메뉴 건너뛰기




Volumn 51, Issue 29, 2012, Pages 9812-9824

Recursive fault detection and isolation approaches of time-varying processes

Author keywords

[No Author keywords available]

Indexed keywords

CONTINUOUS STIRRED TANK REACTOR; FAULT DETECTION AND ISOLATION; FAULT ISOLATION; FIRST-ORDER; MONITORING TOOLS; NONISOTHERMAL; PARTIAL DECOMPOSITION; RECURSIVE PCA; SENSOR FAULT; TIME VARYING; TIME-VARYING PROCESS;

EID: 84864271297     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie300072q     Document Type: Article
Times cited : (31)

References (49)
  • 2
    • 0037443803 scopus 로고    scopus 로고
    • A Review of Process Fault Detection and Diagnosis: Part III: Process History Based Methods
    • Venkatasubramanian, V.; Rengaswamy, R.; Kavuri, S. N.; Yin, K. A Review of Process Fault Detection and Diagnosis: Part III: Process History Based Methods Comput. Chem. Eng. 2003, 27, 327-346
    • (2003) Comput. Chem. Eng. , vol.27 , pp. 327-346
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Kavuri, S.N.3    Yin, K.4
  • 3
    • 0037443770 scopus 로고    scopus 로고
    • A Review of Process Fault Detection and Diagnosis: Part I: Quantitative Model-Based Methods
    • Venkatasubramanian, V.; Rengaswamy, R.; Kavuri, S. N.; Yin, K. A Review of Process Fault Detection and Diagnosis: Part I: Quantitative Model-Based Methods Comput. Chem. Eng. 2003, 27, 293-311
    • (2003) Comput. Chem. Eng. , vol.27 , pp. 293-311
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Kavuri, S.N.3    Yin, K.4
  • 4
    • 0037443771 scopus 로고    scopus 로고
    • A Review of Process Fault Detection and Diagnosis: Part II: Qualitative Models and Search Strategies
    • Venkatasubramanian, V.; Rengaswamy, R.; Kavuri, S. N.; Yin, K. A Review of Process Fault Detection and Diagnosis: Part II: Qualitative Models and Search Strategies Comput. Chem. Eng. 2003, 27, 313-326
    • (2003) Comput. Chem. Eng. , vol.27 , pp. 313-326
    • Venkatasubramanian, V.1    Rengaswamy, R.2    Kavuri, S.N.3    Yin, K.4
  • 6
    • 0032775020 scopus 로고    scopus 로고
    • Improved PCA Methods for Process Disturbance and Failure identification
    • Wachs, A.; Lewin, D. R. Improved PCA Methods for Process Disturbance and Failure identification AIChE J. 1999, 45, 1688-1700
    • (1999) AIChE J. , vol.45 , pp. 1688-1700
    • Wachs, A.1    Lewin, D.R.2
  • 7
    • 14644427213 scopus 로고    scopus 로고
    • A New Fault Diagnosis Method Using Fault Directions in Fisher Discriminant Analysis
    • He, Q. P.; Qin, S.; Wang, J. A New Fault Diagnosis Method Using Fault Directions in Fisher Discriminant Analysis AIChE J. 2006, 51, 555-571
    • (2006) AIChE J. , vol.51 , pp. 555-571
    • He, Q.P.1    Qin, S.2    Wang, J.3
  • 8
    • 0018503842 scopus 로고
    • Control Procedures for Residuals Associated with Principal Component Analysis
    • Jackson, J. E.; Mudholkar, G. Control Procedures for Residuals Associated with Principal Component Analysis J. Process Control 1979, 21, 341-349
    • (1979) J. Process Control , vol.21 , pp. 341-349
    • Jackson, J.E.1    Mudholkar, G.2
  • 10
    • 18844397336 scopus 로고    scopus 로고
    • Application of Latent Variable Methods to Process Control and Multivariate Statistical Process Control in Industry
    • Kourti, T. Application of Latent Variable Methods to Process Control and Multivariate Statistical Process Control in Industry Int. J. Adapt. Control Signal Process. 2005, 19, 213-246
    • (2005) Int. J. Adapt. Control Signal Process. , vol.19 , pp. 213-246
    • Kourti, T.1
  • 11
    • 0028354319 scopus 로고
    • Exponentially Weighted Moving Principal Component Analysis and Projection to Latent Structures
    • Wold, S. Exponentially Weighted Moving Principal Component Analysis and Projection to Latent Structures Chemom. Intell. Lab. Syst. 1994, 23, 149-161
    • (1994) Chemom. Intell. Lab. Syst. , vol.23 , pp. 149-161
    • Wold, S.1
  • 13
    • 0038198780 scopus 로고    scopus 로고
    • Recursive Partial Least Squares Algorithms for Monitoring Complex Industrial Processes
    • Wang, X.; Kruger, U.; Lennox, B. Recursive Partial Least Squares Algorithms for Monitoring Complex Industrial Processes Control Eng. Pract. 2003, 11, 613-632
    • (2003) Control Eng. Pract. , vol.11 , pp. 613-632
    • Wang, X.1    Kruger, U.2    Lennox, B.3
  • 14
    • 31544440191 scopus 로고    scopus 로고
    • Robust Recursive Principal Component Analysis Modeling for Adaptive Monitoring
    • Jin, H.; Lee, Y.-H.; Lee, G.; Han, C. Robust Recursive Principal Component Analysis Modeling for Adaptive Monitoring Ind. Eng. Chem. Res. 2006, 45, 696-703
    • (2006) Ind. Eng. Chem. Res. , vol.45 , pp. 696-703
    • Jin, H.1    Lee, Y.-H.2    Lee, G.3    Han, C.4
  • 15
    • 33646536772 scopus 로고    scopus 로고
    • Adaptive Multivariate Statistical Process Control for Monitoring Time-Varying Processes
    • Choi, S. W.; Martin, E. B.; Morris, A. J.; Lee, I.-B. Adaptive Multivariate Statistical Process Control for Monitoring Time-Varying Processes Ind. Eng. Chem. Res. 2006, 45, 3108-3118
    • (2006) Ind. Eng. Chem. Res. , vol.45 , pp. 3108-3118
    • Choi, S.W.1    Martin, E.B.2    Morris, A.J.3    Lee, I.-B.4
  • 16
    • 38849098368 scopus 로고    scopus 로고
    • Variable MWPCA for Adaptive Process Monitoring
    • He, X. B.; Yang, Y. P. Variable MWPCA for Adaptive Process Monitoring Ind. Eng. Chem. Res. 2008, 47, 419-427
    • (2008) Ind. Eng. Chem. Res. , vol.47 , pp. 419-427
    • He, X.B.1    Yang, Y.P.2
  • 17
    • 77955513371 scopus 로고    scopus 로고
    • Recursive Identification Algorithm for Parity Space Based Fault Detection Systems
    • Naik, A. S.; Yin, S.; Ding, S. X. Recursive Identification Algorithm for Parity Space Based Fault Detection Systems J. Process Control 2010, 20, 957-965
    • (2010) J. Process Control , vol.20 , pp. 957-965
    • Naik, A.S.1    Yin, S.2    Ding, S.X.3
  • 19
    • 64249101035 scopus 로고    scopus 로고
    • Moving Window Kernel PCA for Adaptive Monitoring of Nonlinear Processes
    • Liu, X.; Kruger, U.; Littler, T.; Xie, L.; Wang, S. Moving Window Kernel PCA for Adaptive Monitoring of Nonlinear Processes Chemom. Intell. Lab. Syst. 2009, 96, 132-143
    • (2009) Chemom. Intell. Lab. Syst. , vol.96 , pp. 132-143
    • Liu, X.1    Kruger, U.2    Littler, T.3    Xie, L.4    Wang, S.5
  • 20
    • 74249108882 scopus 로고    scopus 로고
    • Efficient Recursive Principal Component Analysis Algorithms for Process Monitoring
    • Elshenawy, L. M.; Yin, S; Naik, A.; Ding, S. Efficient Recursive Principal Component Analysis Algorithms for Process Monitoring Ind. Eng. Chem. Res. 2010, 49, 252-259
    • (2010) Ind. Eng. Chem. Res. , vol.49 , pp. 252-259
    • Elshenawy, L.M.1    Yin, S.2    Naik, A.3    Ding, S.4
  • 21
    • 0028516278 scopus 로고
    • Adaptive Eigendecomposition of Data Covariance Matrices Based on First-Order Perturbations
    • Champagne, B. Adaptive Eigendecomposition of Data Covariance Matrices Based on First-Order Perturbations IEEE Trans. Signal Process. 1994, 42, 2758-2770
    • (1994) IEEE Trans. Signal Process. , vol.42 , pp. 2758-2770
    • Champagne, B.1
  • 22
    • 39649107123 scopus 로고    scopus 로고
    • Efficient Adaptive SVD Algorithm for MIMO Applications
    • Willink, T. Efficient Adaptive SVD Algorithm for MIMO Applications IEEE Trans. Signal Process. 2008, 56, 615-622
    • (2008) IEEE Trans. Signal Process. , vol.56 , pp. 615-622
    • Willink, T.1
  • 25
    • 0003198394 scopus 로고
    • Contribution Plots: The Missing Link in Multivariate Quality Control
    • Presented at the, Rochester, NY, Oct
    • Miller, P.; Swanson, R.; Heckler, C. Contribution Plots: The Missing Link in Multivariate Quality Control. Presented at the 37th Annual ASQC-ASA Fall Technical Conference, Rochester, NY, Oct 1993.
    • (1993) 37th Annual ASQC-ASA Fall Technical Conference
    • Miller, P.1    Swanson, R.2    Heckler, C.3
  • 28
    • 0032144398 scopus 로고    scopus 로고
    • Subspace Approach to Multidimensional Fault Identification and Reconstruction
    • Dunia, R.; Qin, S. J. Subspace Approach to Multidimensional Fault Identification and Reconstruction AIChE J. 1998, 44, 1813-1831
    • (1998) AIChE J. , vol.44 , pp. 1813-1831
    • Dunia, R.1    Qin, S.J.2
  • 29
    • 0035802262 scopus 로고    scopus 로고
    • Reconstruction-Based Fault Identification Using a Combined Index
    • Yue, H.; Qin, S. Reconstruction-Based Fault Identification Using a Combined Index Ind. Eng. Chem. Res. 2001, 40, 4403-4414
    • (2001) Ind. Eng. Chem. Res. , vol.40 , pp. 4403-4414
    • Yue, H.1    Qin, S.2
  • 30
    • 0242354134 scopus 로고    scopus 로고
    • Statistical Process Monitoring: Basics and beyond
    • Qin, S. J. Statistical Process Monitoring: Basics and Beyond J. Chemom. 2003, 17, 480-502
    • (2003) J. Chemom. , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 31
    • 33645880467 scopus 로고    scopus 로고
    • Improved Diagnosis of Abnormal Process Behavior Using Multivariate Statistics
    • Lieftucht, D.; Kruger, U.; Irwin, G. Improved Diagnosis of Abnormal Process Behavior Using Multivariate Statistics Comput. Chem. Eng. 2006, 30, 901-912
    • (2006) Comput. Chem. Eng. , vol.30 , pp. 901-912
    • Lieftucht, D.1    Kruger, U.2    Irwin, G.3
  • 32
    • 33646880068 scopus 로고    scopus 로고
    • Fault Reconstruction in Linear Dynamic Systems Using Multivariate Statistics
    • Lieftucht, D.; Kruger, U.; Irwin, G.; Treasure, J. Fault Reconstruction in Linear Dynamic Systems Using Multivariate Statistics IEE Proc.: Control Theory Appl. 2006, 153, 437-446
    • (2006) IEE Proc.: Control Theory Appl. , vol.153 , pp. 437-446
    • Lieftucht, D.1    Kruger, U.2    Irwin, G.3    Treasure, J.4
  • 33
    • 60249085725 scopus 로고    scopus 로고
    • Improved Fault Diagnosis in Multivariate Systems Using Regression-Based Reconstruction
    • Lieftucht, D.; Völker, M.; Kruger, C. S. U.; Irwin, G.; Engell, S. Improved Fault Diagnosis in Multivariate Systems Using Regression-Based Reconstruction Control Eng. Pract. 2009, 17, 478-493
    • (2009) Control Eng. Pract. , vol.17 , pp. 478-493
    • Lieftucht, D.1    Völker, M.2    Kruger, C.S.U.3    Irwin, G.4    Engell, S.5
  • 34
    • 84862788679 scopus 로고    scopus 로고
    • Fault Diagnosis of Continuous Annealing Processes Using a Reconstruction-Based Method
    • Liu, Q.; Chai, T.; Qin, S. J. Fault Diagnosis of Continuous Annealing Processes Using a Reconstruction-Based Method Control Eng. Pract. 2012, 20, 511-518
    • (2012) Control Eng. Pract. , vol.20 , pp. 511-518
    • Liu, Q.1    Chai, T.2    Qin, S.J.3
  • 35
    • 0030127409 scopus 로고    scopus 로고
    • Statistical Process Monitoring and Disturbance Diagnosis in Multivariate Continuous Processes
    • Raich, A.; Cinar, A. Statistical Process Monitoring and Disturbance Diagnosis in Multivariate Continuous Processes AIChE J. 1996, 42, 995-1009
    • (1996) AIChE J. , vol.42 , pp. 995-1009
    • Raich, A.1    Cinar, A.2
  • 36
    • 0035427805 scopus 로고    scopus 로고
    • Fault Diagnosis with Multivariate Statistical Models Part I: Using Steady State Fault Signatures
    • Yoon, S.; MacGregor, J. F. Fault Diagnosis with Multivariate Statistical Models Part I: Using Steady State Fault Signatures J. Process Control 2001, 11, 387-400
    • (2001) J. Process Control , vol.11 , pp. 387-400
    • Yoon, S.1    MacGregor, J.F.2
  • 37
    • 0036628052 scopus 로고    scopus 로고
    • Statistical Process Monitoring Based on Dissimilarity of Process Data
    • Kano, M.; Hasebe, S.; Hashimoto, I.; Ohno, H. Statistical Process Monitoring Based on Dissimilarity of Process Data AIChE J. 2002, 48, 1231-1240
    • (2002) AIChE J. , vol.48 , pp. 1231-1240
    • Kano, M.1    Hasebe, S.2    Hashimoto, I.3    Ohno, H.4
  • 38
    • 0037036779 scopus 로고    scopus 로고
    • Pattern Matching in Multivariate Time Series Databases Using a Moving-Window Approach
    • Singhal, A.; Seborg, D. Pattern Matching in Multivariate Time Series Databases Using a Moving-Window Approach Ind. Eng. Chem. Res. 2002, 41, 3822-3838
    • (2002) Ind. Eng. Chem. Res. , vol.41 , pp. 3822-3838
    • Singhal, A.1    Seborg, D.2
  • 39
    • 33645389475 scopus 로고    scopus 로고
    • Evaluation of a Pattern Matching Method for the Tennessee Eastman Challenge Process
    • Singhal, A.; Seborg, D. Evaluation of a Pattern Matching Method for the Tennessee Eastman Challenge Process J. Process Control 2006, 16, 601-613
    • (2006) J. Process Control , vol.16 , pp. 601-613
    • Singhal, A.1    Seborg, D.2
  • 40
    • 0033083952 scopus 로고    scopus 로고
    • Isolation Enhanced Principal Component Analysis
    • Gertler, J.; Li, W.; Huang, Y.; McAvoy, T. Isolation Enhanced Principal Component Analysis AIChE J. 1999, 45, 323-334
    • (1999) AIChE J. , vol.45 , pp. 323-334
    • Gertler, J.1    Li, W.2    Huang, Y.3    McAvoy, T.4
  • 41
    • 0001212550 scopus 로고    scopus 로고
    • Detection and Identification of Faulty Sensors in Dynamic Processes
    • Qin, S. J.; Li, W. Detection and Identification of Faulty Sensors in Dynamic Processes AIChE J. 2001, 47, 1581-1593
    • (2001) AIChE J. , vol.47 , pp. 1581-1593
    • Qin, S.J.1    Li, W.2
  • 42
    • 84860416807 scopus 로고    scopus 로고
    • A Multi-level Approach for Complex Fault Isolation Based on Structured Residuals
    • Lubin, Y.; Xiangrong, S.; Jun, L. A Multi-level Approach for Complex Fault Isolation Based on Structured Residuals Chin. J. Chem. Eng. 2011, 19, 462-472
    • (2011) Chin. J. Chem. Eng. , vol.19 , pp. 462-472
    • Lubin, Y.1    Xiangrong, S.2    Jun, L.3
  • 43
    • 80051697507 scopus 로고    scopus 로고
    • Fault Detection, Identification and Diagnosis Using CUSUM Based PCA
    • Shams, M. B.; Budman, H.; Duever, T. Fault Detection, Identification and Diagnosis Using CUSUM Based PCA Chem. Eng. Sci. 2011, 66, 4488-4498
    • (2011) Chem. Eng. Sci. , vol.66 , pp. 4488-4498
    • Shams, M.B.1    Budman, H.2    Duever, T.3
  • 44
    • 22944436794 scopus 로고    scopus 로고
    • Process Monitoring Approach Using Fast Moving Window PCA
    • Wang, X.; Kruger, U.; Irwin, G. Process Monitoring Approach Using Fast Moving Window PCA Ind. Eng. Chem. Res. 2005, 44, 5691-5702
    • (2005) Ind. Eng. Chem. Res. , vol.44 , pp. 5691-5702
    • Wang, X.1    Kruger, U.2    Irwin, G.3
  • 45
    • 0004236492 scopus 로고    scopus 로고
    • 3 rd ed. The Johns Hopkins University Press: Baltimore, MD
    • Golub, G.; Van Loan, C. F. Matrix Computations, 3 rd ed.; The Johns Hopkins University Press: Baltimore, MD, 1996.
    • (1996) Matrix Computations
    • Golub, G.1    Van Loan, C.F.2
  • 46
    • 0028576704 scopus 로고
    • Determination of the Number of Principal Components for Disturbance Detection and Isolation
    • IEEE Press: Piscataway, NJ, Vol
    • Himes, D.; Storer, R.; Georgakis, C. Determination of the Number of Principal Components for Disturbance Detection and Isolation. In Proceedings of the American Control Conference; IEEE Press: Piscataway, NJ, 1994; Vol. 3, pp 1279-1283.
    • (1994) Proceedings of the American Control Conference , vol.3 , pp. 1279-1283
    • Himes, D.1    Storer, R.2    Georgakis, C.3
  • 47
    • 0033230994 scopus 로고    scopus 로고
    • Selection of the Number of Principal Components: The Variance of the Reconstruction Error Criterion with a Comparison to other Methods
    • Valle, S.; Li, W.; Qin, S. Selection of the Number of Principal Components: The Variance of the Reconstruction Error Criterion with a Comparison to other Methods Ind. Eng. Chem. Res. 1999, 38, 4389-4401
    • (1999) Ind. Eng. Chem. Res. , vol.38 , pp. 4389-4401
    • Valle, S.1    Li, W.2    Qin, S.3
  • 48
    • 0029252734 scopus 로고
    • Multivariate SPC Charts for Monitoring Batch Process
    • Nomikos, P.; MacGregor, J. F. Multivariate SPC Charts for Monitoring Batch Process Technometrics 1995, 37, 41-59
    • (1995) Technometrics , vol.37 , pp. 41-59
    • Nomikos, P.1    MacGregor, J.F.2
  • 49
    • 0033198809 scopus 로고    scopus 로고
    • Detection, Identification, and Reconstruction of Faulty Sensors with Maximized Sensitivity
    • Qin, S. J.; Li, W. Detection, Identification, and Reconstruction of Faulty Sensors with Maximized Sensitivity AIChE J. 1999, 45, 1963-1976
    • (1999) AIChE J. , vol.45 , pp. 1963-1976
    • Qin, S.J.1    Li, W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.