-
1
-
-
0036903174
-
Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1
-
Baar K, Wende AR, Jones TE, Marison M, Nolte LA, Chen M, Kelly DP, Holloszy JO. 2002. Adaptations of skeletal muscle to exercise: rapid increase in the transcriptional coactivator PGC-1. FASEB J. 16:1879-1886.
-
(2002)
FASEB J.
, vol.16
, pp. 1879-1886
-
-
Baar, K.1
Wende, A.R.2
Jones, T.E.3
Marison, M.4
Nolte, L.A.5
Chen, M.6
Kelly, D.P.7
Holloszy, J.O.8
-
2
-
-
0035957375
-
Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1
-
Michael LF, Wu Z, Cheatham RB, Puigserver P, Adelmant G, Lehman JJ, Kelly DP, Spiegelman BM. 2001. Restoration of insulin-sensitive glucose transporter (GLUT4) gene expression in muscle cells by the transcriptional coactivator PGC-1. Proc. Natl. Acad. Sci. U. S. A. 98:3820-3825.
-
(2001)
Proc. Natl. Acad. Sci. U. S. A.
, vol.98
, pp. 3820-3825
-
-
Michael, L.F.1
Wu, Z.2
Cheatham, R.B.3
Puigserver, P.4
Adelmant, G.5
Lehman, J.J.6
Kelly, D.P.7
Spiegelman, B.M.8
-
3
-
-
0033538473
-
Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1
-
Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM. 1999. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell 98:115-124.
-
(1999)
Cell
, vol.98
, pp. 115-124
-
-
Wu, Z.1
Puigserver, P.2
Andersson, U.3
Zhang, C.4
Adelmant, G.5
Mootha, V.6
Troy, A.7
Cinti, S.8
Lowell, B.9
Scarpulla, R.C.10
Spiegelman, B.M.11
-
4
-
-
0035855905
-
CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
-
Herzig S, Long F, Jhala US, Hedrick S, Quinn R, Bauer A, Rudolph D, Schutz G, Yoon C, Puigserver P, Spiegelman B, Montminy M. 2001. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature 413:179-183.
-
(2001)
Nature
, vol.413
, pp. 179-183
-
-
Herzig, S.1
Long, F.2
Jhala, U.S.3
Hedrick, S.4
Quinn, R.5
Bauer, A.6
Rudolph, D.7
Schutz, G.8
Yoon, C.9
Puigserver, P.10
Spiegelman, B.11
Montminy, M.12
-
5
-
-
0035855858
-
Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1
-
Yoon JC, Puigserver P, Chen G, Donovan J, Wu Z, Rhee J, Adelmant G, Stafford J, Kahn CR, Granner DK, Newgard CB, Spiegelman BM. 2001. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 413:131-138.
-
(2001)
Nature
, vol.413
, pp. 131-138
-
-
Yoon, J.C.1
Puigserver, P.2
Chen, G.3
Donovan, J.4
Wu, Z.5
Rhee, J.6
Adelmant, G.7
Stafford, J.8
Kahn, C.R.9
Granner, D.K.10
Newgard, C.B.11
Spiegelman, B.M.12
-
6
-
-
67650242167
-
Sensitivity of lipid metabolism and insulin signaling to genetic alterations in hepatic peroxisome proliferator-activated receptor-gamma coactivator-1alpha expression
-
Estall JL, Kahn M, Cooper MP, Fisher FM, Wu MK, Laznik D, Qu L, Cohen DE, Shulman GI, Spiegelman BM. 2009. Sensitivity of lipid metabolism and insulin signaling to genetic alterations in hepatic peroxisome proliferator-activated receptor-gamma coactivator-1alpha expression. Diabetes 58:1499-1508.
-
(2009)
Diabetes
, vol.58
, pp. 1499-1508
-
-
Estall, J.L.1
Kahn, M.2
Cooper, M.P.3
Fisher, F.M.4
Wu, M.K.5
Laznik, D.6
Qu, L.7
Cohen, D.E.8
Shulman, G.I.9
Spiegelman, B.M.10
-
7
-
-
0032549811
-
A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis
-
Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. 1998. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829-839.
-
(1998)
Cell
, vol.92
, pp. 829-839
-
-
Puigserver, P.1
Wu, Z.2
Park, C.W.3
Graves, R.4
Wright, M.5
Spiegelman, B.M.6
-
8
-
-
33749999530
-
Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators
-
St-Pierre J, Drori S, Uldry M, Silvaggi JM, Rhee J, Jager S, Handschin C, Zheng K, Lin J, Yang W, Simon DK, Bachoo R, Spiegelman BM. 2006. Suppression of reactive oxygen species and neurodegeneration by the PGC-1 transcriptional coactivators. Cell 127:397-408.
-
(2006)
Cell
, vol.127
, pp. 397-408
-
-
St-Pierre, J.1
Drori, S.2
Uldry, M.3
Silvaggi, J.M.4
Rhee, J.5
Jager, S.6
Handschin, C.7
Zheng, K.8
Lin, J.9
Yang, W.10
Simon, D.K.11
Bachoo, R.12
Spiegelman, B.M.13
-
9
-
-
19444365211
-
PGC-1alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells
-
Valle I, Alvarez-Barrientos A, Arza E, Lamas S, Monsalve M. 2005. PGC-1alpha regulates the mitochondrial antioxidant defense system in vascular endothelial cells. Cardiovasc. Res. 66:562-573.
-
(2005)
Cardiovasc. Res.
, vol.66
, pp. 562-573
-
-
Valle, I.1
Alvarez-Barrientos, A.2
Arza, E.3
Lamas, S.4
Monsalve, M.5
-
10
-
-
79951812916
-
Telomere dysfunction induces metabolic and mitochondrial compromise
-
Sahin E, Colla S, Liesa M, Moslehi J, Muller FL, Guo M, Cooper M, Kotton D, Fabian AJ, Walkey C, Maser RS, Tonon G, Foerster F, Xiong R, Wang YA, Shukla SA, JaskelioffM, Martin ES, Heffernan TP, Protopopov A, Ivanova E, Mahoney JE, Kost-Alimova M, Perry SR, Bronson R, Liao R, Mulligan R, Shirihai OS, Chin L, DePinho RA. 2011. Telomere dysfunction induces metabolic and mitochondrial compromise. Nature 470:359-365.
-
(2011)
Nature
, vol.470
, pp. 359-365
-
-
Sahin, E.1
Colla, S.2
Liesa, M.3
Moslehi, J.4
Muller, F.L.5
Guo, M.6
Cooper, M.7
Kotton, D.8
Fabian, A.J.9
Walkey, C.10
Maser, R.S.11
Tonon, G.12
Foerster, F.13
Xiong, R.14
Wang, Y.A.15
Shukla, S.A.16
Jaskelioff, M.17
Martin, E.S.18
Heffernan, T.P.19
Protopopov, A.20
Ivanova, E.21
Mahoney, J.E.22
Kost-Alimova, M.23
Perry, S.R.24
Bronson, R.25
Liao, R.26
Mulligan, R.27
Shirihai, O.S.28
Chin, L.29
DePinho, R.A.30
more..
-
11
-
-
33644660537
-
PGC-1 coactivators: inducible regulators of energy metabolism in health and disease
-
Finck BN, Kelly DP. 2006. PGC-1 coactivators: inducible regulators of energy metabolism in health and disease. J. Clin. Invest. 116:615-622.
-
(2006)
J. Clin. Invest.
, vol.116
, pp. 615-622
-
-
Finck, B.N.1
Kelly, D.P.2
-
12
-
-
77449139468
-
PGC-1alpha activation as a therapeutic approach in mitochondrial disease
-
Wenz T. 2009. PGC-1alpha activation as a therapeutic approach in mitochondrial disease. IUBMB Life 61:1051-1062.
-
(2009)
IUBMB Life
, vol.61
, pp. 1051-1062
-
-
Wenz, T.1
-
13
-
-
77958020160
-
The role of PGC-1alpha in the pathogenesis of neurodegenerative disorders
-
Rona-Voros K, Weydt P. 2010. The role of PGC-1alpha in the pathogenesis of neurodegenerative disorders. Curr. Drug Targets 11:1262-1269.
-
(2010)
Curr. Drug Targets
, vol.11
, pp. 1262-1269
-
-
Rona-Voros, K.1
Weydt, P.2
-
14
-
-
64549127790
-
PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure
-
Canto C, Auwerx J. 2009. PGC-1alpha, SIRT1 and AMPK, an energy sensing network that controls energy expenditure. Curr. Opin. Lipidol. 20:98-105.
-
(2009)
Curr. Opin. Lipidol.
, vol.20
, pp. 98-105
-
-
Canto, C.1
Auwerx, J.2
-
15
-
-
80052812434
-
The PGC-1 cascade as a therapeutic target for heart failure
-
Schilling J, Kelly DP. 2011. The PGC-1 cascade as a therapeutic target for heart failure. J. Mol. Cell. Cardiol. 51:578-583.
-
(2011)
J. Mol. Cell. Cardiol.
, vol.51
, pp. 578-583
-
-
Schilling, J.1
Kelly, D.P.2
-
16
-
-
34250773451
-
Mechanisms of obesity-associated insulin resistance: many choices on the menu
-
Qatanani M, Lazar MA. 2007. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev. 21:1443-1455.
-
(2007)
Genes Dev.
, vol.21
, pp. 1443-1455
-
-
Qatanani, M.1
Lazar, M.A.2
-
17
-
-
1642293248
-
p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene
-
Cao W, Daniel KW, Robidoux J, Puigserver P, Medvedev AV, Bai X, Floering LM, Spiegelman BM, Collins S. 2004. p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol. Cell. Biol. 24:3057-3067.
-
(2004)
Mol. Cell. Biol.
, vol.24
, pp. 3057-3067
-
-
Cao, W.1
Daniel, K.W.2
Robidoux, J.3
Puigserver, P.4
Medvedev, A.V.5
Bai, X.6
Floering, L.M.7
Spiegelman, B.M.8
Collins, S.9
-
18
-
-
0038810035
-
An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle
-
Handschin C, Rhee J, Lin J, Tarr PT, Spiegelman BM. 2003. An autoregulatory loop controls peroxisome proliferator-activated receptor gamma coactivator 1alpha expression in muscle. Proc. Natl. Acad. Sci. U. S. A. 100:7111-7116.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 7111-7116
-
-
Handschin, C.1
Rhee, J.2
Lin, J.3
Tarr, P.T.4
Spiegelman, B.M.5
-
19
-
-
34547545892
-
AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha
-
Jager S, Handschin C, St-Pierre J, Spiegelman BM. 2007. AMP-activated protein kinase (AMPK) action in skeletal muscle via direct phosphorylation of PGC-1alpha. Proc. Natl. Acad. Sci. U. S. A. 104:12017-12022.
-
(2007)
Proc. Natl. Acad. Sci. U. S. A.
, vol.104
, pp. 12017-12022
-
-
Jager, S.1
Handschin, C.2
St-Pierre, J.3
Spiegelman, B.M.4
-
20
-
-
14544282413
-
Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
-
Rodgers JT, Lerin C, Haas W, Gygi SP, Spiegelman BM, Puigserver P. 2005. Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1. Nature 434:113-118.
-
(2005)
Nature
, vol.434
, pp. 113-118
-
-
Rodgers, J.T.1
Lerin, C.2
Haas, W.3
Gygi, S.P.4
Spiegelman, B.M.5
Puigserver, P.6
-
21
-
-
67349276169
-
AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity
-
Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J. 2009. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature 458: 1056-1060.
-
(2009)
Nature
, vol.458
, pp. 1056-1060
-
-
Canto, C.1
Gerhart-Hines, Z.2
Feige, J.N.3
Lagouge, M.4
Noriega, L.5
Milne, J.C.6
Elliott, P.J.7
Puigserver, P.8
Auwerx, J.9
-
22
-
-
38349057556
-
SCFCdc4 acts antagonistically to the PGC-1alpha transcriptional coactivator by targeting it for ubiquitin-mediated proteolysis
-
Olson BL, Hock MB, Ekholm-Reed S, Wohlschlegel JA, Dev KK, Kralli A, Reed SI. 2008. SCFCdc4 acts antagonistically to the PGC-1alpha transcriptional coactivator by targeting it for ubiquitin-mediated proteolysis. Genes Dev. 22:252-264.
-
(2008)
Genes Dev.
, vol.22
, pp. 252-264
-
-
Olson, B.L.1
Hock, M.B.2
Ekholm-Reed, S.3
Wohlschlegel, J.A.4
Dev, K.K.5
Kralli, A.6
Reed, S.I.7
-
23
-
-
38349130508
-
Dynamic regulation of PGC-1alpha localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response
-
Anderson RM, Barger JL, Edwards MG, Braun KH, O'Connor CE, Prolla TA, Weindruch R. 2008. Dynamic regulation of PGC-1alpha localization and turnover implicates mitochondrial adaptation in calorie restriction and the stress response. Aging Cell 7:101-111.
-
(2008)
Aging Cell
, vol.7
, pp. 101-111
-
-
Anderson, R.M.1
Barger, J.L.2
Edwards, M.G.3
Braun, K.H.4
O'Connor, C.E.5
Prolla, T.A.6
Weindruch, R.7
-
24
-
-
78650037609
-
Ubiquitin proteasome dependent degradation of the transcriptional coactivator PGC-1alpha via the N-terminal pathway
-
Trausch-Azar J, Leone TC, Kelly DP, Schwartz AL. 2010. Ubiquitin proteasome dependent degradation of the transcriptional coactivator PGC-1alpha via the N-terminal pathway. J. Biol. Chem. 285:40192-40200.
-
(2010)
J. Biol. Chem.
, vol.285
, pp. 40192-40200
-
-
Trausch-Azar, J.1
Leone, T.C.2
Kelly, D.P.3
Schwartz, A.L.4
-
25
-
-
34548512239
-
Intramolecular control of protein stability, subnuclear compartmentalization, and coactivator function of peroxisome proliferator-activated receptor gamma coactivator 1alpha
-
Sano M, Tokudome S, Shimizu N, Yoshikawa N, Ogawa C, Shirakawa K, Endo J, Katayama T, Yuasa S, Ieda M, Makino S, Hattori F, Tanaka H, Fukuda K. 2007. Intramolecular control of protein stability, subnuclear compartmentalization, and coactivator function of peroxisome proliferator-activated receptor gamma coactivator 1alpha. J. Biol. Chem. 282:25970-25980.
-
(2007)
J. Biol. Chem.
, vol.282
, pp. 25970-25980
-
-
Sano, M.1
Tokudome, S.2
Shimizu, N.3
Yoshikawa, N.4
Ogawa, C.5
Shirakawa, K.6
Endo, J.7
Katayama, T.8
Yuasa, S.9
Ieda, M.10
Makino, S.11
Hattori, F.12
Tanaka, H.13
Fukuda, K.14
-
26
-
-
84863067775
-
RNF34 is a cold-regulated E3 ubiquitin ligase for PGC-1alpha and modulates brown fat cell metabolism
-
Wei P, Pan D, Mao C, Wang YX. 2012. RNF34 is a cold-regulated E3 ubiquitin ligase for PGC-1alpha and modulates brown fat cell metabolism. Mol. Cell. Biol. 32:266-275.
-
(2012)
Mol. Cell. Biol.
, vol.32
, pp. 266-275
-
-
Wei, P.1
Pan, D.2
Mao, C.3
Wang, Y.X.4
-
27
-
-
33748922985
-
20S proteasomes and protein degradation "by default."
-
Asher G, Reuven N, Shaul Y. 2006. 20S proteasomes and protein degradation "by default." Bioessays 28:844-849.
-
(2006)
Bioessays
, vol.28
, pp. 844-849
-
-
Asher, G.1
Reuven, N.2
Shaul, Y.3
-
28
-
-
84885504735
-
IDPs and protein degradation in the cell, p 3-36. In Uversky VN, Longhi S (ed), Instrumental analysis of intrinsically disordered proteins: assessing structure and conformation
-
John Wiley & Sons, Inc, Hoboken, NJ.
-
Shaul Y, Tsvetkov P, Reuven N. 2010. IDPs and protein degradation in the cell, p 3-36. In Uversky VN, Longhi S (ed), Instrumental analysis of intrinsically disordered proteins: assessing structure and conformation. John Wiley & Sons, Inc, Hoboken, NJ.
-
(2010)
-
-
Shaul, Y.1
Tsvetkov, P.2
Reuven, N.3
-
29
-
-
20444376186
-
The interplay between structure and function in intrinsically unstructured proteins
-
Tompa P. 2005. The interplay between structure and function in intrinsically unstructured proteins. FEBS Lett. 579:3346-3354.
-
(2005)
FEBS Lett.
, vol.579
, pp. 3346-3354
-
-
Tompa, P.1
-
32
-
-
79957960940
-
Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network
-
Scarpulla RC. 2011. Metabolic control of mitochondrial biogenesis through the PGC-1 family regulatory network. Biochim. Biophys. Acta 1813:1269-1278.
-
(2011)
Biochim. Biophys. Acta
, vol.1813
, pp. 1269-1278
-
-
Scarpulla, R.C.1
-
33
-
-
79953186142
-
PGC-1 coactivators in the control of energy metabolism
-
(Shanghai)
-
Liu C, Lin JD. 2011. PGC-1 coactivators in the control of energy metabolism. Acta Biochim. Biophys. Sin. (Shanghai) 43:248-257.
-
(2011)
Acta Biochim. Biophys. Sin.
, vol.43
, pp. 248-257
-
-
Liu, C.1
Lin, J.D.2
-
35
-
-
64649104153
-
Pharmacological stimulation of NADH oxidation ameliorates obesity and related phenotypes in mice
-
Hwang JH, Kim DW, Jo EJ, Kim YK, Jo YS, Park JH, Yoo SK, Park MK, Kwak TH, Kho YL, Han J, Choi HS, Lee SH, Kim JM, Lee I, Kyung T, Jang C, Chung J, Kweon GR, Shong M. 2009. Pharmacological stimulation of NADH oxidation ameliorates obesity and related phenotypes in mice. Diabetes 58:965-974.
-
(2009)
Diabetes
, vol.58
, pp. 965-974
-
-
Hwang, J.H.1
Kim, D.W.2
Jo, E.J.3
Kim, Y.K.4
Jo, Y.S.5
Park, J.H.6
Yoo, S.K.7
Park, M.K.8
Kwak, T.H.9
Kho, Y.L.10
Han, J.11
Choi, H.S.12
Lee, S.H.13
Kim, J.M.14
Lee, I.15
Kyung, T.16
Jang, C.17
Chung, J.18
Kweon, G.R.19
Shong, M.20
more..
-
36
-
-
0035933809
-
In vivo role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the regulation of intracellular redox state and accumulation of abdominal adipose tissue
-
Gaikwad A, Long DJ, II, Stringer JL, Jaiswal AK. 2001. In vivo role of NAD(P)H:quinone oxidoreductase 1 (NQO1) in the regulation of intracellular redox state and accumulation of abdominal adipose tissue. J. Biol. Chem. 276:22559-22564.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 22559-22564
-
-
Gaikwad, A.1
Long II, D.J.2
Stringer, J.L.3
Jaiswal, A.K.4
-
37
-
-
84867428923
-
Beta-lapachone, a modulator of NAD metabolism, prevents health declines in aged mice
-
doi:10.1371/journal.pone.0047122.
-
Lee JS, Park AH, Lee SH, Kim JH, Yang SJ, Yeom YI, Kwak TH, Lee D, Lee SJ, Lee CH, Kim JM, Kim D. 2012. Beta-lapachone, a modulator of NAD metabolism, prevents health declines in aged mice. PLoS One 7:e47122. doi:10.1371/journal.pone.0047122.
-
(2012)
PLoS One
, vol.7
-
-
Lee, J.S.1
Park, A.H.2
Lee, S.H.3
Kim, J.H.4
Yang, S.J.5
Yeom, Y.I.6
Kwak, T.H.7
Lee, D.8
Lee, S.J.9
Lee, C.H.10
Kim, J.M.11
Kim, D.12
-
38
-
-
7544236965
-
Quinone reductases multitasking in the metabolic world
-
Ross D. 2004. Quinone reductases multitasking in the metabolic world. Drug Metab. Rev. 36:639-654.
-
(2004)
Drug Metab. Rev.
, vol.36
, pp. 639-654
-
-
Ross, D.1
-
39
-
-
13244275245
-
A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors
-
p53 and p73
-
Asher G, Tsvetkov P, Kahana C, Shaul Y. 2005. A mechanism of ubiquitin-independent proteasomal degradation of the tumor suppressors p53 and p73. Genes Dev. 19:316-321.
-
(2005)
Genes Dev.
, vol.19
, pp. 316-321
-
-
Asher, G.1
Tsvetkov, P.2
Kahana, C.3
Shaul, Y.4
-
40
-
-
84863816082
-
A mutually inhibitory feedback loop between the 20S proteasome and its regulator
-
Moscovitz O, Tsvetkov P, Hazan N, Michaelevski I, Keisar H, Ben-Nissan G, Shaul Y, Sharon M. 2012. A mutually inhibitory feedback loop between the 20S proteasome and its regulator, NQO1. Mol. Cell 47:76-86.
-
(2012)
NQO1. Mol. Cell
, vol.47
, pp. 76-86
-
-
Moscovitz, O.1
Tsvetkov, P.2
Hazan, N.3
Michaelevski, I.4
Keisar, H.5
Ben-Nissan, G.6
Shaul, Y.7
Sharon, M.8
-
41
-
-
77955321215
-
NAD(P)H quinone oxidoreductase protects TAp63gamma from proteasomal degradation and regulates TAp63gamma-dependent growth arrest
-
doi:10.1371/journal.pone.0011401.
-
Hershkovitz Rokah O, Shpilberg O, Granot G. 2010. NAD(P)H quinone oxidoreductase protects TAp63gamma from proteasomal degradation and regulates TAp63gamma-dependent growth arrest. PLoS One 5:e11401. doi:10.1371/journal.pone.0011401.
-
(2010)
PLoS One
, vol.5
-
-
Hershkovitz Rokah, O.1
Shpilberg, O.2
Granot, G.3
-
42
-
-
44649168869
-
-
NAD(P)H quinone oxidoreductase 1 inhibits the proteasomal degradation of the tumour suppressor p33(ING1b).
-
Garate M, Wong RP, Campos EI, Wang Y, Li G. 2008. NAD(P)H quinone oxidoreductase 1 inhibits the proteasomal degradation of the tumour suppressor p33(ING1b). EMBO Rep. 9:576-581.
-
(2008)
EMBO Rep.
, vol.9
, pp. 576-581
-
-
Garate, M.1
Wong, R.P.2
Campos, E.I.3
Wang, Y.4
Li, G.5
-
43
-
-
14644446056
-
20S proteasomal degradation of ornithine decarboxylase is regulated byNQO1
-
Asher G, Bercovich Z, Tsvetkov P, Shaul Y, Kahana C. 2005. 20S proteasomal degradation of ornithine decarboxylase is regulated byNQO1. Mol. Cell 17:645-655.
-
(2005)
Mol. Cell
, vol.17
, pp. 645-655
-
-
Asher, G.1
Bercovich, Z.2
Tsvetkov, P.3
Shaul, Y.4
Kahana, C.5
-
44
-
-
79952281710
-
Disruption of NAD(P)H:quinone oxidoreductase 1 gene in mice leads to 20S proteasomal degradation of p63 resulting in thinning of epithelium and chemical-induced skin cancer
-
Patrick BA, Gong X, Jaiswal AK. 2011. Disruption of NAD(P)H:quinone oxidoreductase 1 gene in mice leads to 20S proteasomal degradation of p63 resulting in thinning of epithelium and chemical-induced skin cancer. Oncogene 30:1098-1107.
-
(2011)
Oncogene
, vol.30
, pp. 1098-1107
-
-
Patrick, B.A.1
Gong, X.2
Jaiswal, A.K.3
-
45
-
-
77955286666
-
c-Fos proteasomal degradation is activated by a default mechanism, and its regulation by NAD-(P)H:quinone oxidoreductase 1 determines c-Fos serum response kinetics
-
Adler J, Reuven N, Kahana C, Shaul Y. 2010. c-Fos proteasomal degradation is activated by a default mechanism, and its regulation by NAD-(P)H:quinone oxidoreductase 1 determines c-Fos serum response kinetics. Mol. Cell. Biol. 30:3767-3778.
-
(2010)
Mol. Cell. Biol.
, vol.30
, pp. 3767-3778
-
-
Adler, J.1
Reuven, N.2
Kahana, C.3
Shaul, Y.4
-
46
-
-
84867230539
-
Stress-induced NQO1 controls stability of C/EBPalpha against 20S proteasomal degradation to regulate p63 expression with implications in protection against chemical-induced skin cancer
-
Patrick BA, Jaiswal AK. 2012. Stress-induced NQO1 controls stability of C/EBPalpha against 20S proteasomal degradation to regulate p63 expression with implications in protection against chemical-induced skin cancer. Oncogene 31:4362-4371.
-
(2012)
Oncogene
, vol.31
, pp. 4362-4371
-
-
Patrick, B.A.1
Jaiswal, A.K.2
-
47
-
-
58049127051
-
Quinone reductase acts as a redox switch of the 20S yeast proteasome
-
Sollner S, Schober M, Wagner A, Prem A, Lorkova L, Palfey BA, Groll M, Macheroux P. 2009. Quinone reductase acts as a redox switch of the 20S yeast proteasome. EMBO Rep. 10:65-70.
-
(2009)
EMBO Rep.
, vol.10
, pp. 65-70
-
-
Sollner, S.1
Schober, M.2
Wagner, A.3
Prem, A.4
Lorkova, L.5
Palfey, B.A.6
Groll, M.7
Macheroux, P.8
-
48
-
-
33947382284
-
-
The Yes-associated protein 1 stabilizes p73 by preventing Itch-mediated ubiquitination of p73
-
Levy D, Adamovich Y, Reuven N, Shaul Y. 2007. The Yes-associated protein 1 stabilizes p73 by preventing Itch-mediated ubiquitination of p73. Cell Death Differ. 14:743-751.
-
(2007)
Cell Death Differ.
, vol.14
, pp. 743-751
-
-
Levy, D.1
Adamovich, Y.2
Reuven, N.3
Shaul, Y.4
-
49
-
-
5344252327
-
Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice
-
Lin J, Wu PH, Tarr PT, Lindenberg KS, St-Pierre J, Zhang CY, Mootha VK, Jager S, Vianna CR, Reznick RM, Cui L, Manieri M, Donovan MX, Wu Z, Cooper MP, Fan MC, Rohas LM, Zavacki AM, Cinti S, Shulman GI, Lowell BB, Krainc D, Spiegelman BM. 2004. Defects in adaptive energy metabolism with CNS-linked hyperactivity in PGC-1alpha null mice. Cell 119:121-135.
-
(2004)
Cell
, vol.119
, pp. 121-135
-
-
Lin, J.1
Wu, P.H.2
Tarr, P.T.3
Lindenberg, K.S.4
St-Pierre, J.5
Zhang, C.Y.6
Mootha, V.K.7
Jager, S.8
Vianna, C.R.9
Reznick, R.M.10
Cui, L.11
Manieri, M.12
Donovan, M.X.13
Wu, Z.14
Cooper, M.P.15
Fan, M.C.16
Rohas, L.M.17
Zavacki, A.M.18
Cinti, S.19
Shulman, G.I.20
Lowell, B.B.21
Krainc, D.22
Spiegelman, B.M.23
more..
-
50
-
-
33744518925
-
Pax7 and myogenic progression in skeletal muscle satellite cells
-
Zammit PS, Relaix F, Nagata Y, Ruiz AP, Collins CA, Partridge TA, Beauchamp JR. 2006. Pax7 and myogenic progression in skeletal muscle satellite cells. J. Cell Sci. 119:1824-1832.
-
(2006)
J. Cell Sci.
, vol.119
, pp. 1824-1832
-
-
Zammit, P.S.1
Relaix, F.2
Nagata, Y.3
Ruiz, A.P.4
Collins, C.A.5
Partridge, T.A.6
Beauchamp, J.R.7
-
51
-
-
34250378403
-
A protocol for rapid generation of recombinant adenoviruses using the AdEasy system
-
Luo J, Deng ZL, Luo X, Tang N, Song WX, Chen J, SharffKA, Luu HH, Haydon RC, Kinzler KW, Vogelstein B, He TC. 2007. A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat. Protoc. 2:1236-1247.
-
(2007)
Nat. Protoc.
, vol.2
, pp. 1236-1247
-
-
Luo, J.1
Deng, Z.L.2
Luo, X.3
Tang, N.4
Song, W.X.5
Chen, J.6
Sharff, K.A.7
Luu, H.H.8
Haydon, R.C.9
Kinzler, K.W.10
Vogelstein, B.11
He, T.C.12
-
52
-
-
43049121395
-
Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt
-
Fulco M, Cen Y, Zhao P, Hoffman EP, McBurney MW, Sauve AA, Sartorelli V. 2008. Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Dev. Cell 14:661-673.
-
(2008)
Dev. Cell
, vol.14
, pp. 661-673
-
-
Fulco, M.1
Cen, Y.2
Zhao, P.3
Hoffman, E.P.4
McBurney, M.W.5
Sauve, A.A.6
Sartorelli, V.7
-
53
-
-
0028618183
-
Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA
-
Krishna TS, Kong XP, Gary S, Burgers PM, Kuriyan J. 1994. Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell 79:1233-1243.
-
(1994)
Cell
, vol.79
, pp. 1233-1243
-
-
Krishna, T.S.1
Kong, X.P.2
Gary, S.3
Burgers, P.M.4
Kuriyan, J.5
-
54
-
-
0036803243
-
Intrinsically unstructured proteins
-
Tompa P. 2002. Intrinsically unstructured proteins. Trends Biochem. Sci. 27:527-533.
-
(2002)
Trends Biochem. Sci.
, vol.27
, pp. 527-533
-
-
Tompa, P.1
-
55
-
-
81755187015
-
Disorder-to-order transition underlies the structural basis for the assembly of a transcriptionally active PGC- 1alpha/ERRgamma complex
-
Devarakonda S, Gupta K, Chalmers MJ, Hunt JF, Griffin PR, Van Duyne GD, Spiegelman BM. 2011. Disorder-to-order transition underlies the structural basis for the assembly of a transcriptionally active PGC- 1alpha/ERRgamma complex. Proc. Natl. Acad. Sci. U. S. A. 108:18678-18683.
-
(2011)
Proc. Natl. Acad. Sci. U. S. A.
, vol.108
, pp. 18678-18683
-
-
Devarakonda, S.1
Gupta, K.2
Chalmers, M.J.3
Hunt, J.F.4
Griffin, P.R.5
Van Duyne, G.D.6
Spiegelman, B.M.7
-
57
-
-
39749117978
-
Operational definition of intrinsically unstructured protein sequences based on susceptibility to the 20S proteasome
-
Tsvetkov P, Asher G, Paz A, Reuven N, Sussman JL, Silman I, Shaul Y. 2008. Operational definition of intrinsically unstructured protein sequences based on susceptibility to the 20S proteasome. Proteins 70:1357-1366.
-
(2008)
Proteins
, vol.70
, pp. 1357-1366
-
-
Tsvetkov, P.1
Asher, G.2
Paz, A.3
Reuven, N.4
Sussman, J.L.5
Silman, I.6
Shaul, Y.7
-
58
-
-
84865323489
-
Determination of IUP based on susceptibility for degradation by default
-
Tsvetkov P, Shaul Y. 2012. Determination of IUP based on susceptibility for degradation by default. Methods Mol. Biol. 895:3-18.
-
(2012)
Methods Mol. Biol.
, vol.895
, pp. 3-18
-
-
Tsvetkov, P.1
Shaul, Y.2
-
60
-
-
48249097986
-
Intrinsically disordered proteins in human diseases: introducing the D2 concept
-
Uversky VN, Oldfield CJ, Dunker AK. 2008. Intrinsically disordered proteins in human diseases: introducing the D2 concept. Annu. Rev. Biophys. 37:215-246.
-
(2008)
Annu. Rev. Biophys.
, vol.37
, pp. 215-246
-
-
Uversky, V.N.1
Oldfield, C.J.2
Dunker, A.K.3
-
61
-
-
33646857902
-
The crystal structure of NAD(P)H quinone oxidoreductase 1 in complex with its potent inhibitor dicoumarol
-
Asher G, Dym O, Tsvetkov P, Adler J, Shaul Y. 2006. The crystal structure of NAD(P)H quinone oxidoreductase 1 in complex with its potent inhibitor dicoumarol. Biochemistry 45:6372-6378.
-
(2006)
Biochemistry
, vol.45
, pp. 6372-6378
-
-
Asher, G.1
Dym, O.2
Tsvetkov, P.3
Adler, J.4
Shaul, Y.5
-
62
-
-
0026499189
-
Identification of a glycine-rich sequence as an NAD(P)H-binding site and tyrosine 128 as a dicumarol-binding site in rat liver NAD(P)H:quinone oxidoreductase by site-directed mutagenesis
-
Ma Q, Cui K, Xiao F, Lu AY, Yang CS. 1992. Identification of a glycine-rich sequence as an NAD(P)H-binding site and tyrosine 128 as a dicumarol-binding site in rat liver NAD(P)H:quinone oxidoreductase by site-directed mutagenesis. J. Biol. Chem. 267:22298-22304.
-
(1992)
J. Biol. Chem.
, vol.267
, pp. 22298-22304
-
-
Ma, Q.1
Cui, K.2
Xiao, F.3
Lu, A.Y.4
Yang, C.S.5
-
63
-
-
0043244921
-
Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state
-
Fulco M, Schiltz RL, Iezzi S, King MT, Zhao P, Kashiwaya Y, Hoffman E, Veech RL, Sartorelli V. 2003. Sir2 regulates skeletal muscle differentiation as a potential sensor of the redox state. Mol. Cell 12:51-62.
-
(2003)
Mol. Cell
, vol.12
, pp. 51-62
-
-
Fulco, M.1
Schiltz, R.L.2
Iezzi, S.3
King, M.T.4
Zhao, P.5
Kashiwaya, Y.6
Hoffman, E.7
Veech, R.L.8
Sartorelli, V.9
-
64
-
-
77956171147
-
NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector
-
Dinkova-Kostova AT, Talalay P. 2010. NAD(P)H:quinone acceptor oxidoreductase 1 (NQO1), a multifunctional antioxidant enzyme and exceptionally versatile cytoprotector. Arch. Biochem. Biophys. 501:116-123.
-
(2010)
Arch. Biochem. Biophys.
, vol.501
, pp. 116-123
-
-
Dinkova-Kostova, A.T.1
Talalay, P.2
-
65
-
-
0037160097
-
Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1
-
Bitterman KJ, Anderson RM, Cohen HY, Latorre-Esteves M, Sinclair DA. 2002. Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1. J. Biol. Chem. 277:45099-45107.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 45099-45107
-
-
Bitterman, K.J.1
Anderson, R.M.2
Cohen, H.Y.3
Latorre-Esteves, M.4
Sinclair, D.A.5
-
66
-
-
0037342151
-
Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR
-
Daitoku H, Yamagata K, Matsuzaki H, Hatta M, Fukamizu A. 2003. Regulation of PGC-1 promoter activity by protein kinase B and the forkhead transcription factor FKHR. Diabetes 52:642-649.
-
(2003)
Diabetes
, vol.52
, pp. 642-649
-
-
Daitoku, H.1
Yamagata, K.2
Matsuzaki, H.3
Hatta, M.4
Fukamizu, A.5
-
67
-
-
0037064057
-
The coactivator PGC-1 is involved in the regulation of the liver carnitine palmitoyltransferase I gene expression by cAMP in combination with HNF4 alpha and cAMP-response element-binding protein (CREB)
-
Louet JF, Hayhurst G, Gonzalez FJ, Girard J, Decaux JF. 2002. The coactivator PGC-1 is involved in the regulation of the liver carnitine palmitoyltransferase I gene expression by cAMP in combination with HNF4 alpha and cAMP-response element-binding protein (CREB). J. Biol. Chem. 277:37991-38000.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 37991-38000
-
-
Louet, J.F.1
Hayhurst, G.2
Gonzalez, F.J.3
Girard, J.4
Decaux, J.F.5
-
68
-
-
33751087041
-
Defects in energy homeostasis in Leigh syndrome French Canadian variant through PGC-1alpha/LRP130 complex
-
Cooper MP, Qu L, Rohas LM, Lin J, Yang W, Erdjument-Bromage H, Tempst P, Spiegelman BM. 2006. Defects in energy homeostasis in Leigh syndrome French Canadian variant through PGC-1alpha/LRP130 complex. Genes Dev. 20:2996-3009.
-
(2006)
Genes Dev.
, vol.20
, pp. 2996-3009
-
-
Cooper, M.P.1
Qu, L.2
Rohas, L.M.3
Lin, J.4
Yang, W.5
Erdjument-Bromage, H.6
Tempst, P.7
Spiegelman, B.M.8
-
69
-
-
0014082605
-
The redox state of free nicotinamide- adenine dinucleotide in the cytoplasm and mitochondria of rat liver
-
Williamson DH, Lund P, Krebs HA. 1967. The redox state of free nicotinamide- adenine dinucleotide in the cytoplasm and mitochondria of rat liver. Biochem. J. 103:514-527.
-
(1967)
Biochem. J.
, vol.103
, pp. 514-527
-
-
Williamson, D.H.1
Lund, P.2
Krebs, H.A.3
-
70
-
-
0038187621
-
Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction
-
Puigserver P, Rhee J, Donovan J, Walkey CJ, Yoon JC, Oriente F, Kitamura Y, Altomonte J, Dong H, Accili D, Spiegelman BM. 2003. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature 423:550-555.
-
(2003)
Nature
, vol.423
, pp. 550-555
-
-
Puigserver, P.1
Rhee, J.2
Donovan, J.3
Walkey, C.J.4
Yoon, J.C.5
Oriente, F.6
Kitamura, Y.7
Altomonte, J.8
Dong, H.9
Accili, D.10
Spiegelman, B.M.11
-
71
-
-
34250740323
-
Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator
-
Li X, Monks B, Ge Q, Birnbaum MJ. 2007. Akt/PKB regulates hepatic metabolism by directly inhibiting PGC-1alpha transcription coactivator. Nature 447:1012-1016.
-
(2007)
Nature
, vol.447
, pp. 1012-1016
-
-
Li, X.1
Monks, B.2
Ge, Q.3
Birnbaum, M.J.4
-
72
-
-
1242319559
-
NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), functions and pharmacogenetics
-
Ross D, Siegel D. 2004. NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), functions and pharmacogenetics. Methods Enzymol. 382:115-144.
-
(2004)
Methods Enzymol.
, vol.382
, pp. 115-144
-
-
Ross, D.1
Siegel, D.2
-
73
-
-
57149116929
-
Tight regulation of unstructured proteins: from transcript synthesis to protein degradation
-
Gsponer J, Futschik ME, Teichmann SA, Babu MM. 2008. Tight regulation of unstructured proteins: from transcript synthesis to protein degradation. Science 322:1365-1368.
-
(2008)
Science
, vol.322
, pp. 1365-1368
-
-
Gsponer, J.1
Futschik, M.E.2
Teichmann, S.A.3
Babu, M.M.4
-
74
-
-
0038392724
-
Response delays and the structure of ranscription networks
-
Rosenfeld N, Alon U. 2003. Response delays and the structure of ranscription networks. J. Mol. Biol. 329:645-654.
-
(2003)
J. Mol. Biol.
, vol.329
, pp. 645-654
-
-
Rosenfeld, N.1
Alon, U.2
-
75
-
-
33748377124
-
Quantification of protein half-lives in the budding yeast proteome
-
Belle A, Tanay A, Bitincka L, Shamir R, O'Shea EK. 2006. Quantification of protein half-lives in the budding yeast proteome. Proc. Natl. Acad. Sci. U. S. A. 103:13004-13009.
-
(2006)
Proc. Natl. Acad. Sci. U. S. A.
, vol.103
, pp. 13004-13009
-
-
Belle, A.1
Tanay, A.2
Bitincka, L.3
Shamir, R.4
O'Shea, E.K.5
-
76
-
-
70350308428
-
The susceptibility of the p53 unstructured N-terminus to 20S proteasomal degradation programs stress response
-
Tsvetkov P, Reuven N, Prives C, Shaul Y. 2009. The susceptibility of the p53 unstructured N-terminus to 20S proteasomal degradation programs stress response. J. Biol. Chem. 284:26234-26242.
-
(2009)
J. Biol. Chem.
, vol.284
, pp. 26234-26242
-
-
Tsvetkov, P.1
Reuven, N.2
Prives, C.3
Shaul, Y.4
-
77
-
-
65249124172
-
Activation of NAD(P)H:quinone oxidoreductase 1 prevents arterial restenosis by suppressing vascular smooth muscle cell proliferation
-
Kim SY, Jeoung NH, Oh CJ, Choi YK, Lee HJ, Kim HJ, Kim JY, Hwang JH, Tadi S, Yim YH, Lee KU, Park KG, Huh S, Min KN, Jeong KH, Park MG, Kwak TH, Kweon GR, Inukai K, Shong M, Lee IK. 2009. Activation of NAD(P)H:quinone oxidoreductase 1 prevents arterial restenosis by suppressing vascular smooth muscle cell proliferation. Circ. Res. 104:842-850.
-
(2009)
Circ. Res.
, vol.104
, pp. 842-850
-
-
Kim, S.Y.1
Jeoung, N.H.2
Oh, C.J.3
Choi, Y.K.4
Lee, H.J.5
Kim, H.J.6
Kim, J.Y.7
Hwang, J.H.8
Tadi, S.9
Yim, Y.H.10
Lee, K.U.11
Park, K.G.12
Huh, S.13
Min, K.N.14
Jeong, K.H.15
Park, M.G.16
Kwak, T.H.17
Kweon, G.R.18
Inukai, K.19
Shong, M.20
Lee, I.K.21
more..
|