메뉴 건너뛰기




Volumn 29, Issue 5, 2011, Pages 725-748

Correlation of Pile Axial Capacity and CPT Data Using Gene Expression Programming

Author keywords

Axial capacity; Cone penetration test; Correlation; Gene expression programming; Pile; Training and validation

Indexed keywords

ARTIFICIAL INTELLIGENT; AXIAL CAPACITY; BORED PILES; COMPUTATIONAL TECHNIQUE; CONE PENETRATION TEST; CONE PENETRATION TESTS; DRIVEN PILE; EXPERIMENTAL DATA; GENE EXPRESSION PROGRAMMING; MODEL CALIBRATION; MODEL VERIFICATION; PILE CAPACITY; SOIL PROPERTY; STEEL PILES; TRAINING SETS;

EID: 80052068571     PISSN: 09603182     EISSN: None     Source Type: Journal    
DOI: 10.1007/s10706-011-9413-1     Document Type: Article
Times cited : (59)

References (31)
  • 1
    • 4444331332 scopus 로고    scopus 로고
    • Assesment of direct cone penetration test methods for predicting the ultimate capacity of friction driven piles
    • Abu-Farsakh M, Titi H (2004) Assesment of direct cone penetration test methods for predicting the ultimate capacity of friction driven piles. J Geotech Environ Eng ASCE 130(9): 935-944.
    • (2004) J Geotech Environ Eng ASCE , vol.130 , Issue.9 , pp. 935-944
    • Abu-Farsakh, M.1    Titi, H.2
  • 2
    • 0032430468 scopus 로고    scopus 로고
    • General regression neural networks for driven piles in cohesionless soils
    • Abu-Kiefa M (1998) General regression neural networks for driven piles in cohesionless soils. J Geotech Geoenviron Eng 124(12): 1177-1185.
    • (1998) J Geotech Geoenviron Eng , vol.124 , Issue.12 , pp. 1177-1185
    • Abu-Kiefa, M.1
  • 4
    • 61749083047 scopus 로고    scopus 로고
    • Piles shaft capacity from CPT and CPTu data by polynomial neural networks and genetic algorithms
    • Ardalan H, Eslami A, Nariman-Zadeh N (2009) Piles shaft capacity from CPT and CPTu data by polynomial neural networks and genetic algorithms. Comput Geotech 36: 616-625.
    • (2009) Comput Geotech , vol.36 , pp. 616-625
    • Ardalan, H.1    Eslami, A.2    Nariman-Zadeh, N.3
  • 7
    • 0020295653 scopus 로고
    • Pile bearing capacity prediction by means of static penetrometer Cpt
    • ESOPT-II, Amsterdam, The Netherland
    • Bustamante M, Gianeselli L (1982) Pile bearing capacity prediction by means of static penetrometer Cpt. In: Proceedings of the 2nd European symposium on penetration testing, ESOPT-II, Amsterdam, The Netherland, vol 2, pp 493-500.
    • (1982) Proceedings of the 2nd European symposium on penetration testing , vol.2 , pp. 493-500
    • Bustamante, M.1    Gianeselli, L.2
  • 8
    • 60749102891 scopus 로고    scopus 로고
    • Assessment of direct CPT and CPTU methods for predicting the ultimate bearing capacity of single piles
    • doi: 10. 1016/j. enggeo. 200810. 010
    • Cai G, Liu S, Tong L, Du G (2008) Assessment of direct CPT and CPTU methods for predicting the ultimate bearing capacity of single piles. Eng Geol. doi: 10. 1016/j. enggeo. 200810. 010.
    • (2008) Eng Geol
    • Cai, G.1    Liu, S.2    Tong, L.3    Du, G.4
  • 9
    • 0028977232 scopus 로고
    • Neural network: an alternative to pile driving formulas
    • Chan W, Chow Y, Liu L (1995) Neural network: an alternative to pile driving formulas. Comput Geotech 17: 135-156.
    • (1995) Comput Geotech , vol.17 , pp. 135-156
    • Chan, W.1    Chow, Y.2    Liu, L.3
  • 11
    • 0018308983 scopus 로고
    • Pile foundation for large North Sea structures
    • De Ruiter J, Beringen F (1979) Pile foundation for large North Sea structures. Mar Geotechnol 3(3): 267-314.
    • (1979) Mar Geotechnol , vol.3 , Issue.3 , pp. 267-314
    • de Ruiter, J.1    Beringen, F.2
  • 12
    • 0031393089 scopus 로고    scopus 로고
    • Pile capacity by direct CPT and CPTu methods applied to 102 case histories
    • Esalmi A, Fellenius B (1997) Pile capacity by direct CPT and CPTu methods applied to 102 case histories. Can Geotech J 34(6): 886-904.
    • (1997) Can Geotech J , vol.34 , Issue.6 , pp. 886-904
    • Esalmi, A.1    Fellenius, B.2
  • 14
    • 0347499408 scopus 로고    scopus 로고
    • Gene expression programming: a new adaptive algorithm for solving problems
    • Ferreira C (2001) Gene expression programming: a new adaptive algorithm for solving problems. Complex Syst 13(2): 87-129.
    • (2001) Complex Syst , vol.13 , Issue.2 , pp. 87-129
    • Ferreira, C.1
  • 18
    • 0001101813 scopus 로고
    • Discussion on hyperbolic stress-strain response, cohesive soils
    • Hansen JB (1963) Discussion on hyperbolic stress-strain response, cohesive soils. J Soil Mech Found Eng 89(4): 241-242.
    • (1963) J Soil Mech Found Eng , vol.89 , Issue.4 , pp. 241-242
    • Hansen, J.B.1
  • 20
    • 33747786653 scopus 로고    scopus 로고
    • Evaluation of liquefaction induced lateral displacements using genetic programming
    • Javadi A, Rezania M, Nezhad M (2006) Evaluation of liquefaction induced lateral displacements using genetic programming. Comput Geotech 33(4-5): 222-233.
    • (2006) Comput Geotech , vol.33 , Issue.4-5 , pp. 222-233
    • Javadi, A.1    Rezania, M.2    Nezhad, M.3
  • 23
    • 8844226722 scopus 로고    scopus 로고
    • Accuracy of methods for predicting axial capacity of deep foundations
    • Long J, Wysockey M (1999) Accuracy of methods for predicting axial capacity of deep foundations. Geotech Special Publ 88: 181-195.
    • (1999) Geotech Special Publ , vol.88 , pp. 181-195
    • Long, J.1    Wysockey, M.2
  • 26
    • 70649110356 scopus 로고    scopus 로고
    • A new genetic programming model for predicting settlement of shallow foundations
    • Rezania M, Javadi A (2007) A new genetic programming model for predicting settlement of shallow foundations. Can Geotech J 44: 1462-1473.
    • (2007) Can Geotech J , vol.44 , pp. 1462-1473
    • Rezania, M.1    Javadi, A.2
  • 30
    • 76749110197 scopus 로고    scopus 로고
    • Intelligent computing for modeling axial capacity of pile foundations
    • Shahin M (2010) Intelligent computing for modeling axial capacity of pile foundations. Can Geotech J 47: 230-243.
    • (2010) Can Geotech J , vol.47 , pp. 230-243
    • Shahin, M.1
  • 31
    • 16444364474 scopus 로고    scopus 로고
    • Data division for developing neural networks applied to geotechnical engineering
    • Shahin M, Maier H, Jaksa M (2004) Data division for developing neural networks applied to geotechnical engineering. J Comput Civil Eng 18(2): 105-114.
    • (2004) J Comput Civil Eng , vol.18 , Issue.2 , pp. 105-114
    • Shahin, M.1    Maier, H.2    Jaksa, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.