메뉴 건너뛰기




Volumn 32, Issue 3, 2005, Pages 153-163

Neural network prediction of pullout capacity of marquee ground anchors

Author keywords

B spline neurofuzzy networks; Back propagation; Marquee ground anchors; Multi layer perceptrons; Neural networks; Pullout capacity

Indexed keywords

ALGORITHMS; ANCHORS; BACKPROPAGATION; FAILURE (MECHANICAL); FUZZY SETS; NEURAL NETWORKS;

EID: 17444421871     PISSN: 0266352X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compgeo.2005.02.003     Document Type: Article
Times cited : (66)

References (22)
  • 2
    • 0024087390 scopus 로고
    • Uplift testing of model anchors
    • W. Su R.J. Fragaszy Uplift testing of model anchors J Geotech Eng ASCE 114 9 1988 961-83
    • (1988) J. Geotech. Eng. ASCE , vol.114 , Issue.9 , pp. 961-983
    • Su, W.1    Fragaszy, R.J.2
  • 3
    • 17444365233 scopus 로고    scopus 로고
    • Modelling the pullout capacity of marquee ground anchors
    • Research Report No. R174, School of Civil and Environmental Engineering, The University of Adelaide, Adelaide
    • Shahin MA, Jaksa MB. Modelling the pullout capacity of marquee ground anchors. Research Report No. R174, School of Civil and Environmental Engineering, The University of Adelaide, Adelaide; 2003
    • (2003)
    • Shahin, M.A.1    Jaksa, M.B.2
  • 4
    • 84930208606 scopus 로고    scopus 로고
    • Artificial neural network applications in geotechnical engineering
    • M.A. Shahin M.B. Jaksa H.R. Maier Artificial neural network applications in geotechnical engineering Austr Geomech 36 1 2001 49-62
    • (2001) Austr. Geomech. , vol.36 , Issue.1 , pp. 49-62
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 6
    • 0029735537 scopus 로고    scopus 로고
    • A fuzzy neural network approach to evaluation of slope failure potential
    • S.H. Ni P.C. Lu C.H. Juang A fuzzy neural network approach to evaluation of slope failure potential J Microcomputers Civil Eng 11 1996 59-66
    • (1996) J. Microcomputers Civil Eng. , vol.11 , pp. 59-66
    • Ni, S.H.1    Lu, P.C.2    Juang, C.H.3
  • 9
    • 0000629975 scopus 로고
    • Cross-validatory choice and assessment of statistical predictions
    • M. Stone Cross-validatory choice and assessment of statistical predictions J Roy Stat Soc B 36 1974 111-47
    • (1974) J. Roy. Stat. Soc. B , vol.36 , pp. 111-147
    • Stone, M.1
  • 10
    • 0003728053 scopus 로고
    • Neural networks for statistical modelling
    • New York: Van Nostrand Reinhold
    • M. Smith Neural networks for statistical modelling 1993 Van Nostrand Reinhold New York
    • (1993)
    • Smith, M.1
  • 11
    • 34248666540 scopus 로고
    • Fuzzy sets
    • L.A. Zadeh Fuzzy sets Inf Contr 8 1965 338-53
    • (1965) Inf. Contr. , vol.8 , pp. 338-353
    • Zadeh, L.A.1
  • 13
    • 84947630316 scopus 로고
    • ASMOD - An algorithm for adaptive spline modelling of observation data
    • T. Kavli ASMOD - an algorithm for adaptive spline modelling of observation data Int J Contr 58 4 1993 947-67
    • (1993) Int. J. Contr. , vol.58 , Issue.4 , pp. 947-967
    • Kavli, T.1
  • 14
    • 0242644816 scopus 로고    scopus 로고
    • Neusciences. Southampton, Hampshire: Neusciences Corp
    • Neusciences. Neuframe Version 4.0. Southampton, Hampshire: Neusciences Corp.; 2000
    • (2000) Neuframe Version 4.0.
  • 16
    • 16444364474 scopus 로고    scopus 로고
    • Data division for developing neural networks applied to geotechnical engineering
    • M.A. Shahin H.R. Maier M.B. Jaksa Data division for developing neural networks applied to geotechnical engineering J Computing Civil Eng 18 2 2004 105-14
    • (2004) J. Computing Civil Eng. , vol.18 , Issue.2 , pp. 105-114
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 17
    • 0033167344 scopus 로고    scopus 로고
    • Rainfall-runoff modeling using artificial neural networks
    • S.A. Tokar P.A. Johnson Rainfall-runoff modeling using artificial neural networks J Hydrologic Eng 4 3 1999 232-9
    • (1999) J. Hydrologic Eng. , vol.4 , Issue.3 , pp. 232-239
    • Tokar, S.A.1    Johnson, P.A.2
  • 18
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • K. Hornik M. Stinchcombe H. White Multilayer feedforward networks are universal approximators Neural Networks 2 1989 359-66
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 19
    • 0005380346 scopus 로고
    • Neural networks primer
    • M. Caudill Neural networks primer, Part III AI Expert 3 6 1988 53-9
    • (1988) AI Expert , vol.3 , Issue.6 PART III , pp. 53-59
    • Caudill, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.