메뉴 건너뛰기




Volumn 36, Issue 7, 2009, Pages 1125-1133

Prediction of pile settlement using artificial neural networks based on standard penetration test data

Author keywords

Neural networks; Pile foundation; Pile load test; Settlement

Indexed keywords

ACCURATE PREDICTION; ARTIFICIAL NEURAL NETWORK; ARTIFICIAL NEURAL NETWORKS; DATA SETS; INTERNAL NETWORK; OPTIMUM MODEL; PILE LOAD TEST; PILE-SETTLEMENT; SETTLEMENT; STANDARD PENETRATION TEST;

EID: 67651006180     PISSN: 0266352X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compgeo.2009.04.003     Document Type: Article
Times cited : (126)

References (47)
  • 1
    • 2142699627 scopus 로고    scopus 로고
    • Evaluating accuracy for two empirical methods in predicting settlement of drilled shafts
    • Al-Homoud A.S., Fouad T., and Mokhtar A. Evaluating accuracy for two empirical methods in predicting settlement of drilled shafts. Geotech Geol Eng 22 (2004) 245-267
    • (2004) Geotech Geol Eng , vol.22 , pp. 245-267
    • Al-Homoud, A.S.1    Fouad, T.2    Mokhtar, A.3
  • 2
    • 0026495966 scopus 로고
    • Axial load transfer for piles in sand. I. Tests on an instrumented precast pile
    • Altaee A., Fellenius B.H., and Evgin E. Axial load transfer for piles in sand. I. Tests on an instrumented precast pile. Can Geotech J 29 (1992) 11-20
    • (1992) Can Geotech J , vol.29 , pp. 11-20
    • Altaee, A.1    Fellenius, B.H.2    Evgin, E.3
  • 5
    • 0033938133 scopus 로고    scopus 로고
    • Static capacity prediction by dynamic methods for three bored piles
    • Briaud J.L., Ballouz M., and Nasr G. Static capacity prediction by dynamic methods for three bored piles. J Geotech Geoenviron Eng ASCE 126 7 (2000) 640-649
    • (2000) J Geotech Geoenviron Eng ASCE , vol.126 , Issue.7 , pp. 640-649
    • Briaud, J.L.1    Ballouz, M.2    Nasr, G.3
  • 6
    • 67650803674 scopus 로고
    • End bearing and skin friction resistance of piles
    • Broms B.B., and Hellman L. End bearing and skin friction resistance of piles. J Soil Mech Found Div, Proc ASCE 94 SM2 (1968) 421-429
    • (1968) J Soil Mech Found Div, Proc ASCE , vol.94 , Issue.SM2 , pp. 421-429
    • Broms, B.B.1    Hellman, L.2
  • 7
    • 0005380346 scopus 로고
    • Neural networks primer, Part III
    • Caudill M. Neural networks primer, Part III. AI Expert 3 6 (1988) 53-59
    • (1988) AI Expert , vol.3 , Issue.6 , pp. 53-59
    • Caudill, M.1
  • 9
  • 12
    • 0028416331 scopus 로고
    • Neural networks in civil engineering I: principles and understanding
    • Flood I., and Kartam N. Neural networks in civil engineering I: principles and understanding. J Comput Civ Eng 8 2 (1994) 131-148
    • (1994) J Comput Civ Eng , vol.8 , Issue.2 , pp. 131-148
    • Flood, I.1    Kartam, N.2
  • 13
    • 67650826331 scopus 로고    scopus 로고
    • Florida Department of Transportation FDOT, Research management center
    • Florida Department of Transportation (FDOT) (2003). Large diameter cylinder pile database. Research management center.
    • (2003) Large diameter cylinder pile database
  • 14
    • 0001867238 scopus 로고
    • Interpreting neural-network connection weights
    • Garson G.D. Interpreting neural-network connection weights. AI Expert 6 7 (1991) 47-51
    • (1991) AI Expert , vol.6 , Issue.7 , pp. 47-51
    • Garson, G.D.1
  • 15
    • 0028666973 scopus 로고
    • Seismic liquefaction potential assessed by neural networks
    • Goh A.T.C. Seismic liquefaction potential assessed by neural networks. J Geotech Geoenviron Eng ASCE 120 9 (1994) 1467-1480
    • (1994) J Geotech Geoenviron Eng ASCE , vol.120 , Issue.9 , pp. 1467-1480
    • Goh, A.T.C.1
  • 17
    • 0025399886 scopus 로고
    • Load-settlement analysis for bored piles using hyperbolic transfer functions
    • Hirayama H. Load-settlement analysis for bored piles using hyperbolic transfer functions. Soils Found 30 1 (1990) 55-64
    • (1990) Soils Found , vol.30 , Issue.1 , pp. 55-64
    • Hirayama, H.1
  • 18
    • 0024880831 scopus 로고
    • Multilayer feed forward networks are universal approximators
    • Hornik K., Stinchcombe M., and White H. Multilayer feed forward networks are universal approximators. Neural Network 2 (1989) 359-366
    • (1989) Neural Network , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 19
    • 0032709916 scopus 로고    scopus 로고
    • Analysis of load tests on piles driven through calcareous desert sands
    • Ismael N.F. Analysis of load tests on piles driven through calcareous desert sands. J Geotech Geoenviron Eng ASCE 125 10 (1999) 905-908
    • (1999) J Geotech Geoenviron Eng ASCE , vol.125 , Issue.10 , pp. 905-908
    • Ismael, N.F.1
  • 20
    • 0032210298 scopus 로고    scopus 로고
    • Vibration of a beam-mass systems using artificial neural networks
    • Karlik B., Ozkaya E., Aydin S., and Pakdemirli M. Vibration of a beam-mass systems using artificial neural networks. Comput Struct 69 (1998) 339-347
    • (1998) Comput Struct , vol.69 , pp. 339-347
    • Karlik, B.1    Ozkaya, E.2    Aydin, S.3    Pakdemirli, M.4
  • 21
    • 0022928071 scopus 로고
    • Overburden correction factors for SPT in sand
    • Liao S.S., and Whitman R.V. Overburden correction factors for SPT in sand. J Geotech Eng ASCE 112 3 (1986) 373-377
    • (1986) J Geotech Eng ASCE , vol.112 , Issue.3 , pp. 373-377
    • Liao, S.S.1    Whitman, R.V.2
  • 23
    • 0142122914 scopus 로고    scopus 로고
    • Influence of a permanent liner on the skin friction of large-diameter bored piles in Hong Kong granitic saprolites
    • Lo S.C., and Li K.S. Influence of a permanent liner on the skin friction of large-diameter bored piles in Hong Kong granitic saprolites. Can Geotech J 40 (2003) 793-805
    • (2003) Can Geotech J , vol.40 , pp. 793-805
    • Lo, S.C.1    Li, K.S.2
  • 24
    • 0001728122 scopus 로고    scopus 로고
    • Applications of artificial neural networks to forecasting of surface water quality variables: issues, applications and challenges
    • Govindaraju R.S., and Rao A.R. (Eds), Kluwer, Dordrecht (The Netherlands)
    • Maier H.R., and Dandy G.C. Applications of artificial neural networks to forecasting of surface water quality variables: issues, applications and challenges. In: Govindaraju R.S., and Rao A.R. (Eds). Artificial neural networks in hydrology (2000), Kluwer, Dordrecht (The Netherlands) 287-309
    • (2000) Artificial neural networks in hydrology , pp. 287-309
    • Maier, H.R.1    Dandy, G.C.2
  • 25
    • 0003486924 scopus 로고
    • Academic, San Diego
    • ++ (1993), Academic, San Diego
    • (1993) ++
    • Masters, T.1
  • 27
    • 0016928323 scopus 로고
    • Bearing capacity and settlement of pile foundation
    • Meyerhof G.G. Bearing capacity and settlement of pile foundation. J Geotech Eng Div ASCE 102 GT3 (1976) 197-228
    • (1976) J Geotech Eng Div ASCE , vol.102 , Issue.GT3 , pp. 197-228
    • Meyerhof, G.G.1
  • 28
    • 0029723312 scopus 로고    scopus 로고
    • A neural network approach for site characterization and uncertainty prediction
    • Najjar Y.M., and Basheer I.A. A neural network approach for site characterization and uncertainty prediction. ASCE Geotech Spec Pub 58 1 (1996) 134-148
    • (1996) ASCE Geotech Spec Pub , vol.58 , Issue.1 , pp. 134-148
    • Najjar, Y.M.1    Basheer, I.A.2
  • 30
    • 0141670576 scopus 로고    scopus 로고
    • Large-scale pile tests in Mercia mudstone: data analysis and evaluation of current design methods
    • Omer J.R., Robinson R.B., Delpak R., and Shih J.K.C. Large-scale pile tests in Mercia mudstone: data analysis and evaluation of current design methods. Geotech Geol Eng 21 (2003) 167-200
    • (2003) Geotech Geol Eng , vol.21 , pp. 167-200
    • Omer, J.R.1    Robinson, R.B.2    Delpak, R.3    Shih, J.K.C.4
  • 31
    • 0037244326 scopus 로고    scopus 로고
    • Determination of bearing capacity of open-ended piles in sand
    • Paik K.H., and Salgado R. Determination of bearing capacity of open-ended piles in sand. J Geotech Geoenviron Eng ASCE 129 1 (2003) 46-57
    • (2003) J Geotech Geoenviron Eng ASCE , vol.129 , Issue.1 , pp. 46-57
    • Paik, K.H.1    Salgado, R.2
  • 32
    • 0033458869 scopus 로고    scopus 로고
    • Common procedures for foundation settlement analysis-Are they adequate?
    • Hobart;
    • Poulos HG. Common procedures for foundation settlement analysis-Are they adequate? In: Proc 8th Australia New Zealand conf on geomechanics, Hobart; 1999. p. 3-25.
    • (1999) Proc 8th Australia New Zealand conf on geomechanics , pp. 3-25
    • Poulos, H.G.1
  • 35
    • 0000646059 scopus 로고
    • Learning internal representation by error propagation
    • Rumelhart D.E., and McClelland J.L. (Eds), MIT Press, Cambridge, Mass Chapter 8
    • Rumelhart D.E., Hinton G.E., and Williams R.J. Learning internal representation by error propagation. In: Rumelhart D.E., and McClelland J.L. (Eds). Parallel distributed processing vol. 1 (1986), MIT Press, Cambridge, Mass Chapter 8
    • (1986) Parallel distributed processing , vol.1
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 37
    • 0036712318 scopus 로고    scopus 로고
    • Predicting settlements of shallow foundations using artificial neural networks
    • Shahin M.A., Maier H.R., and Jaksa M.B. Predicting settlements of shallow foundations using artificial neural networks. J Geotech Geoenviron Eng ASCE 128 9 (2002) 785-793
    • (2002) J Geotech Geoenviron Eng ASCE , vol.128 , Issue.9 , pp. 785-793
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 38
    • 16444364474 scopus 로고    scopus 로고
    • Data division for developing neural networks applied to geotechnical engineering
    • Shahin M.A., Maier H.R., and Jaksa M.B. Data division for developing neural networks applied to geotechnical engineering. J Comput Civ Eng ASCE 18 2 (2004) 105-114
    • (2004) J Comput Civ Eng ASCE , vol.18 , Issue.2 , pp. 105-114
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 40
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • Stone M. Cross-validatory choice and assessment of statistical predictions. J Roy Stat Soc B 36 (1974) 111-147
    • (1974) J Roy Stat Soc B , vol.36 , pp. 111-147
    • Stone, M.1
  • 41
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • Tokar S.A., and Johnson P.A. Rainfall-runoff modeling using artificial neural networks. J Hydrol Eng 4 3 (1999) 232-239
    • (1999) J Hydrol Eng , vol.4 , Issue.3 , pp. 232-239
    • Tokar, S.A.1    Johnson, P.A.2
  • 43
    • 67650810352 scopus 로고    scopus 로고
    • US Department of Transportation. A laboratory and field study of composite piles for bridge substructures. FHWA-HRT-04-043; 2006.
    • US Department of Transportation. A laboratory and field study of composite piles for bridge substructures. FHWA-HRT-04-043; 2006.
  • 45
    • 0000243355 scopus 로고
    • Learning in artificial neural networks: a statistical perspective
    • White H. Learning in artificial neural networks: a statistical perspective. Neural Comput 1 (1989) 425-464
    • (1989) Neural Comput , vol.1 , pp. 425-464
    • White, H.1
  • 46
    • 31444447083 scopus 로고    scopus 로고
    • Observed performance of long steel H-piles jacked into sandy soils
    • Yang J., Tham L.G., Lee P.K.K., and Yu F. Observed performance of long steel H-piles jacked into sandy soils. J Geotech Geoenviron Eng ASCE 132 1 (2006) 24-35
    • (2006) J Geotech Geoenviron Eng ASCE , vol.132 , Issue.1 , pp. 24-35
    • Yang, J.1    Tham, L.G.2    Lee, P.K.K.3    Yu, F.4
  • 47
    • 33745289084 scopus 로고    scopus 로고
    • Termination criteria for jacked pile construction and load transfer in weathered soils
    • Zhang L.M., Ng C.W.W., Chan F., and Pang H.W. Termination criteria for jacked pile construction and load transfer in weathered soils. J Geotech Geoenviron Eng ASCE 132 7 (2006) 819-829
    • (2006) J Geotech Geoenviron Eng ASCE , vol.132 , Issue.7 , pp. 819-829
    • Zhang, L.M.1    Ng, C.W.W.2    Chan, F.3    Pang, H.W.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.