메뉴 건너뛰기




Volumn 64, Issue 1, 2011, Pages 201-210

Classification of slopes and prediction of factor of safety using differential evolution neural networks

Author keywords

Artificial neural network; Factor of safety; Slope stability; Statistical performance criteria

Indexed keywords

ARTIFICIAL NEURAL NETWORK; ARTIFICIAL NEURAL NETWORK MODELS; DIFFERENTIAL EVOLUTION; FACTOR OF SAFETY; INPUT PARAMETER; MODEL PARAMETERS; PREDICTION MODEL; SLOPE FAILURE; SLOPE STABILITY ANALYSIS; STATISTICAL PERFORMANCE CRITERIA;

EID: 80051666629     PISSN: 18666280     EISSN: 18666299     Source Type: Journal    
DOI: 10.1007/s12665-010-0839-1     Document Type: Article
Times cited : (150)

References (32)
  • 2
    • 0032028728 scopus 로고    scopus 로고
    • The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network
    • Bartlett PL (1998) The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network. IEEE Trans Inf Theory 44(2): 525-536.
    • (1998) IEEE Trans Inf Theory , vol.44 , Issue.2 , pp. 525-536
    • Bartlett, P.L.1
  • 3
    • 57249110443 scopus 로고    scopus 로고
    • Empirical modeling of the compaction curve of cohesive soil
    • Basheer IA (2001) Empirical modeling of the compaction curve of cohesive soil. Can Geotech J 38(1): 29-45.
    • (2001) Can Geotech J , vol.38 , Issue.1 , pp. 29-45
    • Basheer, I.A.1
  • 5
    • 37849189166 scopus 로고    scopus 로고
    • Undrained lateral load capacity of piles in clay using artificial neural network
    • Das SK, Basudhar PK (2006) Undrained lateral load capacity of piles in clay using artificial neural network. Comput Geotech 33(8): 454-459.
    • (2006) Comput Geotech , vol.33 , Issue.8 , pp. 454-459
    • Das, S.K.1    Basudhar, P.K.2
  • 6
    • 48949095958 scopus 로고    scopus 로고
    • Prediction of residual friction angle of clays using artifical neural network
    • Das SK, Basudhar PK (2008) Prediction of residual friction angle of clays using artifical neural network. Eng Geol 100(3-4): 142-145.
    • (2008) Eng Geol , vol.100 , Issue.3-4 , pp. 142-145
    • Das, S.K.1    Basudhar, P.K.2
  • 7
    • 77953966803 scopus 로고    scopus 로고
    • Prediction of swelling pressure of soil using artificial intelligence techniques
    • Das SK, Samui P, Sabat AK, Sitharam TG (2009) Prediction of swelling pressure of soil using artificial intelligence techniques. Environ Earth Sci 61(2): 393-403.
    • (2009) Environ Earth Sci , vol.61 , Issue.2 , pp. 393-403
    • Das, S.K.1    Samui, P.2    Sabat, A.K.3    Sitharam, T.G.4
  • 9
    • 0001867238 scopus 로고
    • Interpreting neural-network connection weights
    • Garson GD (1991) Interpreting neural-network connection weights. Artif Intel Expert 6(7): 47-51.
    • (1991) Artif Intel Expert , vol.6 , Issue.7 , pp. 47-51
    • Garson, G.D.1
  • 11
    • 0028666973 scopus 로고
    • Seismic liquefaction potential assessed by neural network
    • Goh ATC (1994) Seismic liquefaction potential assessed by neural network. J Geotech Eng ASCE 120(9): 1467-1480.
    • (1994) J Geotech Eng ASCE , vol.120 , Issue.9 , pp. 1467-1480
    • Goh, A.T.C.1
  • 12
    • 0036009678 scopus 로고    scopus 로고
    • Probabilistic neural network for evaluating seismic liquefaction potential
    • Goh ATC (2002) Probabilistic neural network for evaluating seismic liquefaction potential. Can Geotech J 39: 219-232.
    • (2002) Can Geotech J , vol.39 , pp. 219-232
    • Goh, A.T.C.1
  • 13
    • 11344291763 scopus 로고    scopus 로고
    • Bayesian neural network analysis of undrained side resistance of drilled shafts
    • Goh ATC, Kulhawy FH, Chua CG (2005) Bayesian neural network analysis of undrained side resistance of drilled shafts. J Geotech Geoenviron Eng ASCE 131(1): 84-93.
    • (2005) J Geotech Geoenviron Eng ASCE , vol.131 , Issue.1 , pp. 84-93
    • Goh, A.T.C.1    Kulhawy, F.H.2    Chua, C.G.3
  • 14
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A (2003) An introduction to variable and feature selection. J Mach Learn Res 3: 1157-1182.
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 15
    • 0037312458 scopus 로고    scopus 로고
    • Differential evolution training algorithm for feed-forward neural network
    • Ilonen J, Kamarainen JK, Lampinen J (2003) Differential evolution training algorithm for feed-forward neural network. Neural Process Lett 17: 93-105.
    • (2003) Neural Process Lett , vol.17 , pp. 93-105
    • Ilonen, J.1    Kamarainen, J.K.2    Lampinen, J.3
  • 16
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for prediction and forecasting of water resource variables: a review of modeling issues and applications
    • Maier HR, Dandy GC (2000) Neural networks for prediction and forecasting of water resource variables: a review of modeling issues and applications. Environ Model Softw 15: 101-123.
    • (2000) Environ Model Softw , vol.15 , pp. 101-123
    • Maier, H.R.1    Dandy, G.C.2
  • 18
    • 0011944975 scopus 로고    scopus 로고
    • MathWorks, Inc., Version 6. 5. The MathWorks, Inc, Natick
    • MathWorks, Inc. (2001) Matlab user's manual, Version 6. 5. The MathWorks, Inc, Natick.
    • (2001) Matlab user's manual
  • 19
    • 0001025418 scopus 로고
    • Bayesian interpolation
    • McKay DJC (1992) Bayesian interpolation. Neural Comput 4(3): 415-447.
    • (1992) Neural Comput , vol.4 , Issue.3 , pp. 415-447
    • McKay, D.J.C.1
  • 20
    • 0031968002 scopus 로고    scopus 로고
    • Parameter estimation using artificial neural network and genetic algorithm for free-product migration and recovery
    • Morshed J, Kaluarachchi JJ (1998) Parameter estimation using artificial neural network and genetic algorithm for free-product migration and recovery. Water Resour Res 34(5): 1101-1113.
    • (1998) Water Resour Res , vol.34 , Issue.5 , pp. 1101-1113
    • Morshed, J.1    Kaluarachchi, J.J.2
  • 21
    • 3242721368 scopus 로고    scopus 로고
    • An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data
    • Olden JD, Joy MK, Death RG (2004) An accurate comparison of methods for quantifying variable importance in artificial neural networks using simulated data. Ecol Model 178(3): 389-397.
    • (2004) Ecol Model , vol.178 , Issue.3 , pp. 389-397
    • Olden, J.D.1    Joy, M.K.2    Death, R.G.3
  • 22
    • 0028174533 scopus 로고
    • Optimization of ground water remediation using artificial neural networks with parallel solute transport modeling
    • Roger LL, Dowla FU (1994) Optimization of ground water remediation using artificial neural networks with parallel solute transport modeling. Water Resour Res 30(2): 457-481.
    • (1994) Water Resour Res , vol.30 , Issue.2 , pp. 457-481
    • Roger, L.L.1    Dowla, F.U.2
  • 24
    • 23844474449 scopus 로고    scopus 로고
    • A study of slope stability prediction using neural networks
    • Sakellariou MG, Ferentinou MD (2005) A study of slope stability prediction using neural networks. J Geotech Geol Eng 23: 419-445.
    • (2005) J Geotech Geol Eng , vol.23 , pp. 419-445
    • Sakellariou, M.G.1    Ferentinou, M.D.2
  • 25
    • 54949157726 scopus 로고    scopus 로고
    • Slope stability analysis: a support vector machine approach
    • Samui P (2008) Slope stability analysis: a support vector machine approach. Environ Geol 56: 255-267.
    • (2008) Environ Geol , vol.56 , pp. 255-267
    • Samui, P.1
  • 26
    • 84930208606 scopus 로고    scopus 로고
    • Artificial neural network applications in geotechnical engineering
    • Shahin MA, Jaksa MB, Maier HR (2001) Artificial neural network applications in geotechnical engineering. Aust Geomech 36(1): 49-62.
    • (2001) Aust Geomech , vol.36 , Issue.1 , pp. 49-62
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 27
    • 0036712318 scopus 로고    scopus 로고
    • Predicting settlement of shallow foundations using neural network
    • Shahin MA, Maier HR, Jaksa MB (2002) Predicting settlement of shallow foundations using neural network. J Geotech Geoenviron Eng ASCE 128(9): 785-793.
    • (2002) J Geotech Geoenviron Eng ASCE , vol.128 , Issue.9 , pp. 785-793
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 28
    • 84908614016 scopus 로고    scopus 로고
    • State of the art of artificial neural networks in geotechnical engineering
    • Shahin MA, Jaksa MB, Maier HR (2008) State of the art of artificial neural networks in geotechnical engineering. Electron J Geotech Eng. http://www. ejge. com/Bouquet08/Shahin/Shahin_ppr. pdf.
    • (2008) Electron J Geotech Eng.
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 30
    • 24144466551 scopus 로고    scopus 로고
    • Slope stability evaluation using Back Propagation Neural Networks
    • Wang HB, Xu WY, Xu RC (2005) Slope stability evaluation using Back Propagation Neural Networks. Eng Geol 80: 302-315.
    • (2005) Eng Geol , vol.80 , pp. 302-315
    • Wang, H.B.1    Xu, W.Y.2    Xu, R.C.3
  • 31
    • 0037388711 scopus 로고    scopus 로고
    • Detection of conceptual model rainfall-rainoff process inside an artificial neural network
    • Wilby RL, Abrahart RJ, Dawson CW (2003) Detection of conceptual model rainfall-rainoff process inside an artificial neural network. Hydrol Sci 48(2): 163-181.
    • (2003) Hydrol Sci , vol.48 , Issue.2 , pp. 163-181
    • Wilby, R.L.1    Abrahart, R.J.2    Dawson, C.W.3
  • 32
    • 16644389528 scopus 로고    scopus 로고
    • Two-stepped evolutionary algorithm and its application to stability analysis of slopes
    • Yang CX, Tham LG, Feng XT, Wang YJ, Lee PKK (2004) Two-stepped evolutionary algorithm and its application to stability analysis of slopes. J Comput Civil Eng 18(2): 145-153.
    • (2004) J Comput Civil Eng , vol.18 , Issue.2 , pp. 145-153
    • Yang, C.X.1    Tham, L.G.2    Feng, X.T.3    Wang, Y.J.4    Lee, P.K.K.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.