메뉴 건너뛰기




Volumn 47, Issue 2, 2010, Pages 230-243

Intelligent computing for modeling axial capacity of pile foundations

Author keywords

Artificial neural networks; Axial capacity; Drilled shafts; Driven piles; Modeling

Indexed keywords

ARTIFICIAL INTELLIGENCE TECHNIQUES; ARTIFICIAL NEURAL NETWORK; ARTIFICIAL NEURAL NETWORK MODELS; ARTIFICIAL NEURAL NETWORKS; AXIAL CAPACITY; CONE PENETRATION TESTS; DESIGN EQUATION; DRILLED SHAFT; DRIVEN PILE; LOAD TEST; PILE CAPACITY; SOIL PROPERTY; STATISTICAL ANALYSIS;

EID: 76749110197     PISSN: 00083674     EISSN: None     Source Type: Journal    
DOI: 10.1139/T09-094     Document Type: Article
Times cited : (105)

References (29)
  • 1
    • 4444331332 scopus 로고    scopus 로고
    • Assessment of direct cone penetration test methods for predicting the ultimate capacity of friction driven piles
    • ASCE, doi:10.1061/(ASCE)1090-0241(2004)130:9(935)
    • Abu-Farsakh, M.Y., and Titi, H.H. 2004. Assessment of direct cone penetration test methods for predicting the ultimate capacity of friction driven piles. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 130(9): 935-944. doi:10.1061/(ASCE)1090-0241(2004)130:9(935).
    • (2004) Journal of Geotechnical and Geoenvironmental Engineering , vol.130 , Issue.9 , pp. 935-944
    • Abu-Farsakh, M.Y.1    Titi, H.H.2
  • 2
    • 0032430468 scopus 로고    scopus 로고
    • General regression neural networks for driven piles in cohesionless soils
    • ASCE, doi:10.1061/(ASCE)1090-0241(1998)124:12(1177)
    • Abu-Kiefa, M.A. 1998. General regression neural networks for driven piles in cohesionless soils. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 124(12): 1177-1185.doi:10.1061/(ASCE)1090-0241(1998)124:12(1177).
    • (1998) Journal of Geotechnical and Geoenvironmental Engineering , vol.124 , Issue.12 , pp. 1177-1185
    • Abu-Kiefa, M.A.1
  • 6
    • 0020295653 scopus 로고
    • Pile bearing capacity prediction by means of static penetrometer CPT
    • Amsterdam, 24-27 May 1982. A.A. Balkema, Rotterdam, the Netherlands
    • Bustamante, M., and Gianeselli, L. 1982. Pile bearing capacity prediction by means of static penetrometer CPT. In Proceedings of the 2nd European Symposium on Penetration Testing, Amsterdam, 24-27 May 1982. A.A. Balkema, Rotterdam, the Netherlands.Vol. 2, pp. 493-500.
    • (1982) Proceedings of The 2nd European Symposium On Penetration Testing , vol.2 , pp. 493-500
    • Bustamante, M.1    Gianeselli, L.2
  • 7
    • 0005380346 scopus 로고
    • Neural networks primer, Part III
    • Caudill, M. 1988. Neural networks primer, Part III. AI Expert, 3(6): 53-59.
    • (1988) AI Expert , vol.3 , Issue.6 , pp. 53-59
    • Caudill, M.1
  • 8
    • 0018308983 scopus 로고
    • Pile foundation for large North Sea structures
    • doi:10.1080/10641197909379805
    • de Ruiter, J., and Beringen, F.L. 1979. Pile foundation for large North Sea structures. Marine Geotechnology, 3(3): 267-314. doi:10.1080/10641197909379805.
    • (1979) Marine Geotechnology , vol.3 , Issue.3 , pp. 267-314
    • de Ruiter, J.1    Beringen, F.L.2
  • 10
    • 0031393089 scopus 로고    scopus 로고
    • Pile capacity by direct CPT and CPTu methods applied to 102 case histories
    • doi:10.1139/cgj-34-6-886
    • Eslami, A., and Fellenius, B.H. 1997. Pile capacity by direct CPT and CPTu methods applied to 102 case histories. Canadian Geotechnical Journal, 34(6): 886-904. doi:10.1139/cgj-34-6-886.
    • (1997) Canadian Geotechnical Journal , vol.34 , Issue.6 , pp. 886-904
    • Eslami, A.1    Fellenius, B.H.2
  • 12
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • doi:10.1016/0893-6080(89)90020-8
    • Hornik, K., Stinchcombe, M., and White, H. 1989. Multilayer feedforward networks are universal approximators. Neural Networks, 2(5): 359-366. doi:10.1016/0893-6080(89)90020-8.
    • (1989) Neural Networks , vol.2 , Issue.5 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 14
    • 0030472893 scopus 로고    scopus 로고
    • Prediction of pile bearing capacity using artificial neural networks
    • doi:10.1016/0266-352X(95)00027-8
    • Lee, I.M., and Lee, J.H. 1996. Prediction of pile bearing capacity using artificial neural networks. Computers and Geotechnics, 18(3): 189-200. doi:10.1016/0266-352X(95)00027-8.
    • (1996) Computers and Geotechnics , vol.18 , Issue.3 , pp. 189-200
    • Lee, I.M.1    Lee, J.H.2
  • 15
    • 76749099874 scopus 로고    scopus 로고
    • 1999. Accuracy of methods for predicting axial capacity of deep foundations
    • In, Design, Construction, and Testing of Deep Foundations, Austin, Tex
    • Long, J.H., and Wysockey, M.H. 1999. Accuracy of methods for predicting axial capacity of deep foundations. In Proceedings of the OTRC'99 Conference: Analysis, Design, Construction, and Testing of Deep Foundations, Austin, Tex., 29-30 April 1999.
    • (1999) Proceedings of The Otrc'99 Conference: Analysis , pp. 29-30
    • Long, J.H.1    Wysockey, M.H.2
  • 16
    • 76749156826 scopus 로고    scopus 로고
    • GSP NO. 88., Edited by J.M. Roesset., American Society of Civil Engineers (ASCE), Reston, Va
    • GSP NO. 88. Edited by J.M. Roesset. American Society of Civil Engineers (ASCE), Reston, Va. pp. 180-195.
    • American Society of Civil Engineers (ASCE) , pp. 180-195
  • 18
    • 76749107173 scopus 로고    scopus 로고
    • Neusciences, Neuframe. Version 4.0 [computer program]. Neusciences Corp., Southampton, Hampshire, UK
    • Neusciences. 2000. Neuframe. Version 4.0 [computer program]. Neusciences Corp., Southampton, Hampshire, UK.
    • (2000) Neuframe
  • 20
    • 0000646059 scopus 로고
    • Learning internal representation by error propagation
    • Edited by D.E. Rumelhart and J.L. McClelland. MIT Press, Cambridge, Mass
    • Rumelhart, D.E., Hinton, G.E., and Williams, R.J. 1986. Learning internal representation by error propagation. In Parallel distributed processing. Edited by D.E. Rumelhart and J.L. McClelland. MIT Press, Cambridge, Mass. Vol. 1, pp. 318-362.
    • (1986) Parallel Distributed Processing , vol.1 , pp. 318-362
    • Rumelhart, D.E.1    Hinton, G.E.2    Williams, R.J.3
  • 22
    • 69949167521 scopus 로고    scopus 로고
    • Modelling axial capacity of pile foundations by intelligent computing
    • ICOF2008, Dundee, Scotland, 24-27 June 2008. Edited by M.J. Brown, M.F. Bransby, A.J. Brennan, and J.A. Knappett. IHS BRE Press, Watford, Hertfordshire, UK
    • Shahin, M.A. 2008. Modelling axial capacity of pile foundations by intelligent computing. In Proceedings of the Second BGA International Conference on Foundations, ICOF2008, Dundee, Scotland, 24-27 June 2008. Edited by M.J. Brown, M.F. Bransby, A.J. Brennan, and J.A. Knappett. IHS BRE Press, Watford, Hertfordshire, UK. pp. 283-294.
    • (2008) Proceedings of The Second Bga International Conference On Foundations , pp. 283-294
    • Shahin, M.A.1
  • 23
    • 33846957663 scopus 로고    scopus 로고
    • Modelling the mechanical behaviour of railway ballast using artificial neural networks
    • doi:10.1139/T06-077
    • Shahin, M.A., and Indraratna, B. 2006. Modelling the mechanical behaviour of railway ballast using artificial neural networks. Canadian Geotechnical Journal, 43(11): 1144-1152. doi:10.1139/T06-077.
    • (2006) Canadian Geotechnical Journal , vol.43 , Issue.11 , pp. 1144-1152
    • Shahin, M.A.1    Indraratna, B.2
  • 24
    • 33746930800 scopus 로고    scopus 로고
    • Pullout capacity of small ground anchors by direct cone penetration test methods and neural networks
    • doi:10.1139/T06-029
    • Shahin, M.A., and Jaksa, M.B. 2006. Pullout capacity of small ground anchors by direct cone penetration test methods and neural networks. Canadian Geotechnical Journal, 43(6): 626-637. doi:10.1139/T06-029.
    • (2006) Canadian Geotechnical Journal , vol.43 , Issue.6 , pp. 626-637
    • Shahin, M.A.1    Jaksa, M.B.2
  • 25
    • 84930208606 scopus 로고    scopus 로고
    • Artificial neural network applications in geotechnical engineering
    • Shahin, M.A., Jaksa, M.B., and Maier, H.R. 2001. Artificial neural network applications in geotechnical engineering. Australian Geomechanics, 36(1): 49-62.
    • (2001) Australian Geomechanics , vol.36 , Issue.1 , pp. 49-62
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 26
    • 0036712318 scopus 로고    scopus 로고
    • Predicting settlement of shallow foundations using neural networks
    • ASCE, doi:10.1061/(ASCE)1090-0241(2002)128:9(785)
    • Shahin, M.A., Maier, H.R., and Jaksa, M.B. 2002a. Predicting settlement of shallow foundations using neural networks. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 128(9): 785-793. doi:10.1061/(ASCE)1090-0241(2002)128:9(785).
    • (2002) Journal of Geotechnical and Geoenvironmental Engineering , vol.128 , Issue.9 , pp. 785-793
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 27
    • 19944393836 scopus 로고    scopus 로고
    • Artificial neural network-based settlement prediction formula for shallow foundations on granular soils
    • Shahin, M.A., Jaksa, M.B., and Maier, H.R. 2002b. Artificial neural network-based settlement prediction formula for shallow foundations on granular soils. Australian Geomechanics, 37(4):45-52.
    • (2002) Australian Geomechanics , vol.37 , Issue.4 , pp. 45-52
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3
  • 28
    • 16444364474 scopus 로고    scopus 로고
    • Data division for developing neural networks applied to geotechnical engineering
    • ASCE, doi:10.1061/(ASCE)0887-3801(2004)18:2(105)
    • Shahin, M.A., Maier, H.R., and Jaksa, M.B. 2004. Data division for developing neural networks applied to geotechnical engineering. Journal of Computing in Civil Engineering, ASCE, 18(2): 105-114. doi:10.1061/(ASCE)0887-3801(2004)18:2(105).
    • (2004) Journal of Computing In Civil Engineering , vol.18 , Issue.2 , pp. 105-114
    • Shahin, M.A.1    Maier, H.R.2    Jaksa, M.B.3
  • 29
    • 77955473867 scopus 로고    scopus 로고
    • Recent advances and future challenges for artificial neural systems in geotechnical engineering applications
    • Article ID 308239.Available from, [accessed 21 January 2010]
    • Shahin, M.A., Jaksa, M.B., and Maier, H.R. 2009. Recent advances and future challenges for artificial neural systems in geotechnical engineering applications. Journal of Advances in Artificial Neural Systems [online], 2009: Article ID 308239.Available from www.hindawi.com/journals/aans/2009/308239.html [accessed 21 January 2010].
    • (2009) Journal of Advances In Artificial Neural Systems [online]
    • Shahin, M.A.1    Jaksa, M.B.2    Maier, H.R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.