-
1
-
-
77951611220
-
Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss
-
Thorel F., et al. Conversion of adult pancreatic alpha-cells to beta-cells after extreme beta-cell loss. Nature 2010, 464:1149-1154.
-
(2010)
Nature
, vol.464
, pp. 1149-1154
-
-
Thorel, F.1
-
2
-
-
77958099053
-
Pancreatic beta cell neogenesis by direct conversion from mature alpha cells
-
Chung C.H., et al. Pancreatic beta cell neogenesis by direct conversion from mature alpha cells. Stem Cells 2010, 28:1630-1638.
-
(2010)
Stem Cells
, vol.28
, pp. 1630-1638
-
-
Chung, C.H.1
-
3
-
-
68149162957
-
The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells
-
Collombat P., et al. The ectopic expression of Pax4 in the mouse pancreas converts progenitor cells into alpha and subsequently beta cells. Cell 2009, 138:449-462.
-
(2009)
Cell
, vol.138
, pp. 449-462
-
-
Collombat, P.1
-
4
-
-
84860410786
-
Context-specific alpha- to-beta-cell reprogramming by forced Pdx1 expression
-
Yang Y.P., et al. Context-specific alpha- to-beta-cell reprogramming by forced Pdx1 expression. Genes Dev. 2011, 25:1680-1685.
-
(2011)
Genes Dev.
, vol.25
, pp. 1680-1685
-
-
Yang, Y.P.1
-
5
-
-
0034129091
-
Regulation of pancreatic PC1 and PC2 associated with increased glucagon-like peptide 1 in diabetic rats
-
Nie Y., et al. Regulation of pancreatic PC1 and PC2 associated with increased glucagon-like peptide 1 in diabetic rats. J. Clin. Invest. 2000, 105:955-965.
-
(2000)
J. Clin. Invest.
, vol.105
, pp. 955-965
-
-
Nie, Y.1
-
6
-
-
33645868980
-
Ontogeny of regeneration of beta cells in the neonatal rat after treatment with streptozotocin
-
Thyssen S., et al. Ontogeny of regeneration of beta cells in the neonatal rat after treatment with streptozotocin. Endocrinology 2006, 147:2346-2356.
-
(2006)
Endocrinology
, vol.147
, pp. 2346-2356
-
-
Thyssen, S.1
-
7
-
-
80052523733
-
Upregulation of alpha cell glucagon-like peptide 1 (GLP-1) in Psammomys obesus - an adaptive response to hyperglycaemia?
-
Hansen A.M., et al. Upregulation of alpha cell glucagon-like peptide 1 (GLP-1) in Psammomys obesus - an adaptive response to hyperglycaemia?. Diabetologia 2011, 54:1379-1387.
-
(2011)
Diabetologia
, vol.54
, pp. 1379-1387
-
-
Hansen, A.M.1
-
8
-
-
79960907300
-
Stromal cell-derived factor-1 (SDF-1)/chemokine (C-X-C motif) receptor 4 (CXCR4) axis activation induces intra-islet glucagon-like peptide-1 (GLP-1) production and enhances beta cell survival
-
Liu Z., et al. Stromal cell-derived factor-1 (SDF-1)/chemokine (C-X-C motif) receptor 4 (CXCR4) axis activation induces intra-islet glucagon-like peptide-1 (GLP-1) production and enhances beta cell survival. Diabetologia 2011, 54:2067-2076.
-
(2011)
Diabetologia
, vol.54
, pp. 2067-2076
-
-
Liu, Z.1
-
9
-
-
33748603481
-
Improving function and survival of pancreatic islets by endogenous production of glucagon-like peptide 1
-
Wideman R.D., et al. Improving function and survival of pancreatic islets by endogenous production of glucagon-like peptide 1. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:13468-13473.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 13468-13473
-
-
Wideman, R.D.1
-
10
-
-
77953438340
-
Intraislet production of GLP-1 by activation of prohormone convertase 1/3 in pancreatic alpha-cells in mouse models of β-cell regeneration
-
Kilimnik G., et al. Intraislet production of GLP-1 by activation of prohormone convertase 1/3 in pancreatic alpha-cells in mouse models of β-cell regeneration. Islets 2010, 2:149-155.
-
(2010)
Islets
, vol.2
, pp. 149-155
-
-
Kilimnik, G.1
-
11
-
-
80555157690
-
Processing of proglucagon to GLP-1 in pancreatic alpha-cells: is this a paracrine mechanism enabling GLP-1 to act on beta cells?
-
Whalley N.M., et al. Processing of proglucagon to GLP-1 in pancreatic alpha-cells: is this a paracrine mechanism enabling GLP-1 to act on beta cells?. J. Endocrinol. 2011, 211:99-106.
-
(2011)
J. Endocrinol.
, vol.211
, pp. 99-106
-
-
Whalley, N.M.1
-
12
-
-
84860600992
-
Regeneration of pancreatic non-beta endocrine cells in adult mice following a single diabetes-inducing dose of streptozotocin
-
Zhang Y., et al. Regeneration of pancreatic non-beta endocrine cells in adult mice following a single diabetes-inducing dose of streptozotocin. PLoS ONE 2012, 7:e36675.
-
(2012)
PLoS ONE
, vol.7
-
-
Zhang, Y.1
-
13
-
-
77955559432
-
Evidence of increased islet cell proliferation in patients with recent-onset type 1 diabetes
-
Willcox A., et al. Evidence of increased islet cell proliferation in patients with recent-onset type 1 diabetes. Diabetologia 2010, 53:2020-2028.
-
(2010)
Diabetologia
, vol.53
, pp. 2020-2028
-
-
Willcox, A.1
-
14
-
-
33846856711
-
Alpha cells of the endocrine pancreas: 35 years of research but the enigma remains
-
Gromada J., et al. Alpha cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocrinol. Rev. 2007, 28:84-116.
-
(2007)
Endocrinol. Rev.
, vol.28
, pp. 84-116
-
-
Gromada, J.1
-
15
-
-
0032532014
-
Genetic engineering in mice: impact on insulin signalling and action
-
Lamothe B., et al. Genetic engineering in mice: impact on insulin signalling and action. Biochem. J. 1998, 335:193-204.
-
(1998)
Biochem. J.
, vol.335
, pp. 193-204
-
-
Lamothe, B.1
-
16
-
-
77954980506
-
Glucagon deficiency reduces hepatic glucose production and improves glucose tolerance in adult mice
-
Hancock A.S., et al. Glucagon deficiency reduces hepatic glucose production and improves glucose tolerance in adult mice. Mol. Endocrinol. 2010, 24:1605-1614.
-
(2010)
Mol. Endocrinol.
, vol.24
, pp. 1605-1614
-
-
Hancock, A.S.1
-
17
-
-
34250854205
-
The role of alpha-cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications
-
Dunning B.E., Gerich J.E. The role of alpha-cell dysregulation in fasting and postprandial hyperglycemia in type 2 diabetes and therapeutic implications. Endocr. Rev. 2007, 28:253-283.
-
(2007)
Endocr. Rev.
, vol.28
, pp. 253-283
-
-
Dunning, B.E.1
Gerich, J.E.2
-
18
-
-
84855459920
-
Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover
-
Unger R.H., Cherrington A.D. Glucagonocentric restructuring of diabetes: a pathophysiologic and therapeutic makeover. J. Clin. Invest. 2012, 122:4-12.
-
(2012)
J. Clin. Invest.
, vol.122
, pp. 4-12
-
-
Unger, R.H.1
Cherrington, A.D.2
-
19
-
-
0036066639
-
Glucagon replacement via micro-osmotic pump corrects hypoglycemia and alpha-cell hyperplasia in prohormone convertase 2 knockout mice
-
Webb G.C., et al. Glucagon replacement via micro-osmotic pump corrects hypoglycemia and alpha-cell hyperplasia in prohormone convertase 2 knockout mice. Diabetes 2002, 51:398-405.
-
(2002)
Diabetes
, vol.51
, pp. 398-405
-
-
Webb, G.C.1
-
20
-
-
0037417984
-
Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice
-
Gelling R.W., et al. Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice. Proc. Natl. Acad. Sci. U.S.A. 2003, 100:1438-1443.
-
(2003)
Proc. Natl. Acad. Sci. U.S.A.
, vol.100
, pp. 1438-1443
-
-
Gelling, R.W.1
-
21
-
-
85047693695
-
Hepatic and glucagon-like peptide-1-mediated reversal of diabetes by glucagon receptor antisense oligonucleotide inhibitors
-
Sloop K.W., et al. Hepatic and glucagon-like peptide-1-mediated reversal of diabetes by glucagon receptor antisense oligonucleotide inhibitors. J. Clin. Invest. 2004, 113:1571-1581.
-
(2004)
J. Clin. Invest.
, vol.113
, pp. 1571-1581
-
-
Sloop, K.W.1
-
22
-
-
27644581888
-
Increased glucose tolerance and reduced adiposity in the absence of fasting hypoglycemia in mice with liver-specific Gs alpha deficiency
-
Chen M., et al. Increased glucose tolerance and reduced adiposity in the absence of fasting hypoglycemia in mice with liver-specific Gs alpha deficiency. J. Clin. Invest. 2005, 115:3217-3227.
-
(2005)
J. Clin. Invest.
, vol.115
, pp. 3217-3227
-
-
Chen, M.1
-
23
-
-
33845919110
-
Glucagon receptor knockout mice are resistant to diet-induced obesity and streptozotocin-mediated beta cell loss and hyperglycaemia
-
Conarello S.L., et al. Glucagon receptor knockout mice are resistant to diet-induced obesity and streptozotocin-mediated beta cell loss and hyperglycaemia. Diabetologia 2007, 50:142-151.
-
(2007)
Diabetologia
, vol.50
, pp. 142-151
-
-
Conarello, S.L.1
-
24
-
-
33845522289
-
Glucagon receptor knockout mice display increased insulin sensitivity and impaired beta-cell function
-
Sørensen H., et al. Glucagon receptor knockout mice display increased insulin sensitivity and impaired beta-cell function. Diabetes 2006, 55:3463-3469.
-
(2006)
Diabetes
, vol.55
, pp. 3463-3469
-
-
Sørensen, H.1
-
25
-
-
73349089955
-
Long-term inhibition of the glucagon receptor with a monoclonal antibody in mice causes sustained improvement in glycemic control, with reversible alpha-cell hyperplasia and hyperglucagonemia
-
Gu W., et al. Long-term inhibition of the glucagon receptor with a monoclonal antibody in mice causes sustained improvement in glycemic control, with reversible alpha-cell hyperplasia and hyperglucagonemia. J. Pharmacol. Exp. Ther. 2009, 331:871-881.
-
(2009)
J. Pharmacol. Exp. Ther.
, vol.331
, pp. 871-881
-
-
Gu, W.1
-
26
-
-
79551600048
-
Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice
-
Lee Y., et al. Glucagon receptor knockout prevents insulin-deficient type 1 diabetes in mice. Diabetes 2011, 60:391-397.
-
(2011)
Diabetes
, vol.60
, pp. 391-397
-
-
Lee, Y.1
-
27
-
-
79955518020
-
Dual elimination of the glucagon and GLP-1 receptors in mice reveals plasticity in the incretin axis
-
Ali S., et al. Dual elimination of the glucagon and GLP-1 receptors in mice reveals plasticity in the incretin axis. J. Clin. Invest. 2011, 121:1917-1929.
-
(2011)
J. Clin. Invest.
, vol.121
, pp. 1917-1929
-
-
Ali, S.1
-
28
-
-
34249930188
-
Glucagon receptor antagonism improves islet function in mice with insulin resistance induced by a high-fat diet
-
Winzell M.S., et al. Glucagon receptor antagonism improves islet function in mice with insulin resistance induced by a high-fat diet. Diabetologia 2007, 50:1453-1462.
-
(2007)
Diabetologia
, vol.50
, pp. 1453-1462
-
-
Winzell, M.S.1
-
29
-
-
73249117478
-
Mice deficient for glucagon gene-derived peptides display normoglycemia and hyperplasia of islet α-cells but not of intestinal L-cells
-
Hayashi Y., et al. Mice deficient for glucagon gene-derived peptides display normoglycemia and hyperplasia of islet α-cells but not of intestinal L-cells. Mol. Endocrinol. 2009, 23:1990-1999.
-
(2009)
Mol. Endocrinol.
, vol.23
, pp. 1990-1999
-
-
Hayashi, Y.1
-
30
-
-
0028112003
-
Immunoneutralization of endogenous glucagon with monoclonal glucagon antibody normalizes hyperglycaemia in moderately streptozotocin-diabetic rats
-
Brand C.L., et al. Immunoneutralization of endogenous glucagon with monoclonal glucagon antibody normalizes hyperglycaemia in moderately streptozotocin-diabetic rats. Diabetologia 1994, 37:985-993.
-
(1994)
Diabetologia
, vol.37
, pp. 985-993
-
-
Brand, C.L.1
-
31
-
-
0036296165
-
Glycemic control in mice with targeted disruption of the glucagon receptor gene
-
Parker J.C., et al. Glycemic control in mice with targeted disruption of the glucagon receptor gene. Biochem. Biophys. Res. Commun. 2002, 290:839-843.
-
(2002)
Biochem. Biophys. Res. Commun.
, vol.290
, pp. 839-843
-
-
Parker, J.C.1
-
32
-
-
0842288445
-
Reduction in glucagon receptor expression by an antisense oligonucleotide ameliorates diabetic syndrome in db/db mice
-
Liang Y., et al. Reduction in glucagon receptor expression by an antisense oligonucleotide ameliorates diabetic syndrome in db/db mice. Diabetes 2004, 53:410-417.
-
(2004)
Diabetes
, vol.53
, pp. 410-417
-
-
Liang, Y.1
-
33
-
-
33144467088
-
The unique cytoarchitecture of human pancreatic islets has implications for islet cell function
-
Cabrera O., et al. The unique cytoarchitecture of human pancreatic islets has implications for islet cell function. Proc. Natl. Acad. Sci. U.S.A. 2006, 103:2334-2339.
-
(2006)
Proc. Natl. Acad. Sci. U.S.A.
, vol.103
, pp. 2334-2339
-
-
Cabrera, O.1
-
34
-
-
77953388365
-
Pancreatic islet plasticity: interspecies comparison of islet architecture and composition
-
Steiner D.J., et al. Pancreatic islet plasticity: interspecies comparison of islet architecture and composition. Islets 2010, 2:135-145.
-
(2010)
Islets
, vol.2
, pp. 135-145
-
-
Steiner, D.J.1
-
35
-
-
77951853210
-
Unique arrangement of alpha- and beta-cells in human islets of Langerhans
-
Bosco D., et al. Unique arrangement of alpha- and beta-cells in human islets of Langerhans. Diabetes 2010, 59:1202-1210.
-
(2010)
Diabetes
, vol.59
, pp. 1202-1210
-
-
Bosco, D.1
-
36
-
-
77958014883
-
Paracrinology of islets and the paracrinopathy of diabetes
-
Unger R.H., Orci L. Paracrinology of islets and the paracrinopathy of diabetes. Proc. Natl. Acad. Sci. U.S.A. 2010, 107:16009-16012.
-
(2010)
Proc. Natl. Acad. Sci. U.S.A.
, vol.107
, pp. 16009-16012
-
-
Unger, R.H.1
Orci, L.2
-
37
-
-
63449087896
-
Insulin signaling in alpha cells modulates glucagon secretion in vivo
-
Kawamori D., et al. Insulin signaling in alpha cells modulates glucagon secretion in vivo. Cell Metab. 2009, 9:350-361.
-
(2009)
Cell Metab.
, vol.9
, pp. 350-361
-
-
Kawamori, D.1
-
38
-
-
69049091043
-
Pancreatic beta-cell overexpression of the glucagon receptor gene results in enhanced beta-cell function and mass
-
Gelling R.W., et al. Pancreatic beta-cell overexpression of the glucagon receptor gene results in enhanced beta-cell function and mass. Am. J. Physiol. Endocrinol. Metab. 2009, 297:E695-E707.
-
(2009)
Am. J. Physiol. Endocrinol. Metab.
, vol.297
-
-
Gelling, R.W.1
-
39
-
-
78751502673
-
Production of functional glucagon-secreting alpha-cells from human embryonic stem cells
-
Rezania A., et al. Production of functional glucagon-secreting alpha-cells from human embryonic stem cells. Diabetes 2011, 60:239-247.
-
(2011)
Diabetes
, vol.60
, pp. 239-247
-
-
Rezania, A.1
-
40
-
-
84864390303
-
Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice
-
Rezania A., et al. Maturation of human embryonic stem cell-derived pancreatic progenitors into functional islets capable of treating pre-existing diabetes in mice. Diabetes 2012, 61:2016-2029.
-
(2012)
Diabetes
, vol.61
, pp. 2016-2029
-
-
Rezania, A.1
-
41
-
-
79959682305
-
Streptozotocin-induced expression of Ngn3 and Pax4 in neonatal rat pancreatic alpha cells
-
Liang X.D., et al. Streptozotocin-induced expression of Ngn3 and Pax4 in neonatal rat pancreatic alpha cells. World J. Gastroenterol. 2011, 17:2812-2820.
-
(2011)
World J. Gastroenterol.
, vol.17
, pp. 2812-2820
-
-
Liang, X.D.1
-
42
-
-
84863116820
-
Transient overexpression of cyclin D2/CDK4/GLP1 genes induces proliferation and differentiation of adult pancreatic progenitors and mediates islet regeneration
-
Chen S., et al. Transient overexpression of cyclin D2/CDK4/GLP1 genes induces proliferation and differentiation of adult pancreatic progenitors and mediates islet regeneration. Cell Cycle 2012, 11:695-705.
-
(2012)
Cell Cycle
, vol.11
, pp. 695-705
-
-
Chen, S.1
-
43
-
-
79951644393
-
Facultative stem cells in liver and pancreas: fact and fancy
-
Yanger K., Stanger B.Z. Facultative stem cells in liver and pancreas: fact and fancy. Dev. Dyn. 2011, 240:521-529.
-
(2011)
Dev. Dyn.
, vol.240
, pp. 521-529
-
-
Yanger, K.1
Stanger, B.Z.2
-
44
-
-
2342510386
-
Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation
-
Dor Y., et al. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 2004, 429:41-46.
-
(2004)
Nature
, vol.429
, pp. 41-46
-
-
Dor, Y.1
-
45
-
-
34848887156
-
Recovery from diabetes in mice by beta cell regeneration
-
Nir T., et al. Recovery from diabetes in mice by beta cell regeneration. J. Clin. Invest. 2007, 117:2553-2561.
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 2553-2561
-
-
Nir, T.1
-
46
-
-
42449086826
-
Regulated beta-cell regeneration in the adult mouse pancreas
-
Cano D.A., et al. Regulated beta-cell regeneration in the adult mouse pancreas. Diabetes 2008, 57:958-966.
-
(2008)
Diabetes
, vol.57
, pp. 958-966
-
-
Cano, D.A.1
-
47
-
-
34247644369
-
Growth and regeneration of adult beta cells does not involve specialized progenitors
-
Teta M., et al. Growth and regeneration of adult beta cells does not involve specialized progenitors. Dev. Cell 2007, 12:817-826.
-
(2007)
Dev. Cell
, vol.12
, pp. 817-826
-
-
Teta, M.1
-
48
-
-
38749108893
-
Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas
-
Xu X., et al. Beta cells can be generated from endogenous progenitors in injured adult mouse pancreas. Cell 2008, 132:197-207.
-
(2008)
Cell
, vol.132
, pp. 197-207
-
-
Xu, X.1
-
49
-
-
58149378342
-
Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth
-
Inada A., et al. Carbonic anhydrase II-positive pancreatic cells are progenitors for both endocrine and exocrine pancreas after birth. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:19915-19919.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 19915-19919
-
-
Inada, A.1
-
50
-
-
68149156892
-
Epithelial-mesenchymal transition in cells expanded in vitro from lineage-traced adult human pancreatic beta cells
-
Russ H.A., et al. Epithelial-mesenchymal transition in cells expanded in vitro from lineage-traced adult human pancreatic beta cells. PLoS ONE 2009, 4:e6417.
-
(2009)
PLoS ONE
, vol.4
-
-
Russ, H.A.1
-
51
-
-
80053608936
-
Insulin-producing cells generated from dedifferentiated human pancreatic beta cells expanded in vitro
-
Russ H.A., et al. Insulin-producing cells generated from dedifferentiated human pancreatic beta cells expanded in vitro. PLoS ONE 2011, 6:e25566.
-
(2011)
PLoS ONE
, vol.6
-
-
Russ, H.A.1
-
52
-
-
79551576112
-
Historical perspective: beginnings of the beta-cell: current perspectives in beta-cell development
-
Seymour P.A., Sander M. Historical perspective: beginnings of the beta-cell: current perspectives in beta-cell development. Diabetes 2011, 60:364-376.
-
(2011)
Diabetes
, vol.60
, pp. 364-376
-
-
Seymour, P.A.1
Sander, M.2
-
53
-
-
0028149890
-
Insulin-promoter-factor 1 is required for pancreas development in mice
-
Jonsson J., et al. Insulin-promoter-factor 1 is required for pancreas development in mice. Nature 1994, 371:606-609.
-
(1994)
Nature
, vol.371
, pp. 606-609
-
-
Jonsson, J.1
-
54
-
-
0031031571
-
Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence
-
Stoffers D.A., et al. Pancreatic agenesis attributable to a single nucleotide deletion in the human IPF1 gene coding sequence. Nat. Genet. 1997, 15:106-110.
-
(1997)
Nat. Genet.
, vol.15
, pp. 106-110
-
-
Stoffers, D.A.1
-
55
-
-
0034652287
-
Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas
-
Gradwohl G., et al. Neurogenin3 is required for the development of the four endocrine cell lineages of the pancreas. Proc. Natl. Acad. Sci. U.S.A. 2000, 97:1607-1611.
-
(2000)
Proc. Natl. Acad. Sci. U.S.A.
, vol.97
, pp. 1607-1611
-
-
Gradwohl, G.1
-
56
-
-
0033606972
-
Notch signalling controls pancreatic cell differentiation
-
Apelqvist A., et al. Notch signalling controls pancreatic cell differentiation. Nature 1999, 400:877-881.
-
(1999)
Nature
, vol.400
, pp. 877-881
-
-
Apelqvist, A.1
-
57
-
-
78049258729
-
Pancreatic beta-cells: from generation to regeneration
-
Collombat P., et al. Pancreatic beta-cells: from generation to regeneration. Semin. Cell Dev. Biol. 2010, 21:838-844.
-
(2010)
Semin. Cell Dev. Biol.
, vol.21
, pp. 838-844
-
-
Collombat, P.1
-
58
-
-
79961191389
-
In vivo conversion of adult alpha cells into beta-like cells: a new research avenue in the context of type 1 diabetes. 20
-
Courtney M., et al. In vivo conversion of adult alpha cells into beta-like cells: a new research avenue in the context of type 1 diabetes. 20. Diabetes Obes. Metab. 2011, 13(Suppl. 1):47-52.
-
(2011)
Diabetes Obes. Metab.
, vol.13
, Issue.SUPPL. 1
, pp. 47-52
-
-
Courtney, M.1
-
59
-
-
0030897629
-
The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas
-
Sosa-Pineda B., et al. The Pax4 gene is essential for differentiation of insulin-producing beta cells in the mammalian pancreas. Nature 1997, 386:399-402.
-
(1997)
Nature
, vol.386
, pp. 399-402
-
-
Sosa-Pineda, B.1
-
60
-
-
34147092649
-
Embryonic endocrine pancreas and mature beta cells acquire alpha and PP cell phenotypes upon Arx misexpression
-
Collombat P., et al. Embryonic endocrine pancreas and mature beta cells acquire alpha and PP cell phenotypes upon Arx misexpression. J. Clin. Invest. 2007, 117:961-970.
-
(2007)
J. Clin. Invest.
, vol.117
, pp. 961-970
-
-
Collombat, P.1
-
61
-
-
79954563768
-
Pancreatic beta cell identity is maintained by DNA methylation-mediated repression of Arx
-
Dhawan S., et al. Pancreatic beta cell identity is maintained by DNA methylation-mediated repression of Arx. Dev. Cell 2011, 20:419-429.
-
(2011)
Dev. Cell
, vol.20
, pp. 419-429
-
-
Dhawan, S.1
-
62
-
-
23144432613
-
The simultaneous loss of Arx and Pax4 genes promotes a somatostatin-producing cell fate specification at the expense of the alpha- and beta-cell lineages in the mouse endocrine pancreas
-
Collombat P., et al. The simultaneous loss of Arx and Pax4 genes promotes a somatostatin-producing cell fate specification at the expense of the alpha- and beta-cell lineages in the mouse endocrine pancreas. Development 2005, 132:2969-2980.
-
(2005)
Development
, vol.132
, pp. 2969-2980
-
-
Collombat, P.1
-
63
-
-
11444264153
-
A perspective on pancreatic stem/progenitor cells
-
Habener J.F. A perspective on pancreatic stem/progenitor cells. Pediatr. Diabetes 2004, 5(Suppl. 2):29-37.
-
(2004)
Pediatr. Diabetes
, vol.5
, Issue.SUPPL. 2
, pp. 29-37
-
-
Habener, J.F.1
-
64
-
-
0344845003
-
Epithelial-mesenchymal transitions in development and pathologies
-
Thiery J.P. Epithelial-mesenchymal transitions in development and pathologies. Curr. Opin. Cell Biol. 2003, 15:740-746.
-
(2003)
Curr. Opin. Cell Biol.
, vol.15
, pp. 740-746
-
-
Thiery, J.P.1
-
65
-
-
0035119871
-
Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes
-
Zulewski H., et al. Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 2001, 50:521-533.
-
(2001)
Diabetes
, vol.50
, pp. 521-533
-
-
Zulewski, H.1
-
66
-
-
11144315998
-
Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells
-
Gershengorn M.C., et al. Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science 2004, 306:2261-2264.
-
(2004)
Science
, vol.306
, pp. 2261-2264
-
-
Gershengorn, M.C.1
-
68
-
-
11144283080
-
Redifferentiation of insulin-secreting cells after in vitro expansion of adult human pancreatic islet tissue
-
Lechner A., et al. Redifferentiation of insulin-secreting cells after in vitro expansion of adult human pancreatic islet tissue. Biochem. Biophys. Res. Commun. 2005, 327:581-588.
-
(2005)
Biochem. Biophys. Res. Commun.
, vol.327
, pp. 581-588
-
-
Lechner, A.1
-
69
-
-
0036513626
-
The snail superfamily of zinc-finger transcription factors
-
Nieto M.A. The snail superfamily of zinc-finger transcription factors. Nat. Rev. Mol. Cell Biol. 2002, 3:155-166.
-
(2002)
Nat. Rev. Mol. Cell Biol.
, vol.3
, pp. 155-166
-
-
Nieto, M.A.1
-
70
-
-
33646815639
-
Transcription factor snail modulates hormone expression in established endocrine pancreatic cell lines
-
Rukstalis J.M., et al. Transcription factor snail modulates hormone expression in established endocrine pancreatic cell lines. Endocrinology 2006, 147:2997-3006.
-
(2006)
Endocrinology
, vol.147
, pp. 2997-3006
-
-
Rukstalis, J.M.1
-
71
-
-
33846619189
-
Snail2, a mediator of epithelial-mesenchymal transitions, expressed in progenitor cells of the developing endocrine pancreas
-
Rukstalis J.M., Habener J.F. Snail2, a mediator of epithelial-mesenchymal transitions, expressed in progenitor cells of the developing endocrine pancreas. Gene Expr. Patterns 2007, 7:471-479.
-
(2007)
Gene Expr. Patterns
, vol.7
, pp. 471-479
-
-
Rukstalis, J.M.1
Habener, J.F.2
-
72
-
-
84866389264
-
Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure
-
Talchai C., et al. Pancreatic β cell dedifferentiation as a mechanism of diabetic β cell failure. Cell 2012, 150:1223-1234.
-
(2012)
Cell
, vol.150
, pp. 1223-1234
-
-
Talchai, C.1
-
73
-
-
0034091111
-
Islet loss and alpha cell expansion in type 1 diabetes induced by multiple low-dose streptozotocin administration in mice
-
Li Z., et al. Islet loss and alpha cell expansion in type 1 diabetes induced by multiple low-dose streptozotocin administration in mice. J. Endocrinol. 2000, 165:93-99.
-
(2000)
J. Endocrinol.
, vol.165
, pp. 93-99
-
-
Li, Z.1
-
74
-
-
36849053415
-
Stromal cell derived factor-1 (SDF-1)/CXCL12 attenuates diabetes in mice and promotes pancreatic beta-cell survival by activation of the prosurvival kinase Akt
-
Yano T., et al. Stromal cell derived factor-1 (SDF-1)/CXCL12 attenuates diabetes in mice and promotes pancreatic beta-cell survival by activation of the prosurvival kinase Akt. Diabetes 2007, 56:2946-2957.
-
(2007)
Diabetes
, vol.56
, pp. 2946-2957
-
-
Yano, T.1
-
75
-
-
51349133256
-
Interleukin-6 regulates pancreatic alpha-cell mass expansion
-
Ellingsgaard H., et al. Interleukin-6 regulates pancreatic alpha-cell mass expansion. Proc. Natl. Acad. Sci. U.S.A. 2008, 105:13163-13168.
-
(2008)
Proc. Natl. Acad. Sci. U.S.A.
, vol.105
, pp. 13163-13168
-
-
Ellingsgaard, H.1
-
76
-
-
79551532051
-
Insulin and glucagon regulate pancreatic alpha-cell proliferation
-
Liu Z., et al. Insulin and glucagon regulate pancreatic alpha-cell proliferation. PLoS ONE 2011, 6:e16096.
-
(2011)
PLoS ONE
, vol.6
-
-
Liu, Z.1
-
77
-
-
81255157471
-
Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells
-
Ellingsgaard H., et al. Interleukin-6 enhances insulin secretion by increasing glucagon-like peptide-1 secretion from L cells and alpha cells. Nat. Med. 2011, 17:1481-1489.
-
(2011)
Nat. Med.
, vol.17
, pp. 1481-1489
-
-
Ellingsgaard, H.1
-
78
-
-
0030999982
-
Alpha-cell neogenesis in an animal model of IDDM
-
O'Reilly L.A., et al. Alpha-cell neogenesis in an animal model of IDDM. Diabetes 1997, 46:599-606.
-
(1997)
Diabetes
, vol.46
, pp. 599-606
-
-
O'Reilly, L.A.1
-
79
-
-
3042737844
-
Cure of overt diabetes in NOD mice by transient treatment with anti-lymphocyte serum and exendin-4
-
Ogawa N., et al. Cure of overt diabetes in NOD mice by transient treatment with anti-lymphocyte serum and exendin-4. Diabetes 2004, 53:1700-1705.
-
(2004)
Diabetes
, vol.53
, pp. 1700-1705
-
-
Ogawa, N.1
-
80
-
-
84863304470
-
Elevated glucagon-like plasma levels as a possible adaptive response in diabetic NOD mice
-
Rydgren T., et al. Elevated glucagon-like plasma levels as a possible adaptive response in diabetic NOD mice. Biochem. Biophys. Res. Comm. 2012, 423:583-587.
-
(2012)
Biochem. Biophys. Res. Comm.
, vol.423
, pp. 583-587
-
-
Rydgren, T.1
-
81
-
-
69549126592
-
Pancreatic islet amyloidosis, beta-cell apoptosis, and alpha-cell proliferation are determinants of islet remodeling in type-2 diabetic baboons
-
Guardado-Mendoza R., et al. Pancreatic islet amyloidosis, beta-cell apoptosis, and alpha-cell proliferation are determinants of islet remodeling in type-2 diabetic baboons. Proc. Natl. Acad. Sci. U.S.A. 2009, 106:13992-13997.
-
(2009)
Proc. Natl. Acad. Sci. U.S.A.
, vol.106
, pp. 13992-13997
-
-
Guardado-Mendoza, R.1
-
82
-
-
0017065890
-
Hypertrophy and hyperplasia of somatostatin-containing D-cells in diabetes
-
Orci L., et al. Hypertrophy and hyperplasia of somatostatin-containing D-cells in diabetes. Proc. Natl. Acad. Sci. U.S.A. 1976, 73:1338-1342.
-
(1976)
Proc. Natl. Acad. Sci. U.S.A.
, vol.73
, pp. 1338-1342
-
-
Orci, L.1
-
83
-
-
0030896870
-
Histopathologic study of the pancreas shows a characteristic lymphocytic infiltration in Japanese patients with IDDM
-
Waguri M., et al. Histopathologic study of the pancreas shows a characteristic lymphocytic infiltration in Japanese patients with IDDM. Endocr. J. 1997, 44:23-33.
-
(1997)
Endocr. J.
, vol.44
, pp. 23-33
-
-
Waguri, M.1
-
84
-
-
0038707331
-
Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea
-
Yoon K.H., et al. Selective beta-cell loss and alpha-cell expansion in patients with type 2 diabetes mellitus in Korea. J. Clin. Endocrinol. Metab. 2003, 88:2300-2308.
-
(2003)
J. Clin. Endocrinol. Metab.
, vol.88
, pp. 2300-2308
-
-
Yoon, K.H.1
-
85
-
-
0001210612
-
Quantitative estimation of the pancreatic islet tissue in diabetic subjects
-
MaClean N., Ogilvie R.F. Quantitative estimation of the pancreatic islet tissue in diabetic subjects. Diabetes 1955, 4:367-376.
-
(1955)
Diabetes
, vol.4
, pp. 367-376
-
-
MaClean, N.1
Ogilvie, R.F.2
-
86
-
-
0024213009
-
Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes
-
Clark A., et al. Islet amyloid, increased A-cells, reduced B-cells and exocrine fibrosis: quantitative changes in the pancreas in type 2 diabetes. Diabetes Res. 1988, 9:151-159.
-
(1988)
Diabetes Res.
, vol.9
, pp. 151-159
-
-
Clark, A.1
-
87
-
-
10744222060
-
Structural and functional abnormalities in the islets isolated from type 2 diabetic subjects
-
Deng S., et al. Structural and functional abnormalities in the islets isolated from type 2 diabetic subjects. Diabetes 2004, 53:624-632.
-
(2004)
Diabetes
, vol.53
, pp. 624-632
-
-
Deng, S.1
-
88
-
-
33846411850
-
Distribution of pancreatic endocrine cells including IAPP-expressing cells in non-diabetic and type 2 diabetic cases
-
Iki K., Pour P.M. Distribution of pancreatic endocrine cells including IAPP-expressing cells in non-diabetic and type 2 diabetic cases. J. Histochem. Cytochem. 2007, 55:111-118.
-
(2007)
J. Histochem. Cytochem.
, vol.55
, pp. 111-118
-
-
Iki, K.1
Pour, P.M.2
-
89
-
-
79959756257
-
Pancreatic alpha cell mass in European subjects with type 2 diabetes
-
Henquin J.C., Rahier J. Pancreatic alpha cell mass in European subjects with type 2 diabetes. Diabetologia 2011, 54:1720-1725.
-
(2011)
Diabetologia
, vol.54
, pp. 1720-1725
-
-
Henquin, J.C.1
Rahier, J.2
-
90
-
-
84868193842
-
A local glucagon-like peptide 1 (GLP-1) system in human pancreatic islets
-
Marchetti P., et al. A local glucagon-like peptide 1 (GLP-1) system in human pancreatic islets. Diabetologia 2012, 55:3262-3272.
-
(2012)
Diabetologia
, vol.55
, pp. 3262-3272
-
-
Marchetti, P.1
-
91
-
-
0025343831
-
Both amidated and nonamidated forms of glucagon-like peptide I are synthesized in the rat intestine and the pancreas
-
Mojsov S., et al. Both amidated and nonamidated forms of glucagon-like peptide I are synthesized in the rat intestine and the pancreas. J. Biol. Chem. 1990, 265:8001-8008.
-
(1990)
J. Biol. Chem.
, vol.265
, pp. 8001-8008
-
-
Mojsov, S.1
-
92
-
-
0029189516
-
Intra-islet regulation of hormone secretion by glucagon-like peptide-1-(7-36) amide
-
Heller R.S., Aponte G.W. Intra-islet regulation of hormone secretion by glucagon-like peptide-1-(7-36) amide. Am. J. Physiol. 1995, 269:G852-G860.
-
(1995)
Am. J. Physiol.
, vol.269
-
-
Heller, R.S.1
Aponte, G.W.2
-
93
-
-
17844404229
-
Basal receptor activation by locally produced glucagon-like peptide-1 contributes to maintaining beta-cell function
-
Masur K., et al. Basal receptor activation by locally produced glucagon-like peptide-1 contributes to maintaining beta-cell function. Mol. Endocrinol. 2005, 19:1373-1382.
-
(2005)
Mol. Endocrinol.
, vol.19
, pp. 1373-1382
-
-
Masur, K.1
-
94
-
-
84864401274
-
Alpha cell role in beta cell generation and regeneration
-
Habener J.F., Stanojevic V. Alpha cell role in beta cell generation and regeneration. Islets 2012, 4:188-198.
-
(2012)
Islets
, vol.4
, pp. 188-198
-
-
Habener, J.F.1
Stanojevic, V.2
-
95
-
-
33747615019
-
Ablation of the glucagon receptor gene increases fetal lethality and produces alterations in islet development and maturation
-
Vuguin P.M., et al. Ablation of the glucagon receptor gene increases fetal lethality and produces alterations in islet development and maturation. Endocrinology 2006, 147:3995-4006.
-
(2006)
Endocrinology
, vol.147
, pp. 3995-4006
-
-
Vuguin, P.M.1
-
96
-
-
80051494742
-
Pancreatic neuroendocrine tumors in glucagon receptor-deficient mice
-
Yu R., et al. Pancreatic neuroendocrine tumors in glucagon receptor-deficient mice. PLoS ONE 2011, 6:e23397.
-
(2011)
PLoS ONE
, vol.6
-
-
Yu, R.1
-
97
-
-
12644253798
-
Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2
-
Furuta M., et al. Defective prohormone processing and altered pancreatic islet morphology in mice lacking active SPC2. Proc. Natl. Acad. Sci. U.S.A. 1997, 94:6646-6651.
-
(1997)
Proc. Natl. Acad. Sci. U.S.A.
, vol.94
, pp. 6646-6651
-
-
Furuta, M.1
-
98
-
-
0035920170
-
Severe defect in proglucagon processing in islet A-cells of prohormone convertase 2 null mice
-
Furuta M., et al. Severe defect in proglucagon processing in islet A-cells of prohormone convertase 2 null mice. J. Biol. Chem. 2001, 276:27197-27202.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 27197-27202
-
-
Furuta, M.1
-
99
-
-
0042421737
-
Abrogation of protein convertase 2 activity results in delayed islet cell differentiation and maturation, increased alpha-cell proliferation, and islet neogenesis
-
Vincent M., et al. Abrogation of protein convertase 2 activity results in delayed islet cell differentiation and maturation, increased alpha-cell proliferation, and islet neogenesis. Endocrinology 2003, 144:4061-4069.
-
(2003)
Endocrinology
, vol.144
, pp. 4061-4069
-
-
Vincent, M.1
-
100
-
-
78751649529
-
PCSK2-null mice exhibit delayed intestinal motility, reduced refeeding response and altered plasma levels of several regulatory peptides
-
Gagnon J., et al. PCSK2-null mice exhibit delayed intestinal motility, reduced refeeding response and altered plasma levels of several regulatory peptides. Life Sci. 2011, 88:212-217.
-
(2011)
Life Sci.
, vol.88
, pp. 212-217
-
-
Gagnon, J.1
-
101
-
-
80052454734
-
Absence of the glucagon-like peptide-1 receptor does not affect the metabolic phenotype of mice with liver-specific G(s)alpha deficiency
-
Chen M., et al. Absence of the glucagon-like peptide-1 receptor does not affect the metabolic phenotype of mice with liver-specific G(s)alpha deficiency. Endocrinology 2011, 152:3343-3350.
-
(2011)
Endocrinology
, vol.152
, pp. 3343-3350
-
-
Chen, M.1
-
102
-
-
77957599543
-
Glucagon receptor antagonist-mediated improvements in glycemic control are dependent on functional pancreatic GLP-1 receptor
-
Gu W., et al. Glucagon receptor antagonist-mediated improvements in glycemic control are dependent on functional pancreatic GLP-1 receptor. Am. J. Physiol. Endocrinol. Metab. 2010, 299:E624-E632.
-
(2010)
Am. J. Physiol. Endocrinol. Metab.
, vol.299
-
-
Gu, W.1
-
103
-
-
79959741674
-
A natural inactivating mutant of human glucagon receptor exhibits multiple abnormalities in processing and signaling
-
Yu R., et al. A natural inactivating mutant of human glucagon receptor exhibits multiple abnormalities in processing and signaling. Endocrinol. Nutr. 2011, 58:258-266.
-
(2011)
Endocrinol. Nutr.
, vol.58
, pp. 258-266
-
-
Yu, R.1
-
104
-
-
70350666371
-
Homozygous P86S mutation of the human glucagon receptor is associated with hyperglucagonemia, alpha cell hyperplasia, and islet cell tumor
-
Zhou C., et al. Homozygous P86S mutation of the human glucagon receptor is associated with hyperglucagonemia, alpha cell hyperplasia, and islet cell tumor. Pancreas 2009, 38:941-946.
-
(2009)
Pancreas
, vol.38
, pp. 941-946
-
-
Zhou, C.1
-
105
-
-
56749171368
-
Regulation of pancreatic beta cell mass by neuronal signals from the liver
-
Imai J., et al. Regulation of pancreatic beta cell mass by neuronal signals from the liver. Sci. 2008, 322:1250-1254.
-
(2008)
Sci.
, vol.322
, pp. 1250-1254
-
-
Imai, J.1
-
106
-
-
0033636523
-
Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction
-
Michael M.D., et al. Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Mol. Cell 2000, 6:87-97.
-
(2000)
Mol. Cell
, vol.6
, pp. 87-97
-
-
Michael, M.D.1
-
107
-
-
0029806310
-
Developmental expression of proprotein-processing endoprotease furin in rat pancreatic islets
-
Kayo T., et al. Developmental expression of proprotein-processing endoprotease furin in rat pancreatic islets. Endocrinology 1996, 137:5126-5134.
-
(1996)
Endocrinology
, vol.137
, pp. 5126-5134
-
-
Kayo, T.1
-
108
-
-
34249788970
-
Proprotein convertases 1 and 2 (PC1 and PC2) are expressed in neurally differentiated rat bone marrow stromal stem cells (BMSCs)
-
Marandi M., et al. Proprotein convertases 1 and 2 (PC1 and PC2) are expressed in neurally differentiated rat bone marrow stromal stem cells (BMSCs). Neurosci. Lett. 2007, 420:198-203.
-
(2007)
Neurosci. Lett.
, vol.420
, pp. 198-203
-
-
Marandi, M.1
-
109
-
-
38149046486
-
Prohormone convertases 1/3, 2, furin and protein 7B2 (Secretogranin V) in endocrine cells of the human pancreas
-
Portela-Gomes G.M., et al. Prohormone convertases 1/3, 2, furin and protein 7B2 (Secretogranin V) in endocrine cells of the human pancreas. Regul. Pept. 2008, 146:117-124.
-
(2008)
Regul. Pept.
, vol.146
, pp. 117-124
-
-
Portela-Gomes, G.M.1
-
110
-
-
84862746869
-
Regulation of mouse intestinal L cell progenitors proliferation by the glucagon family of peptides
-
Grigoryan M., et al. Regulation of mouse intestinal L cell progenitors proliferation by the glucagon family of peptides. Endocrinology 2012, 153:3076-3088.
-
(2012)
Endocrinology
, vol.153
, pp. 3076-3088
-
-
Grigoryan, M.1
-
111
-
-
79551582075
-
Glucagon as a critical factor in the pathology of diabetes
-
Edgerton D.S., Cherrington A.D. Glucagon as a critical factor in the pathology of diabetes. Diabetes 2011, 60:377-380.
-
(2011)
Diabetes
, vol.60
, pp. 377-380
-
-
Edgerton, D.S.1
Cherrington, A.D.2
-
112
-
-
75249100556
-
Insulin-like actions of glucagon-like peptide-1: a dual receptor hypothesis
-
Tomas E., Habener J.F. Insulin-like actions of glucagon-like peptide-1: a dual receptor hypothesis. Trends Endocrinol. Metab. 2010, 21:59-67.
-
(2010)
Trends Endocrinol. Metab.
, vol.21
, pp. 59-67
-
-
Tomas, E.1
Habener, J.F.2
-
113
-
-
0029111540
-
Characterisation of the processing by human neutral endopeptidase 24.11 of GLP-1(7-36) amide and comparison of the substrate specificity of the enzyme for other glucagon-like peptides
-
Hupe-Sodmann K., et al. Characterisation of the processing by human neutral endopeptidase 24.11 of GLP-1(7-36) amide and comparison of the substrate specificity of the enzyme for other glucagon-like peptides. Regul. Pept. 1995, 58:149-156.
-
(1995)
Regul. Pept.
, vol.58
, pp. 149-156
-
-
Hupe-Sodmann, K.1
-
114
-
-
79953173175
-
GLP-1-derived nonapeptide GLP-1(28-36)amide targets to mitochondria and suppresses glucose production and oxidative stress in isolated mouse hepatocytes
-
Tomas E., et al. GLP-1-derived nonapeptide GLP-1(28-36)amide targets to mitochondria and suppresses glucose production and oxidative stress in isolated mouse hepatocytes. Regul. Pept. 2011, 167:177-184.
-
(2011)
Regul. Pept.
, vol.167
, pp. 177-184
-
-
Tomas, E.1
-
115
-
-
84875261756
-
GLP-1-derived nonapeptide GLP-1(28-36)amide reduces hepatic glucose production and represses the expression of gluconeogenic genes
-
ADA abstract 1804-P
-
Ip W., et al. GLP-1-derived nonapeptide GLP-1(28-36)amide reduces hepatic glucose production and represses the expression of gluconeogenic genes. Diabetes 2012, 61(Suppl. 1):464. ADA abstract 1804-P.
-
(2012)
Diabetes
, vol.61
, Issue.SUPPL. 1
, pp. 464
-
-
Ip, W.1
-
116
-
-
84862058779
-
GLP1-derived nonapeptide GLP1(28-36)amide protects pancreatic beta-cells from glucolipotoxicity
-
Liu Z., et al. GLP1-derived nonapeptide GLP1(28-36)amide protects pancreatic beta-cells from glucolipotoxicity. J. Endocrinol. 2012, 213:143-154.
-
(2012)
J. Endocrinol.
, vol.213
, pp. 143-154
-
-
Liu, Z.1
-
117
-
-
84875252530
-
GLP-1-derived nonapeptide GLP-1(28-36)amide stimulates the growth and function of pancreatic beta cell line INS-1 via activating the PKA-CREB signaling pathway
-
ADA abstract 2922-PO
-
Shao W., et al. GLP-1-derived nonapeptide GLP-1(28-36)amide stimulates the growth and function of pancreatic beta cell line INS-1 via activating the PKA-CREB signaling pathway. Diabetes 2012, 61(Suppl. 1):772. ADA abstract 2922-PO.
-
(2012)
Diabetes
, vol.61
, Issue.SUPPL. 1
, pp. 772
-
-
Shao, W.1
-
118
-
-
79958011891
-
GLP-1-derived nonapeptide GLP-1(28-36)amide inhibits weight gain and attenuates diabetes and hepatic steatosis in diet-induced obese mice
-
Tomas E., et al. GLP-1-derived nonapeptide GLP-1(28-36)amide inhibits weight gain and attenuates diabetes and hepatic steatosis in diet-induced obese mice. Regul. Pept. 2011, 169:43-48.
-
(2011)
Regul. Pept.
, vol.169
, pp. 43-48
-
-
Tomas, E.1
-
119
-
-
84888864123
-
GLP-1-derived pentapeptide GLP-1(32-36)amide attenuates the development of obesity, diabetes, hepatic steatosis, and increases energy expenditure in diet-induced obese mice
-
ADA abstract 1915-P
-
Tomas E., et al. GLP-1-derived pentapeptide GLP-1(32-36)amide attenuates the development of obesity, diabetes, hepatic steatosis, and increases energy expenditure in diet-induced obese mice. Diabetes 2012, 61(Suppl. 1):4980. ADA abstract 1915-P.
-
(2012)
Diabetes
, vol.61
, Issue.SUPPL. 1
, pp. 4980
-
-
Tomas, E.1
-
120
-
-
80051583606
-
Neprilysin, obesity and the metabolic syndrome
-
Standeven K.F., et al. Neprilysin, obesity and the metabolic syndrome. Int. J. Obes. (Lond.) 2011, 35:1031-1040.
-
(2011)
Int. J. Obes. (Lond.)
, vol.35
, pp. 1031-1040
-
-
Standeven, K.F.1
-
121
-
-
34249741098
-
Glucagon-like peptide-1 gene therapy in obese diabetic mice results in long-term cure of diabetes by improving insulin sensitivity and reducing hepatic gluconeogenesis
-
Lee Y.S., et al. Glucagon-like peptide-1 gene therapy in obese diabetic mice results in long-term cure of diabetes by improving insulin sensitivity and reducing hepatic gluconeogenesis. Diabetes 2007, 56:1671-1679.
-
(2007)
Diabetes
, vol.56
, pp. 1671-1679
-
-
Lee, Y.S.1
-
122
-
-
77955028664
-
GLP-1 (9-36) amide metabolite suppression of glucose production in isolated mouse hepatocytes
-
Tomas E., et al. GLP-1 (9-36) amide metabolite suppression of glucose production in isolated mouse hepatocytes. Horm. Metab. Res. 2010, 42:657-662.
-
(2010)
Horm. Metab. Res.
, vol.42
, pp. 657-662
-
-
Tomas, E.1
-
123
-
-
0001693313
-
Aqueous extracts of pancreas. III. Some precipitation reactions of insulin
-
Kimble P.C., Murlin J.R. Aqueous extracts of pancreas. III. Some precipitation reactions of insulin. J. Biol. Chem. 1923, 58:337-346.
-
(1923)
J. Biol. Chem.
, vol.58
, pp. 337-346
-
-
Kimble, P.C.1
Murlin, J.R.2
-
125
-
-
67651173077
-
Incretin-based therapies for type 2 diabetes mellitus
-
Lovshin J.A., Drucker D.J. Incretin-based therapies for type 2 diabetes mellitus. Nat. Rev. Endocrinol. 2009, 5:262-269.
-
(2009)
Nat. Rev. Endocrinol.
, vol.5
, pp. 262-269
-
-
Lovshin, J.A.1
Drucker, D.J.2
-
126
-
-
2542479899
-
Minireview: glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system
-
Brubaker P.L., Drucker D.J. Minireview: glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology 2004, 145:2653-2659.
-
(2004)
Endocrinology
, vol.145
, pp. 2653-2659
-
-
Brubaker, P.L.1
Drucker, D.J.2
-
127
-
-
47149103321
-
GLP-1 receptor signaling: effects on pancreatic beta-cell proliferation and survival
-
Buteau J. GLP-1 receptor signaling: effects on pancreatic beta-cell proliferation and survival. Diabetes Metab. 2008, 34(Suppl. 2):S73-S77.
-
(2008)
Diabetes Metab.
, vol.34
, Issue.SUPPL. 2
-
-
Buteau, J.1
-
128
-
-
78649429475
-
Pleiotropic actions of the incretin hormones
-
McIntosh C.H., et al. Pleiotropic actions of the incretin hormones. Vitam. Horm. 2010, 84:21-79.
-
(2010)
Vitam. Horm.
, vol.84
, pp. 21-79
-
-
McIntosh, C.H.1
-
129
-
-
70350341465
-
Emerging cardiovascular actions of the incretin hormone glucagon-like peptide-1, potential therapeutic benefits beyond glycaemic control?
-
Grieve D.J., et al. Emerging cardiovascular actions of the incretin hormone glucagon-like peptide-1, potential therapeutic benefits beyond glycaemic control?. Br. J. Pharmacol. 2009, 157:1340-1351.
-
(2009)
Br. J. Pharmacol.
, vol.157
, pp. 1340-1351
-
-
Grieve, D.J.1
-
130
-
-
84860204551
-
Cardiovascular biology of the incretin system
-
Ussher J.R., Drucker D.J. Cardiovascular biology of the incretin system. Endocr. Rev. 2012, 33:187-215.
-
(2012)
Endocr. Rev.
, vol.33
, pp. 187-215
-
-
Ussher, J.R.1
Drucker, D.J.2
-
131
-
-
22144491473
-
Enhancing central nervous system endogenous GLP-1 receptor pathways for intervention in Alzheimer's disease
-
Perry T., Greig N.H. Enhancing central nervous system endogenous GLP-1 receptor pathways for intervention in Alzheimer's disease. Curr. Alzheimer Res. 2005, 2:377-385.
-
(2005)
Curr. Alzheimer Res.
, vol.2
, pp. 377-385
-
-
Perry, T.1
Greig, N.H.2
-
132
-
-
84862748768
-
Neuroprotective and neurotrophic actions of glucagon-like peptide-1: an emerging opportunity to treat neurodegenerative and cerebrovascular disorders
-
Salcedo I., et al. Neuroprotective and neurotrophic actions of glucagon-like peptide-1: an emerging opportunity to treat neurodegenerative and cerebrovascular disorders. Br. J. Pharmacol. 2012, 166:1586-1599.
-
(2012)
Br. J. Pharmacol.
, vol.166
, pp. 1586-1599
-
-
Salcedo, I.1
-
133
-
-
34547618796
-
Frontiers in glucagon-like peptide-2: multiple actions, multiple mediators
-
Dubé P.E., Brubaker P.L. Frontiers in glucagon-like peptide-2: multiple actions, multiple mediators. Am. J. Physiol. Endocrinol. Metab. 2007, 293:E460-E465.
-
(2007)
Am. J. Physiol. Endocrinol. Metab.
, vol.293
-
-
Dubé, P.E.1
Brubaker, P.L.2
-
135
-
-
0036323269
-
Insulinotropic hormone glucagon-like peptide-1 differentiation of human pancreatic islet-derived progenitor cells into insulin-producing cells
-
Abraham E.J., et al. Insulinotropic hormone glucagon-like peptide-1 differentiation of human pancreatic islet-derived progenitor cells into insulin-producing cells. Endocrinology 2002, 143:3152-3161.
-
(2002)
Endocrinology
, vol.143
, pp. 3152-3161
-
-
Abraham, E.J.1
-
136
-
-
84859529626
-
Glucagon-like peptide 1 recruits microvasculature and increases glucose use in muscle via a nitric oxide-dependent mechanism
-
Chai W., et al. Glucagon-like peptide 1 recruits microvasculature and increases glucose use in muscle via a nitric oxide-dependent mechanism. Diabetes 2012, 61:888-896.
-
(2012)
Diabetes
, vol.61
, pp. 888-896
-
-
Chai, W.1
-
137
-
-
79960129197
-
Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans
-
Rodriguez-Diaz R., et al. Alpha cells secrete acetylcholine as a non-neuronal paracrine signal priming beta cell function in humans. Nat. Med. 2011, 17:888-892.
-
(2011)
Nat. Med.
, vol.17
, pp. 888-892
-
-
Rodriguez-Diaz, R.1
-
138
-
-
46249133023
-
GLP-1 (9-36) amide, cleavage product of GLP-1 (7-36)amide, is a glucoregulatory peptide
-
Elahi D., et al. GLP-1 (9-36) amide, cleavage product of GLP-1 (7-36)amide, is a glucoregulatory peptide. Obesity 2008, 16:1501-1509.
-
(2008)
Obesity
, vol.16
, pp. 1501-1509
-
-
Elahi, D.1
|