|
Volumn 26, Issue 4, 2008, Pages 443-452
|
Prediction of elastic modulus of jointed rock mass using artificial neural networks
|
Author keywords
Back propagation; Joint factor; Jointed rock mass; Neural networks; Radial basis function
|
Indexed keywords
ARTIFICIAL INTELLIGENCE;
BACKPROPAGATION;
COMPRESSION TESTING;
DATA COMPRESSION;
ELASTIC MODULI;
FEEDFORWARD NEURAL NETWORKS;
FORECASTING;
PARAMETER ESTIMATION;
RADIAL BASIS FUNCTION NETWORKS;
ROCK MECHANICS;
ROCKS;
VEGETATION;
ARTIFICIAL NEURAL NETWORK (ANN) MODELS;
ARTIFICIAL NEURAL NETWORK (ANNS);
BUSINESS MEDIA;
CONFINING PRESSURES;
DATA COLLECTED;
FEED-FORWARD BACK-PROPAGATION;
JOINT CONFIGURATIONS;
JOINT PARAMETERS;
JOINT PROPERTIES;
JOINTED ROCK MASSES;
MODULUS RATIOS;
RADIAL-BASIS FUNCTION (RBF);
SPRINGER (CO);
TRIAXIAL COMPRESSION TEST (IGC: D6);
NEURAL NETWORKS;
ARTIFICIAL NEURAL NETWORK;
BACK PROPAGATION;
ELASTIC MODULUS;
ROCK MASS RESPONSE;
ROCK MECHANICS;
TRIAXIAL TEST;
UNIAXIAL TEST;
|
EID: 46949088613
PISSN: 09603182
EISSN: None
Source Type: Journal
DOI: 10.1007/s10706-008-9180-9 Document Type: Article |
Times cited : (36)
|
References (17)
|