicting the bearing capacity of strip footing on multi-layered cohesive soil. Comput. Geotech. 2009, 36:503-516.
    • (2009) Comput. Geotech. , vol.36 , pp. 503-516
    • Kuo, Y.L.1    Jaksa, M.B.2    Lyamin, A.V.3    Kaggwa, W.S.4
  • 113
    • 33745276242 scopus 로고    scopus 로고
    • Prediction of soil composition from CPT data using general regression neural network
    • Kurup P.U., Griffin E. Prediction of soil composition from CPT data using general regression neural network. J. Comput. Civil. Eng. 2006, 20:281-289.
    • (2006) J. Comput. Civil. Eng. , vol.20 , pp. 281-289
    • Kurup, P.U.1    Griffin, E.2
  • 114
    • 67649547253 scopus 로고    scopus 로고
    • Back-propagation neural network for assessment of highway slope failure in Taiwan
    • Lee T.L., Lin H.M., Jeng D.S., Lu Y.P. Back-propagation neural network for assessment of highway slope failure in Taiwan. Geotech. Eng. 2008, 39:121-128.
    • (2008) Geotech. Eng. , vol.39 , pp. 121-128
    • Lee, T.L.1    Lin, H.M.2    Jeng, D.S.3    Lu, Y.P.4
  • 115
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation
    • Legates D.R., Mccabe G.J. Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35:233-241.
    • (1999) Water Resour. Res. , vol.35 , pp. 233-241
    • Legates, D.R.1    Mccabe, G.J.2
  • 116
    • 80052925636 scopus 로고    scopus 로고
    • An artificial neural network for groutability prediction of permeation grouting with microfine cement grouts
    • Liao K., Fan J., Huang C. An artificial neural network for groutability prediction of permeation grouting with microfine cement grouts. Comput. Geotech. 2011, 38:978-986.
    • (2011) Comput. Geotech. , vol.38 , pp. 978-986
    • Liao, K.1    Fan, J.2    Huang, C.3
  • 117
    • 17444389633 scopus 로고    scopus 로고
    • Underground blast induced ground shock and its modelling using artificial neural network
    • Lu Y. Underground blast induced ground shock and its modelling using artificial neural network. Comput. Geotech. 2005, 32:164-178.
    • (2005) Comput. Geotech. , vol.32 , pp. 164-178
    • Lu, Y.1
  • 118
    • 33748965006 scopus 로고    scopus 로고
    • The improved neural network and its application for valuing rock mass mechanical parameter
    • Ma S., Cao L., Li H. The improved neural network and its application for valuing rock mass mechanical parameter. J. Coal Sci. Eng. 2006, 12:21-24.
    • (2006) J. Coal Sci. Eng. , vol.12 , pp. 21-24
    • Ma, S.1    Cao, L.2    Li, H.3
  • 119
    • 0002704818 scopus 로고
    • A practical Bayesian framework for backpropagation networks
    • Mackay G. A practical Bayesian framework for backpropagation networks. Neural. Comput. 1992, 4:448-472.
    • (1992) Neural. Comput. , vol.4 , pp. 448-472
    • Mackay, G.1
  • 120
    • 0001728122 scopus 로고    scopus 로고
    • Applications of artificial neural networks to forecasting of surface water quality variables: issues, applications and challenges
    • Kluwer, Dordrecht, The Netherlands, R.S. Govindaraju, A.R. Rao (Eds.)
    • Maier H.R., Dandy G.C. Applications of artificial neural networks to forecasting of surface water quality variables: issues, applications and challenges. Artificial Neural Networks in Hydrology 2000, Kluwer, Dordrecht, The Netherlands. R.S. Govindaraju, A.R. Rao (Eds.).
    • (2000) Artificial Neural Networks in Hydrology
    • Maier, H.R.1    Dandy, G.C.2
  • 121
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications
    • Maier H.R., Dandy G.C. Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications. Environ. Modell. Softw. 2000, 15:101-124.
    • (2000) Environ. Modell. Softw. , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 122
    • 46949088613 scopus 로고    scopus 로고
    • Prediction of elastic modulus of jointed rock mass using artificial neural networks
    • Maji V.B., Sitharam T.G. Prediction of elastic modulus of jointed rock mass using artificial neural networks. Geotech. Geol. Eng. 2008, 26:443-452.
    • (2008) Geotech. Geol. Eng. , vol.26 , pp. 443-452
    • Maji, V.B.1    Sitharam, T.G.2
  • 124
    • 44749087316 scopus 로고    scopus 로고
    • Non-linear variable selection for artificial neural networks using partial mutual information
    • May R.J., Maier H.R., Dandy G.C., Fernando T.M. Non-linear variable selection for artificial neural networks using partial mutual information. Environ. Model. Softw. 2008, 23:1312-1326.
    • (2008) Environ. Model. Softw. , vol.23 , pp. 1312-1326
    • May, R.J.1    Maier, H.R.2    Dandy, G.C.3    Fernando, T.M.4
  • 125
    • 51249194645 scopus 로고
    • A logical calculus of ideas imminent in nervous activity
    • Mcculloch W.S., Pitts W. A logical calculus of ideas imminent in nervous activity. Bull. Math. Biophys. 1943, 5:115-133.
    • (1943) Bull. Math. Biophys. , vol.5 , pp. 115-133
    • Mcculloch, W.S.1    Pitts, W.2
  • 126
    • 79551483019 scopus 로고    scopus 로고
    • Empirical modeling of plate load test moduli of soil via gene expression programming
    • Mollahasani A., Alavi A.H., Gandomi A.H. Empirical modeling of plate load test moduli of soil via gene expression programming. Comput. Geotech. 2011, 38:281-286.
    • (2011) Comput. Geotech. , vol.38 , pp. 281-286
    • Mollahasani, A.1    Alavi, A.H.2    Gandomi, A.H.3
  • 127
    • 34848828929 scopus 로고    scopus 로고
    • Simulating the stress-strain behaviour of Georgia Kaolin via recurrent neuronet approach
    • Najjar Y.M., Huang C. Simulating the stress-strain behaviour of Georgia Kaolin via recurrent neuronet approach. Comput. Geotech. 2007, 34:346-362.
    • (2007) Comput. Geotech. , vol.34 , pp. 346-362
    • Najjar, Y.M.1    Huang, C.2
  • 128
    • 0030458149 scopus 로고    scopus 로고
    • On the identification of compaction characteristics by neuronets
    • Najjar Y.M., Basheer I.A., Naouss W.A. On the identification of compaction characteristics by neuronets. Comput. Geotech. 1996, 18:167-187.
    • (1996) Comput. Geotech. , vol.18 , pp. 167-187
    • Najjar, Y.M.1    Basheer, I.A.2    Naouss, W.A.3
  • 129
    • 33745661181 scopus 로고    scopus 로고
    • Prediction of unconfined compressive strength of soft grounds using computational intelligence techniques: a comparative study
    • Narendara B.S., Sivapullaiah P.V., Suresh S., Omkar S.N. Prediction of unconfined compressive strength of soft grounds using computational intelligence techniques: a comparative study. Comput. Geotech. 2006, 33:196-208.
    • (2006) Comput. Geotech. , vol.33 , pp. 196-208
    • Narendara, B.S.1    Sivapullaiah, P.V.2    Suresh, S.3    Omkar, S.N.4
  • 130
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models
    • Nash J.E., Sutcliffe J.V. River flow forecasting through conceptual models. J. Hydrol. 1970, 10:282-290.
    • (1970) J. Hydrol. , vol.10 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 131
    • 30044435527 scopus 로고    scopus 로고
    • Prediction of tunnelling-induced ground movement with the multi-layer perceptron
    • Neaupane K.M., Adhikari N.R. Prediction of tunnelling-induced ground movement with the multi-layer perceptron. Tunn. Undergr. Space Technol. 2006, 21:151-159.
    • (2006) Tunn. Undergr. Space Technol. , vol.21 , pp. 151-159
    • Neaupane, K.M.1    Adhikari, N.R.2
  • 133
    • 19944397551 scopus 로고    scopus 로고
    • A fuzzy neural network approach to evaluation of slope failure potential
    • Ni S.H., Lu P.C., Juang C.H. A fuzzy neural network approach to evaluation of slope failure potential. J. Microcomput. Civ. Eng. 1996, 11:59-66.
    • (1996) J. Microcomput. Civ. Eng. , vol.11 , pp. 59-66
    • Ni, S.H.1    Lu, P.C.2    Juang, C.H.3
  • 134
    • 67649998907 scopus 로고    scopus 로고
    • A combined neural network/gradient-based approach for the identification of constitutive model parameters using self-boring pressuremeter tests
    • Obrzud R.F., Vulliet L., Truty A. A combined neural network/gradient-based approach for the identification of constitutive model parameters using self-boring pressuremeter tests. Int. J. Numer. Anal. Methods Geomech. 2009, 33:817-849.
    • (2009) Int. J. Numer. Anal. Methods Geomech. , vol.33 , pp. 817-849
    • Obrzud, R.F.1    Vulliet, L.2    Truty, A.3
  • 135
    • 3242721368 scopus 로고    scopus 로고
    • An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data
    • Olden J.D., Joy M.K., Death R.G. An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecol. Model. 2004, 178:389-397.
    • (2004) Ecol. Model. , vol.178 , pp. 389-397
    • Olden, J.D.1    Joy, M.K.2    Death, R.G.3
  • 136
    • 36749010178 scopus 로고    scopus 로고
    • Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models
    • Padmini D., Ilamparuthi K., Sudheer K.P. Ultimate bearing capacity prediction of shallow foundations on cohesionless soils using neurofuzzy models. Comput. Geotech. 2008, 35:33-46.
    • (2008) Comput. Geotech. , vol.35 , pp. 33-46
    • Padmini, D.1    Ilamparuthi, K.2    Sudheer, K.P.3
  • 137
    • 45749119086 scopus 로고    scopus 로고
    • Modeling pile capacity using support vector machines and generalized regression neural network
    • Pal M., Deswal S. Modeling pile capacity using support vector machines and generalized regression neural network. J. Geotech. Geoenviron. Eng. 2008, 134:1021-1024.
    • (2008) J. Geotech. Geoenviron. Eng. , vol.134 , pp. 1021-1024
    • Pal, M.1    Deswal, S.2
  • 138
    • 36448940908 scopus 로고    scopus 로고
    • Estimating saturated conductivity using genetic programming
    • Parasuraman K., Elshorbagy A., Bing C.S. Estimating saturated conductivity using genetic programming. Soil Sci. Soc. Am. J. 2007, 71:1676-1684.
    • (2007) Soil Sci. Soc. Am. J. , vol.71 , pp. 1676-1684
    • Parasuraman, K.1    Elshorbagy, A.2    Bing, C.S.3
  • 139
    • 79954639328 scopus 로고    scopus 로고
    • Evaluation of the compression index of soils using an artificial neural network
    • Park H., Lee S.R. Evaluation of the compression index of soils using an artificial neural network. Comput. Geotech. 2011, 38:472-481.
    • (2011) Comput. Geotech. , vol.38 , pp. 472-481
    • Park, H.1    Lee, S.R.2
  • 140
    • 79960532995 scopus 로고    scopus 로고
    • Development of neural network model to estimate the permeability coefficient of soils
    • Park H.I. Development of neural network model to estimate the permeability coefficient of soils. Mar. Georesour. Geotechnol. 2011, 29:267-278.
    • (2011) Mar. Georesour. Geotechnol. , vol.29 , pp. 267-278
    • Park, H.I.1
  • 141
    • 79960731183 scopus 로고    scopus 로고
    • Prediction of strength of reinforced lightweight soil using an artificial neural network
    • Park H.I., Kim Y.T. Prediction of strength of reinforced lightweight soil using an artificial neural network. Eng. Comput. 2011, 28:600-615.
    • (2011) Eng. Comput. , vol.28 , pp. 600-615
    • Park, H.I.1    Kim, Y.T.2
  • 142
    • 77249173249 scopus 로고    scopus 로고
    • An elasto-plastic constitutive model of moderate sandy clay based on BC-RBFNN
    • Peng X., Wang Z., Luo T., Yu M., Luo Y. An elasto-plastic constitutive model of moderate sandy clay based on BC-RBFNN. J. Cent. South Univ. Technol. 2008, 15:47-50.
    • (2008) J. Cent. South Univ. Technol. , vol.15 , pp. 47-50
    • Peng, X.1    Wang, Z.2    Luo, T.3    Yu, M.4    Luo, Y.5
  • 143
    • 67651006180 scopus 로고    scopus 로고
    • Prediction of pile settlement using artificial neural networks based on standard penetration test data
    • Pooya Nejad F., Jaksa M.B., Kakhi M., Mccabe B.A. Prediction of pile settlement using artificial neural networks based on standard penetration test data. Comput. Geotech. 2009.
    • (2009) Comput. Geotech.
    • Pooya Nejad, F.1    Jaksa, M.B.2    Kakhi, M.3    Mccabe, B.A.4
  • 144
    • 1842687873 scopus 로고    scopus 로고
    • Interpretation of a model footing response through an adaptive neural fuzzy inference system
    • Provenzano P., Ferlisi S., Musso A. Interpretation of a model footing response through an adaptive neural fuzzy inference system. Comput. Geotech. 2004, 31:251-266.
    • (2004) Comput. Geotech. , vol.31 , pp. 251-266
    • Provenzano, P.1    Ferlisi, S.2    Musso, A.3
  • 145
    • 0034174354 scopus 로고    scopus 로고
    • Neural networks for agrichemical vulnerability assessment of rural private wells
    • Ray C., Klindworth K.K. Neural networks for agrichemical vulnerability assessment of rural private wells. J. Hydrol. Eng. 2000, 5:162-171.
    • (2000) J. Hydrol. Eng. , vol.5 , pp. 162-171
    • Ray, C.1    Klindworth, K.K.2
  • 146
    • 78649656808 scopus 로고    scopus 로고
    • An evolutionary based approach for assessment of earthquake-induced soil liquefaction and lateral displacement
    • Rezania M., Faramarzi A., Javadi A. An evolutionary based approach for assessment of earthquake-induced soil liquefaction and lateral displacement. Eng. Appl. Artif Intell. 2011, 24:142-153.
    • (2011) Eng. Appl. Artif Intell. , vol.24 , pp. 142-153
    • Rezania, M.1    Faramarzi, A.2    Javadi, A.3
  • 147
    • 70649110356 scopus 로고    scopus 로고
    • A new genetic programming model for predicting settlement of shallow foundations
    • Rezania M., Javadi A. A new genetic programming model for predicting settlement of shallow foundations. Can. Geotech. J. 2007, 44:1462-1472.
    • (2007) Can. Geotech. J. , vol.44 , pp. 1462-1472
    • Rezania, M.1    Javadi, A.2
  • 148
    • 70649105547 scopus 로고    scopus 로고
    • Evaluation of liquefaction potential based on CPT results using evolutionary polynomial regression
    • Rezania M., Javadi A., Giustolisi O. Evaluation of liquefaction potential based on CPT results using evolutionary polynomial regression. Comput. Geotech. 2010, 37:82-92.
    • (2010) Comput. Geotech. , vol.37 , pp. 82-92
    • Rezania, M.1    Javadi, A.2    Giustolisi, O.3
  • 149
    • 49149128168 scopus 로고    scopus 로고
    • An evolutionary-based data mining technique for assessment of civil engineering systems
    • Rezania M., Javadi A.A. An evolutionary-based data mining technique for assessment of civil engineering systems. Eng. Comput. Int. J. Comput. Aided Eng. Softw. 2008, 25:500-517.
    • (2008) Eng. Comput. Int. J. Comput. Aided Eng. Softw. , vol.25 , pp. 500-517
    • Rezania, M.1    Javadi, A.A.2
  • 150
    • 0000646059 scopus 로고
    • Learning internal representation by error propagation
    • MIT Press, Cambridge, D.E. Rumelhart, J.L. McClelland (Eds.)
    • Rumelhart D.E., Hinton G.E., Williams R.J. Learning internal representation by error propagation. Parallel Distributed Processing 1986, MIT Press, Cambridge. D.E. Rumelhart, J.L. McClelland (Eds.).
    • (1986) Parallel Distributed Processing
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 151
    • 23844474449 scopus 로고    scopus 로고
    • A study of slope stability prediction using neural networks
    • Sakellariou M.G., Ferentinou M.D. A study of slope stability prediction using neural networks. Geotech. Geol. Eng. 2005, 23:419-445.
    • (2005) Geotech. Geol. Eng. , vol.23 , pp. 419-445
    • Sakellariou, M.G.1    Ferentinou, M.D.2
  • 152
    • 33645768800 scopus 로고    scopus 로고
    • Artificial neural network prediction of stability numbers for two-layered slopes with associated flow rule
    • <>
    • Samui P., Kumar B. Artificial neural network prediction of stability numbers for two-layered slopes with associated flow rule. Electron. J. Geotech. Eng. 2006, 11. .
    • (2006) Electron. J. Geotech. Eng. , vol.11
    • Samui, P.1    Kumar, B.2
  • 153
    • 79957572984 scopus 로고    scopus 로고
    • Determination of liquefaction susceptability of soil based on field test and artificial intelligence
    • Samui P., Sitharam T.G. Determination of liquefaction susceptability of soil based on field test and artificial intelligence. Int. J. Earth Sci. Eng. 2011, 4:216-222.
    • (2011) Int. J. Earth Sci. Eng. , vol.4 , pp. 216-222
    • Samui, P.1    Sitharam, T.G.2
  • 154
    • 42949166273 scopus 로고    scopus 로고
    • Artificial neural networks analysis of Sao Paulo subway tunnel settlement data
    • Santos J., Ovidio J., Celestino T.B. Artificial neural networks analysis of Sao Paulo subway tunnel settlement data. Tunnell. Undegr. Space Technol. 2008, 23:481-491.
    • (2008) Tunnell. Undegr. Space Technol. , vol.23 , pp. 481-491
    • Santos, J.1    Ovidio, J.2    Celestino, T.B.3
  • 155
    • 77957999072 scopus 로고    scopus 로고
    • Estimation of stregth parameters of rock using artificial neural networks
    • Sarkar K., Tiwary A., Singh T.N. Estimation of stregth parameters of rock using artificial neural networks. Bull. Eng. Geol. Environ. 2010, 69:599-606.
    • (2010) Bull. Eng. Geol. Environ. , vol.69 , pp. 599-606
    • Sarkar, K.1    Tiwary, A.2    Singh, T.N.3
  • 157
    • 67649822125 scopus 로고    scopus 로고
    • Shear modulus and damping ratio in aggregate-clay mixtures: an experimental study versus ANNs prediction
    • Shafiee A., Ghate R. Shear modulus and damping ratio in aggregate-clay mixtures: an experimental study versus ANNs prediction. J. Appl. Sci. 2008, 8:3068-3082.
    • (2008) J. Appl. Sci. , vol.8 , pp. 3068-3082
    • Shafiee, A.1    Ghate, R.2
  • 158
    • 76749110197 scopus 로고    scopus 로고
    • Intelligent computing for modelling axial capacity of pile foundations
    • Shahin M.A. Intelligent computing for modelling axial capacity of pile foundations. Can. Geotech. J. 2010, 47:230-243.
    • (2010) Can. Geotech. J. , vol.47 , pp. 230-243
    • Shahin, M.A.1
  • 159
    • 33846957663 scopus 로고    scopus 로고
    • Modelling the mechanical behaviour of railway ballast using artificial neural networks
    • Shahin M.A., Indraratna B. Modelling the mechanical behaviour of railway ballast using artificial neural networks. Can. Geotech. J. 2006, 43:1144-1152.
    • (2006) Can. Geotech. J. , vol.43 , pp. 1144-1152
    • Shahin, M.A.1    Indraratna, B.2
  • 160
    • 17444421871 scopus 로고    scopus 로고
    • Neural network prediction of pullout capacity of marquee ground anchors
    • Shahin M.A., Jaksa M.B. Neural network prediction of pullout capacity of marquee ground anchors. Comput. Geotech. 2005, 32:153-163.
    • (2005) Comput. Geotech. , vol.32 , pp. 153-163
    • Shahin, M.A.1    Jaksa, M.B.2
  • 161
    • 33746930800 scopus 로고    scopus 로고
    • Pullout capacity of small ground anchors by direct cone penetration test methods and neural networks
    • Shahin M.A., Jaksa M.B. Pullout capacity of small ground anchors by direct cone penetration test methods and neural networks. Can. Geotech. J. 2006, 43:626-637.
    • (2006) Can. Geotech. J. , vol.43 , pp. 626-637
    • Shahin, M.A.1    Jaksa, M.B.2
  • 162
    • 84930208606 scopus 로고    scopus 로고
    • Artificial neural network applications in geotechnical engineering
    • Shahin M.A., Jaksa M.B., Maier H.R. Artificial neural network applications in geotechnical engineering. Aust. Geomech. 2001, 36:49-62.
    • (2001) Aust. Geomech. , vol.36 , pp. 49-62
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 163
    • 19944393836 scopus 로고    scopus 로고
    • Artificial neural network-based settlement prediction formula for shallow foundations on granular soils
    • Shahin M.A., Jaksa M.B., Maier H.R. Artificial neural network-based settlement prediction formula for shallow foundations on granular soils. Aust. Geomech. 2002, 37:45-52.
    • (2002) Aust. Geomech. , vol.37 , pp. 45-52
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 164
    • 0242468288 scopus 로고    scopus 로고
    • Settlement prediction of shallow foundations on granular soils using B-spline neurofuzzy models
    • Shahin M.A., Maier H.R., Jaksa M.B. Settlement prediction of shallow foundations on granular soils using B-spline neurofuzzy models. Comput. Geotech. 2003, 30:637-647.
    • (2003) Comput. Geotech. , vol.30 , pp. 637-647
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 165
    • 16444364474 scopus 로고    scopus 로고
    • Data division for developing neural networks applied to geotechnical engineering
    • Shahin M.A., Maier H.R., Jaksa M.B. Data division for developing neural networks applied to geotechnical engineering. J. Comput. Civ. Eng. 2004, 18:105-114.
    • (2004) J. Comput. Civ. Eng. , vol.18 , pp. 105-114
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 166
    • 19944364218 scopus 로고    scopus 로고
    • Neural network based stochastic design charts for settlement prediction
    • Shahin M.A., Jaksa M.B., Maier H.R. Neural network based stochastic design charts for settlement prediction. Can. Geotech. J. 2005, 42:110-120.
    • (2005) Can. Geotech. J. , vol.42 , pp. 110-120
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 167
    • 60549085638 scopus 로고    scopus 로고
    • Investigation into the robustness of artificial neural network models for a case study in civil engineering
    • MODSIM 2005, Melbourne, Australia
    • Shahin, M.A., Maier, H.R., Jaksa, M.B., 2005b. Investigation into the robustness of artificial neural network models for a case study in civil engineering. In: Proceedings of the International Congress on Modelling and Simulation, MODSIM 2005, Melbourne, Australia, pp. 79-83.
    • (2005) In: Proceedings of the International Congress on Modelling and Simulation , pp. 79-83
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 168
    • 77955473867 scopus 로고    scopus 로고
    • Recent advances and future challenges for artificial neural systems in geotechnical engineering applications
    • Shahin M.A., Jaksa M.B., Maier H.R. Recent advances and future challenges for artificial neural systems in geotechnical engineering applications. J. Adv. Artif. Neural Syst. 2009, 10.1155/2009/308239.
    • (2009) J. Adv. Artif. Neural Syst.
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 169
    • 77957786105 scopus 로고    scopus 로고
    • Numerical modeling of stress-strain behavior of sand under cyclic loading
    • Shahnazari H., Dehnavi Y., Alavi A.H. Numerical modeling of stress-strain behavior of sand under cyclic loading. Eng. Geol. 2010, 116:53-72.
    • (2010) Eng. Geol. , vol.116 , pp. 53-72
    • Shahnazari, H.1    Dehnavi, Y.2    Alavi, A.H.3
  • 170
    • 33645987256 scopus 로고    scopus 로고
    • Machine learning approacjes for estimation of prediction interval for the model output
    • Shrestha D.L., Solomatine D.P. Machine learning approacjes for estimation of prediction interval for the model output. Neural Networks 2006, 19.
    • (2006) Neural Networks , vol.19
    • Shrestha, D.L.1    Solomatine, D.P.2
  • 171
    • 74249093696 scopus 로고    scopus 로고
    • CPT-based simplified liquefaction assessment by using fuzzy-neural network
    • Shuh-Gi C., Ching-Yinn L. CPT-based simplified liquefaction assessment by using fuzzy-neural network. J. Mar. Sci. Technol. 2009, 17:326-331.
    • (2009) J. Mar. Sci. Technol. , vol.17 , pp. 326-331
    • Shuh-Gi, C.1    Ching-Yinn, L.2
  • 172
    • 17844387840 scopus 로고    scopus 로고
    • An intelligent approach to prediction and control ground vibration in mines
    • Singh T.N., Singh V. An intelligent approach to prediction and control ground vibration in mines. Geotech. Geol. Eng. 2005, (23):249-262.
    • (2005) Geotech. Geol. Eng. , Issue.23 , pp. 249-262
    • Singh, T.N.1    Singh, V.2
  • 173
    • 12844266377 scopus 로고    scopus 로고
    • Slake durability of shaly rock and its predictions
    • Singh T.N., Verma A.K., Singh V., Sahu A. Slake durability of shaly rock and its predictions. Environ. Geol. 2005, 47:246-253.
    • (2005) Environ. Geol. , vol.47 , pp. 246-253
    • Singh, T.N.1    Verma, A.K.2    Singh, V.3    Sahu, A.4
  • 174
    • 34347385017 scopus 로고    scopus 로고
    • A neuro-genetic approach for prediction of time dependent deformational characteristic of rock and its sensitivity analysis
    • Singh T.N., Verma A.K., Sharma P.K. A neuro-genetic approach for prediction of time dependent deformational characteristic of rock and its sensitivity analysis. Geotech. Geol. Eng. 2007, 25:395-407.
    • (2007) Geotech. Geol. Eng. , vol.25 , pp. 395-407
    • Singh, T.N.1    Verma, A.K.2    Sharma, P.K.3
  • 175
    • 39849106475 scopus 로고    scopus 로고
    • Artificial neural network prediction models for soil compaction and permeability
    • Sinha S.K., Wang M.C. Artificial neural network prediction models for soil compaction and permeability. Geotech. Eng. J. 2008, 26:47-64.
    • (2008) Geotech. Eng. J. , vol.26 , pp. 47-64
    • Sinha, S.K.1    Wang, M.C.2
  • 176
    • 51049098098 scopus 로고    scopus 로고
    • Spatial variability of rock depth in Bangalore using geostatistical, neural network and support vector machine models
    • Sitharam T.G., Samui P., Anbazhagan P. Spatial variability of rock depth in Bangalore using geostatistical, neural network and support vector machine models. Geotech. Geol. Eng. 2008, 26:503-517.
    • (2008) Geotech. Geol. Eng. , vol.26 , pp. 503-517
    • Sitharam, T.G.1    Samui, P.2    Anbazhagan, P.3
  • 177
    • 81155146014 scopus 로고    scopus 로고
    • Estimation of compaction parameters of fine-grained soils in terms of compaction energy using artificial neural networks
    • Sivrikaya O., Soycan T.Y. Estimation of compaction parameters of fine-grained soils in terms of compaction energy using artificial neural networks. Int. J. Numer. Anal. Methods Geomech. 2011, 35:1830-1841.
    • (2011) Int. J. Numer. Anal. Methods Geomech. , vol.35 , pp. 1830-1841
    • Sivrikaya, O.1    Soycan, T.Y.2
  • 179
    • 39449089195 scopus 로고    scopus 로고
    • Data-driven modelling: some past experience and new approaches
    • Solomatine D.P., Ostfeld A. Data-driven modelling: some past experience and new approaches. J. Hydroinform. 2008, 10:3-22.
    • (2008) J. Hydroinform. , vol.10 , pp. 3-22
    • Solomatine, D.P.1    Ostfeld, A.2
  • 180
    • 33646104434 scopus 로고    scopus 로고
    • Simulation of 3D effect of excavation face advancement using an ANN trained by numerical models
    • <>
    • Soroush A., Foroozan R., Asadollahi P. Simulation of 3D effect of excavation face advancement using an ANN trained by numerical models. Electron. J. Geotech. Eng. 2006, 11. .
    • (2006) Electron. J. Geotech. Eng. , vol.11
    • Soroush, A.1    Foroozan, R.2    Asadollahi, P.3
  • 181
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M. Cross-validatory choice and assessment of statistical predictions. J. Roy. Stat. Soc. B 1974, 36:111-147.
    • (1974) J. Roy. Stat. Soc. B , vol.36 , pp. 111-147
    • Stone, M.1
  • 182
    • 23044433719 scopus 로고    scopus 로고
    • Knowledge extraction from trained neural network river flow models
    • Sudheer K.P. knowledge extraction from trained neural network river flow models. J Hydrol. Eng. 2005, 10:264-269.
    • (2005) J Hydrol. Eng. , vol.10 , pp. 264-269
    • Sudheer, K.P.1
  • 183
    • 1642333234 scopus 로고    scopus 로고
    • Explaining the internal behaviour of artificial neural network river flow models
    • Sudheer K.P., Jain A. Explaining the internal behaviour of artificial neural network river flow models. Hydrol. Processes 2004, 18:833-844.
    • (2004) Hydrol. Processes , vol.18 , pp. 833-844
    • Sudheer, K.P.1    Jain, A.2
  • 184
    • 0037470339 scopus 로고    scopus 로고
    • Improving peak flow estimates in artificial neural network river flow models
    • Sudheer K.P., Nayak P.C., Ramasastri K.S. Improving peak flow estimates in artificial neural network river flow models. Hydrol. Processes 2003, 17:677-686.
    • (2003) Hydrol. Processes , vol.17 , pp. 677-686
    • Sudheer, K.P.1    Nayak, P.C.2    Ramasastri, K.S.3
  • 185
    • 79952560849 scopus 로고    scopus 로고
    • Neural modelling of compactability characteristics of cohessionless soil
    • Sulewska M.J. Neural modelling of compactability characteristics of cohessionless soil. Comput. Assist. Mech. Eng. Sci. 2010, 17:27-40.
    • (2010) Comput. Assist. Mech. Eng. Sci. , vol.17 , pp. 27-40
    • Sulewska, M.J.1
  • 186
    • 74549162117 scopus 로고    scopus 로고
    • Prediction of uniaxial compression PFC3D model micro-properties using artificial neural networks
    • Tawadrous A.S., Degagne D., Pierce M., Masivars D. Prediction of uniaxial compression PFC3D model micro-properties using artificial neural networks. Int. J. Numer. Anal. Methods Geomech. 2009, 33:1953-1962.
    • (2009) Int. J. Numer. Anal. Methods Geomech. , vol.33 , pp. 1953-1962
    • Tawadrous, A.S.1    Degagne, D.2    Pierce, M.3    Masivars, D.4
  • 187
    • 79551588368 scopus 로고    scopus 로고
    • Artificial neural networks approach for estimating the groutability of granular soils with cement-based grouts
    • Tekin E., Akbas S.O. Artificial neural networks approach for estimating the groutability of granular soils with cement-based grouts. Bull. Eng. Geol. Environ. 2011, 70:153-161.
    • (2011) Bull. Eng. Geol. Environ. , vol.70 , pp. 153-161
    • Tekin, E.1    Akbas, S.O.2
  • 188
    • 39149131373 scopus 로고    scopus 로고
    • High energy physics event selection with gene expression programming
    • Teodorescu L., Sherwood D. High energy physics event selection with gene expression programming. Comupt. Phys. Commun. 2008, 178:409-419.
    • (2008) Comupt. Phys. Commun. , vol.178 , pp. 409-419
    • Teodorescu, L.1    Sherwood, D.2
  • 189
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar S.A., Johnson P.A. Rainfall-runoff modeling using artificial neural networks. J. Hydrol. Eng. 1999, 4:232-239.
    • (1999) J. Hydrol. Eng. , vol.4 , pp. 232-239
    • Tokar, S.A.1    Johnson, P.A.2
  • 190
    • 79958268617 scopus 로고    scopus 로고
    • An optimized neural network for predicting settlements during tunneling excavation
    • Tsekouras G.J., Koukoulis J., Mastorakis N.E. An optimized neural network for predicting settlements during tunneling excavation. WSEAS Trans. Syst. 2010, 9:1153-1167.
    • (2010) WSEAS Trans. Syst. , vol.9 , pp. 1153-1167
    • Tsekouras, G.J.1    Koukoulis, J.2    Mastorakis, N.E.3
  • 193
    • 70849084929 scopus 로고    scopus 로고
    • Prediction of lateral effective stresses in sand using artificial neural network
    • Uncuoglu E., Laman M., Saglamer A., Kara H.B. Prediction of lateral effective stresses in sand using artificial neural network. Soils Found 2008, 48:141-153.
    • (2008) Soils Found , vol.48 , pp. 141-153
    • Uncuoglu, E.1    Laman, M.2    Saglamer, A.3    Kara, H.B.4
  • 195
    • 32544437355 scopus 로고    scopus 로고
    • Rainfall-induced landslide hazard assessment using artificial neural networks
    • Wang H.B., Sassa K. Rainfall-induced landslide hazard assessment using artificial neural networks. Earth Surf. Processes Landforms 2006, 31:235-247.
    • (2006) Earth Surf. Processes Landforms , vol.31 , pp. 235-247
    • Wang, H.B.1    Sassa, K.2
  • 196
    • 0036090265 scopus 로고    scopus 로고
    • The artificial neural network as a tool for assessing geotechnical properties
    • Yang Y., Rosenbaum M.S. The artificial neural network as a tool for assessing geotechnical properties. Geotech. Eng. J. 2002, 20:149-168.
    • (2002) Geotech. Eng. J. , vol.20 , pp. 149-168
    • Yang, Y.1    Rosenbaum, M.S.2
  • 197
    • 77955546341 scopus 로고    scopus 로고
    • Lateral pressures on rigid retaining walls: a neural network approach
    • Yildiz E., Ozyazicioglu M.H., Ozkan M.Y. Lateral pressures on rigid retaining walls: a neural network approach. Gazi Univ. J. Sci. 2010, 23:201-210.
    • (2010) Gazi Univ. J. Sci. , vol.23 , pp. 201-210
    • Yildiz, E.1    Ozyazicioglu, M.H.2    Ozkan, M.Y.3
  • 198
    • 33845488712 scopus 로고    scopus 로고
    • Tunneling performance prediction using an integrated GIS and neural network
    • Yoo C., Kim J. Tunneling performance prediction using an integrated GIS and neural network. Comput. Geotech. 2007, 34:19-30.
    • (2007) Comput. Geotech. , vol.34 , pp. 19-30
    • Yoo, C.1    Kim, J.2
  • 199
    • 33751206829 scopus 로고    scopus 로고
    • Use of artificial neural networks in the prediction of liquefaction resistance of sands
    • Young-Su K., Byung-Tak K. Use of artificial neural networks in the prediction of liquefaction resistance of sands. J. Geotech. Geoenviron. Eng. 2006, 132:1502-1504.
    • (2006) J. Geotech. Geoenviron. Eng. , vol.132 , pp. 1502-1504
    • Young-Su, K.1    Byung-Tak, K.2
  • 200
    • 36349001715 scopus 로고    scopus 로고
    • An intelligent displacement back-analysis method for earth-rockfill dams
    • Yu Y., Zhang B., Yuan H. An intelligent displacement back-analysis method for earth-rockfill dams. Comput. Geotech. 2007, 34:423-434.
    • (2007) Comput. Geotech. , vol.34 , pp. 423-434
    • Yu, Y.1    Zhang, B.2    Yuan, H.3
  • 201
    • 58549088485 scopus 로고    scopus 로고
    • Estimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference system
    • Zounemat-Kermani M., Beheshti A.A., Ataie-Ashtiani B., Asabbagh-Yazdi S.R. Estimation of current-induced scour depth around pile groups using neural network and adaptive neuro-fuzzy inference system. Appl. Soft Comput. 2009, 9:746-755.
    • (2009) Appl. Soft Comput. , vol.9 , pp. 746-755
    • Zounemat-Kermani, M.1    Beheshti, A.A.2    Ataie-Ashtiani, B.3    Asabbagh-Yazdi, S.R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.