메뉴 건너뛰기




Volumn 33, Issue 13, 2013, Pages 2603-2613

The Protein Level of PGC-1α, a Key Metabolic Regulator, Is Controlled by NADH-NQO1

Author keywords

[No Author keywords available]

Indexed keywords

PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA COACTIVATOR 1ALPHA; PROTEASOME; PROTEIN; PROTEIN NQO1; REDUCED NICOTINAMIDE ADENINE DINUCLEOTIDE; UNCLASSIFIED DRUG;

EID: 84880653289     PISSN: 02707306     EISSN: 10985549     Source Type: Journal    
DOI: 10.1128/MCB.01672-12     Document Type: Article
Times cited : (78)

References (77)
  • 6
    • 67650242167 scopus 로고    scopus 로고
    • Sensitivity of lipid metabolism and insulin signaling to genetic alterations in hepatic peroxisome proliferator-activated receptor-gamma coactivator-1alpha expression
    • Estall JL, Kahn M, Cooper MP, Fisher FM, Wu MK, Laznik D, Qu L, Cohen DE, Shulman GI, Spiegelman BM. 2009. Sensitivity of lipid metabolism and insulin signaling to genetic alterations in hepatic peroxisome proliferator-activated receptor-gamma coactivator-1alpha expression. Diabetes 58:1499-1508.
    • (2009) Diabetes , vol.58 , pp. 1499-1508
    • Estall, J.L.1    Kahn, M.2    Cooper, M.P.3    Fisher, F.M.4    Wu, M.K.5    Laznik, D.6    Qu, L.7    Cohen, D.E.8    Shulman, G.I.9    Spiegelman, B.M.10
  • 7
    • 0032549811 scopus 로고    scopus 로고
    • A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
    • Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829-839.
    • (1998) Cell , vol.92 , pp. 829-839
    • Puigserver, P.1    Wu, Z.2    Park, C.W.3    Graves, R.4    Wright, M.5    Spiegelman, B.M.6
  • 9
    • 19444365211 scopus 로고    scopus 로고
    • PGC-1alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells
    • Valle I, Alvarez-Barrientos A, Arza E, Lamas S, Monsalve M. 2005. PGC-1alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc. Res. 66:562-573.
    • (2005) Cardiovasc. Res. , vol.66 , pp. 562-573
    • Valle, I.1    Alvarez-Barrientos, A.2    Arza, E.3    Lamas, S.4    Monsalve, M.5
  • 11
    • 33644660537 scopus 로고    scopus 로고
    • PGC-1 coactivators: inducible regulators of energy metabolism in health and disease
    • Finck BN, Kelly DP. 2006. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest. 116:615-622.
    • (2006) J. Clin. Invest. , vol.116 , pp. 615-622
    • Finck, B.N.1    Kelly, D.P.2
  • 12
    • 77449139468 scopus 로고    scopus 로고
    • PGC-1alpha activation as a therapeutic approach in mitochondrial disease
    • Wenz T. 2009. PGC-1alpha activation as a therapeutic approach in mitochondrial disease. IUBMB Life 61:1051-1062.
    • (2009) IUBMB Life , vol.61 , pp. 1051-1062
    • Wenz, T.1
  • 13
    • 77958020160 scopus 로고    scopus 로고
    • The role of PGC-1alpha in the pathogenesis of neurodegenerative disorders
    • Rona-Voros K, Weydt P. 2010. The role of PGC-1alpha in the pathogenesis of neurodegenerative disorders. Curr. Drug Targets 11:1262-1269.
    • (2010) Curr. Drug Targets , vol.11 , pp. 1262-1269
    • Rona-Voros, K.1    Weydt, P.2
  • 14
    • 64549127790 scopus 로고    scopus 로고
    • PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure
    • Canto C, Auwerx J. 2009. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr. Opin. Lipidol. 20:98-105.
    • (2009) Curr. Opin. Lipidol. , vol.20 , pp. 98-105
    • Canto, C.1    Auwerx, J.2
  • 15
    • 80052812434 scopus 로고    scopus 로고
    • The PGC-1 cascade as a therapeutic target for heart failure
    • Schilling J, Kelly DP. 2011. The PGC-1 cascade as a therapeutic target for heart failure. J. Mol. Cell. Cardiol. 51:578-583.
    • (2011) J. Mol. Cell. Cardiol. , vol.51 , pp. 578-583
    • Schilling, J.1    Kelly, D.P.2
  • 16
    • 34250773451 scopus 로고    scopus 로고
    • Mechanisms of obesity-associated insulin resistance: many choices on the menu
    • Qatanani M, Lazar MA. 2007. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev. 21:1443-1455.
    • (2007) Genes Dev. , vol.21 , pp. 1443-1455
    • Qatanani, M.1    Lazar, M.A.2
  • 18
    • 0038810035 scopus 로고    scopus 로고
    • An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle
    • Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM. 2003. An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc. Natl. Acad. Sci. U. S. A. 100:7111-7116.
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 7111-7116
    • Handschin, C.1    Rhee, J.2    Lin, J.3    Tarr, P.T.4    Spiegelman, B.M.5
  • 19
    • 34547545892 scopus 로고    scopus 로고
    • AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha
    • Jager S, Handschin C, St-Pierre J, Spiegelman BM. 2007. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc. Natl. Acad. Sci. U. S. A. 104:12017-12022.
    • (2007) Proc. Natl. Acad. Sci. U. S. A. , vol.104 , pp. 12017-12022
    • Jager, S.1    Handschin, C.2    St-Pierre, J.3    Spiegelman, B.M.4
  • 20
    • 14544282413 scopus 로고    scopus 로고
    • Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
    • Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. 2005. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113-118.
    • (2005) Nature , vol.434 , pp. 113-118
    • Rodgers, J.T.1    Lerin, C.2    Haas, W.3    Gygi, S.P.4    Spiegelman, B.M.5    Puigserver, P.6
  • 22
    • 38349057556 scopus 로고    scopus 로고
    • SCFCdc4 acts antagonistically to the PGC-1alpha transcriptional coactivator by targeting it for ubiquitin-mediated proteolysis
    • Olson BL, Hock MB, Ekholm-Reed S, Wohlschlegel JA, Dev KK, Kralli A, Reed SI. 2008. SCFCdc4 acts antagonistically to the PGC-1alpha transcriptional coactivator by targeting it for ubiquitin-mediated proteolysis. Genes Dev. 22:252-264.
    • (2008) Genes Dev. , vol.22 , pp. 252-264
    • Olson, B.L.1    Hock, M.B.2    Ekholm-Reed, S.3    Wohlschlegel, J.A.4    Dev, K.K.5    Kralli, A.6    Reed, S.I.7
  • 23
    • 38349130508 scopus 로고    scopus 로고
    • Dynamic regulation of PGC-1alpha localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response
    • Anderson RM, Barger JL, Edwards MG, Braun KH, O'Connor CE, Prolla TA, Weindruch R. 2008. Dynamic regulation of PGC-1alpha localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response. Aging Cell 7:101-111.
    • (2008) Aging Cell , vol.7 , pp. 101-111
    • Anderson, R.M.1    Barger, J.L.2    Edwards, M.G.3    Braun, K.H.4    O'Connor, C.E.5    Prolla, T.A.6    Weindruch, R.7
  • 24
    • 78650037609 scopus 로고    scopus 로고
    • Ubiquitin proteasome dependent degradation of the transcriptional coactivator PGC-1alpha via the N-terminal pathway
    • Trausch-Azar J, Leone TC, Kelly DP, Schwartz AL. 2010. Ubiquitin proteasome dependent degradation of the transcriptional coactivator PGC-1alpha via the N-terminal pathway. J. Biol. Chem. 285:40192-40200.
    • (2010) J. Biol. Chem. , vol.285 , pp. 40192-40200
    • Trausch-Azar, J.1    Leone, T.C.2    Kelly, D.P.3    Schwartz, A.L.4
  • 26
    • 84863067775 scopus 로고    scopus 로고
    • RNF34 is a cold-regulated E3 ubiquitin ligase for PGC-1alpha and modulates brown fat cell metabolism
    • Wei P, Pan D, Mao C, Wang YX. 2012. RNF34 is a cold-regulated E3 ubiquitin ligase for PGC-1alpha and modulates brown fat cell metabolism. Mol. Cell. Biol. 32:266-275.
    • (2012) Mol. Cell. Biol. , vol.32 , pp. 266-275
    • Wei, P.1    Pan, D.2    Mao, C.3    Wang, Y.X.4
  • 27
    • 33748922985 scopus 로고    scopus 로고
    • 20S proteasomes and protein degradation "by default."
    • Asher G, Reuven N, Shaul Y. 2006. 20S proteasomes and protein degradation "by default." Bioessays 28:844-849.
    • (2006) Bioessays , vol.28 , pp. 844-849
    • Asher, G.1    Reuven, N.2    Shaul, Y.3
  • 28
    • 84885504735 scopus 로고    scopus 로고
    • IDPs and protein degradation in the cell, p 3-36. In Uversky VN, Longhi S (ed), Instrumental analysis of intrinsically disordered proteins: assessing structure and conformation
    • John Wiley & Sons, Inc, Hoboken, NJ.
    • Shaul Y, Tsvetkov P, Reuven N. 2010. IDPs and protein degradation in the cell, p 3-36. In Uversky VN, Longhi S (ed), Instrumental analysis of intrinsically disordered proteins: assessing structure and conformation. John Wiley & Sons, Inc, Hoboken, NJ.
    • (2010)
    • Shaul, Y.1    Tsvetkov, P.2    Reuven, N.3
  • 29
    • 20444376186 scopus 로고    scopus 로고
    • The interplay between structure and function in intrinsically unstructured proteins
    • Tompa P. 2005. The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett. 579:3346-3354.
    • (2005) FEBS Lett. , vol.579 , pp. 3346-3354
    • Tompa, P.1
  • 32
    • 79957960940 scopus 로고    scopus 로고
    • Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network
    • Scarpulla RC. 2011. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim. Biophys. Acta 1813:1269-1278.
    • (2011) Biochim. Biophys. Acta , vol.1813 , pp. 1269-1278
    • Scarpulla, R.C.1
  • 33
    • 79953186142 scopus 로고    scopus 로고
    • PGC-1 coactivators in the control of energy metabolism
    • (Shanghai)
    • Liu C, Lin JD. 2011. PGC-1 coactivators in the control of energy metabolism. Acta Biochim. Biophys. Sin. (Shanghai) 43:248-257.
    • (2011) Acta Biochim. Biophys. Sin. , vol.43 , pp. 248-257
    • Liu, C.1    Lin, J.D.2
  • 36
    • 0035933809 scopus 로고    scopus 로고
    • In vivo role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the regulation of intracellular redox state and accumulation of abdominal adipose tissue
    • Gaikwad A, Long DJ, II, Stringer JL, Jaiswal AK. 2001. In vivo role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the regulation of intracellular redox state and accumulation of abdominal adipose tissue. J. Biol. Chem. 276:22559-22564.
    • (2001) J. Biol. Chem. , vol.276 , pp. 22559-22564
    • Gaikwad, A.1    Long II, D.J.2    Stringer, J.L.3    Jaiswal, A.K.4
  • 38
    • 7544236965 scopus 로고    scopus 로고
    • Quinone reductases multitasking in the metabolic world
    • Ross D. 2004. Quinone reductases multitasking in the metabolic world. Drug Metab. Rev. 36:639-654.
    • (2004) Drug Metab. Rev. , vol.36 , pp. 639-654
    • Ross, D.1
  • 39
    • 13244275245 scopus 로고    scopus 로고
    • A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors
    • p53 and p73
    • Asher G, Tsvetkov P, Kahana C, Shaul Y. 2005. A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73. Genes Dev. 19:316-321.
    • (2005) Genes Dev. , vol.19 , pp. 316-321
    • Asher, G.1    Tsvetkov, P.2    Kahana, C.3    Shaul, Y.4
  • 41
    • 77955321215 scopus 로고    scopus 로고
    • NAD(P)H quinone oxidoreductase protects TAp63gamma from proteasomal degradation and regulates TAp63gamma-dependent growth arrest
    • doi:10.1371/journal.pone.0011401.
    • Hershkovitz Rokah O, Shpilberg O, Granot G. 2010. NAD(P)H quinone oxidoreductase protects TAp63gamma from proteasomal degradation and regulates TAp63gamma-dependent growth arrest. PLoS One 5:e11401. doi:10.1371/journal.pone.0011401.
    • (2010) PLoS One , vol.5
    • Hershkovitz Rokah, O.1    Shpilberg, O.2    Granot, G.3
  • 42
    • 44649168869 scopus 로고    scopus 로고
    • NAD(P)H quinone oxidoreductase 1 inhibits the proteasomal degradation of the tumour suppressor p33(ING1b).
    • Garate M, Wong RP, Campos EI, Wang Y, Li G. 2008. NAD(P)H quinone oxidoreductase 1 inhibits the proteasomal degradation of the tumour suppressor p33(ING1b). EMBO Rep. 9:576-581.
    • (2008) EMBO Rep. , vol.9 , pp. 576-581
    • Garate, M.1    Wong, R.P.2    Campos, E.I.3    Wang, Y.4    Li, G.5
  • 43
    • 14644446056 scopus 로고    scopus 로고
    • 20S proteasomal degradation of ornithine decarboxylase is regulated byNQO1
    • Asher G, Bercovich Z, Tsvetkov P, Shaul Y, Kahana C. 2005. 20S proteasomal degradation of ornithine decarboxylase is regulated byNQO1. Mol. Cell 17:645-655.
    • (2005) Mol. Cell , vol.17 , pp. 645-655
    • Asher, G.1    Bercovich, Z.2    Tsvetkov, P.3    Shaul, Y.4    Kahana, C.5
  • 44
    • 79952281710 scopus 로고    scopus 로고
    • Disruption of NAD(P)H:quinone oxidoreductase 1 gene in mice leads to 20S proteasomal degradation of p63 resulting in thinning of epithelium and chemical-induced skin cancer
    • Patrick BA, Gong X, Jaiswal AK. 2011. Disruption of NAD(P)H:quinone oxidoreductase 1 gene in mice leads to 20S proteasomal degradation of p63 resulting in thinning of epithelium and chemical-induced skin cancer. Oncogene 30:1098-1107.
    • (2011) Oncogene , vol.30 , pp. 1098-1107
    • Patrick, B.A.1    Gong, X.2    Jaiswal, A.K.3
  • 45
    • 77955286666 scopus 로고    scopus 로고
    • c-Fos proteasomal degradation is activated by a default mechanism, and its regulation by NAD-(P)H:quinone oxidoreductase 1 determines c-Fos serum response kinetics
    • Adler J, Reuven N, Kahana C, Shaul Y. 2010. c-Fos proteasomal degradation is activated by a default mechanism, and its regulation by NAD-(P)H:quinone oxidoreductase 1 determines c-Fos serum response kinetics. Mol. Cell. Biol. 30:3767-3778.
    • (2010) Mol. Cell. Biol. , vol.30 , pp. 3767-3778
    • Adler, J.1    Reuven, N.2    Kahana, C.3    Shaul, Y.4
  • 46
    • 84867230539 scopus 로고    scopus 로고
    • Stress-induced NQO1 controls stability of C/EBPalpha against 20S proteasomal degradation to regulate p63 expression with implications in protection against chemical-induced skin cancer
    • Patrick BA, Jaiswal AK. 2012. Stress-induced NQO1 controls stability of C/EBPalpha against 20S proteasomal degradation to regulate p63 expression with implications in protection against chemical-induced skin cancer. Oncogene 31:4362-4371.
    • (2012) Oncogene , vol.31 , pp. 4362-4371
    • Patrick, B.A.1    Jaiswal, A.K.2
  • 48
    • 33947382284 scopus 로고    scopus 로고
    • The Yes-associated protein 1 stabilizes p73 by preventing Itch-mediated ubiquitination of p73
    • Levy D, Adamovich Y, Reuven N, Shaul Y. 2007. The Yes-associated protein 1 stabilizes p73 by preventing Itch-mediated ubiquitination of p73. Cell Death Differ. 14:743-751.
    • (2007) Cell Death Differ. , vol.14 , pp. 743-751
    • Levy, D.1    Adamovich, Y.2    Reuven, N.3    Shaul, Y.4
  • 52
    • 43049121395 scopus 로고    scopus 로고
    • Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt
    • Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA, Sartorelli V. 2008. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev. Cell 14:661-673.
    • (2008) Dev. Cell , vol.14 , pp. 661-673
    • Fulco, M.1    Cen, Y.2    Zhao, P.3    Hoffman, E.P.4    McBurney, M.W.5    Sauve, A.A.6    Sartorelli, V.7
  • 53
    • 0028618183 scopus 로고
    • Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA
    • Krishna TS, Kong XP, Gary S, Burgers PM, Kuriyan J. 1994. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79:1233-1243.
    • (1994) Cell , vol.79 , pp. 1233-1243
    • Krishna, T.S.1    Kong, X.P.2    Gary, S.3    Burgers, P.M.4    Kuriyan, J.5
  • 54
    • 0036803243 scopus 로고    scopus 로고
    • Intrinsically unstructured proteins
    • Tompa P. 2002. Intrinsically unstructured proteins. Trends Biochem. Sci. 27:527-533.
    • (2002) Trends Biochem. Sci. , vol.27 , pp. 527-533
    • Tompa, P.1
  • 57
    • 39749117978 scopus 로고    scopus 로고
    • Operational definition of intrinsically unstructured protein sequences based on susceptibility to the 20S proteasome
    • Tsvetkov P, Asher G, Paz A, Reuven N, Sussman JL, Silman I, Shaul Y. 2008. Operational definition of intrinsically unstructured protein sequences based on susceptibility to the 20S proteasome. Proteins 70:1357-1366.
    • (2008) Proteins , vol.70 , pp. 1357-1366
    • Tsvetkov, P.1    Asher, G.2    Paz, A.3    Reuven, N.4    Sussman, J.L.5    Silman, I.6    Shaul, Y.7
  • 58
    • 84865323489 scopus 로고    scopus 로고
    • Determination of IUP based on susceptibility for degradation by default
    • Tsvetkov P, Shaul Y. 2012. Determination of IUP based on susceptibility for degradation by default. Methods Mol. Biol. 895:3-18.
    • (2012) Methods Mol. Biol. , vol.895 , pp. 3-18
    • Tsvetkov, P.1    Shaul, Y.2
  • 60
    • 48249097986 scopus 로고    scopus 로고
    • Intrinsically disordered proteins in human diseases: introducing the D2 concept
    • Uversky VN, Oldfield CJ, Dunker AK. 2008. Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu. Rev. Biophys. 37:215-246.
    • (2008) Annu. Rev. Biophys. , vol.37 , pp. 215-246
    • Uversky, V.N.1    Oldfield, C.J.2    Dunker, A.K.3
  • 61
    • 33646857902 scopus 로고    scopus 로고
    • The crystal structure of NAD(P)H quinone oxidoreductase 1 in complex with its potent inhibitor dicoumarol
    • Asher G, Dym O, Tsvetkov P, Adler J, Shaul Y. 2006. The crystal structure of NAD(P)H quinone oxidoreductase 1 in complex with its potent inhibitor dicoumarol. Biochemistry 45:6372-6378.
    • (2006) Biochemistry , vol.45 , pp. 6372-6378
    • Asher, G.1    Dym, O.2    Tsvetkov, P.3    Adler, J.4    Shaul, Y.5
  • 62
    • 0026499189 scopus 로고
    • Identification of a glycine-rich sequence as an NAD(P)H-binding site and tyrosine 128 as a dicumarol-binding site in rat liver NAD(P)H:quinone oxidoreductase by site-directed mutagenesis
    • Ma Q, Cui K, Xiao F, Lu AY, Yang CS. 1992. Identification of a glycine-rich sequence as an NAD(P)H-binding site and tyrosine 128 as a dicumarol-binding site in rat liver NAD(P)H:quinone oxidoreductase by site-directed mutagenesis. J. Biol. Chem. 267:22298-22304.
    • (1992) J. Biol. Chem. , vol.267 , pp. 22298-22304
    • Ma, Q.1    Cui, K.2    Xiao, F.3    Lu, A.Y.4    Yang, C.S.5
  • 64
    • 77956171147 scopus 로고    scopus 로고
    • NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector
    • Dinkova-Kostova AT, Talalay P. 2010. NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch. Biochem. Biophys. 501:116-123.
    • (2010) Arch. Biochem. Biophys. , vol.501 , pp. 116-123
    • Dinkova-Kostova, A.T.1    Talalay, P.2
  • 65
    • 0037160097 scopus 로고    scopus 로고
    • Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1
    • Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA. 2002. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J. Biol. Chem. 277:45099-45107.
    • (2002) J. Biol. Chem. , vol.277 , pp. 45099-45107
    • Bitterman, K.J.1    Anderson, R.M.2    Cohen, H.Y.3    Latorre-Esteves, M.4    Sinclair, D.A.5
  • 66
    • 0037342151 scopus 로고    scopus 로고
    • Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR
    • Daitoku H, Yamagata K, Matsuzaki H, Hatta M, Fukamizu A. 2003. Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR. Diabetes 52:642-649.
    • (2003) Diabetes , vol.52 , pp. 642-649
    • Daitoku, H.1    Yamagata, K.2    Matsuzaki, H.3    Hatta, M.4    Fukamizu, A.5
  • 67
    • 0037064057 scopus 로고    scopus 로고
    • The coactivator PGC-1 is involved in the regulation of the liver carnitine palmitoyltransferase I gene expression by cAMP in combination with HNF4 alpha and cAMP-response element-binding protein (CREB)
    • Louet JF, Hayhurst G, Gonzalez FJ, Girard J, Decaux JF. 2002. The coactivator PGC-1 is involved in the regulation of the liver carnitine palmitoyltransferase I gene expression by cAMP in combination with HNF4 alpha and cAMP-response element-binding protein (CREB). J. Biol. Chem. 277:37991-38000.
    • (2002) J. Biol. Chem. , vol.277 , pp. 37991-38000
    • Louet, J.F.1    Hayhurst, G.2    Gonzalez, F.J.3    Girard, J.4    Decaux, J.F.5
  • 69
    • 0014082605 scopus 로고
    • The redox state of free nicotinamide- adenine dinucleotide in the cytoplasm and mitochondria of rat liver
    • Williamson DH, Lund P, Krebs HA. 1967. The redox state of free nicotinamide- adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 103:514-527.
    • (1967) Biochem. J. , vol.103 , pp. 514-527
    • Williamson, D.H.1    Lund, P.2    Krebs, H.A.3
  • 71
    • 34250740323 scopus 로고    scopus 로고
    • Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator
    • Li X, Monks B, Ge Q, Birnbaum MJ. 2007. Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator. Nature 447:1012-1016.
    • (2007) Nature , vol.447 , pp. 1012-1016
    • Li, X.1    Monks, B.2    Ge, Q.3    Birnbaum, M.J.4
  • 72
    • 1242319559 scopus 로고    scopus 로고
    • NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), functions and pharmacogenetics
    • Ross D, Siegel D. 2004. NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), functions and pharmacogenetics. Methods Enzymol. 382:115-144.
    • (2004) Methods Enzymol. , vol.382 , pp. 115-144
    • Ross, D.1    Siegel, D.2
  • 73
    • 57149116929 scopus 로고    scopus 로고
    • Tight regulation of unstructured proteins: from transcript synthesis to protein degradation
    • Gsponer J, Futschik ME, Teichmann SA, Babu MM. 2008. Tight regulation of unstructured proteins: from transcript synthesis to protein degradation. Science 322:1365-1368.
    • (2008) Science , vol.322 , pp. 1365-1368
    • Gsponer, J.1    Futschik, M.E.2    Teichmann, S.A.3    Babu, M.M.4
  • 74
    • 0038392724 scopus 로고    scopus 로고
    • Response delays and the structure of ranscription networks
    • Rosenfeld N, Alon U. 2003. Response delays and the structure of ranscription networks. J. Mol. Biol. 329:645-654.
    • (2003) J. Mol. Biol. , vol.329 , pp. 645-654
    • Rosenfeld, N.1    Alon, U.2
  • 76
    • 70350308428 scopus 로고    scopus 로고
    • The susceptibility of the p53 unstructured N-terminus to 20S proteasomal degradation programs stress response
    • Tsvetkov P, Reuven N, Prives C, Shaul Y. 2009. The susceptibility of the p53 unstructured N-terminus to 20S proteasomal degradation programs stress response. J. Biol. Chem. 284:26234-26242.
    • (2009) J. Biol. Chem. , vol.284 , pp. 26234-26242
    • Tsvetkov, P.1    Reuven, N.2    Prives, C.3    Shaul, Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.