-
1
-
-
0030724591
-
Pathogenesis of type 2 diabetes: Metabolic and molecular implications for identifying diabetes genes
-
DeFronzo, R.A. 1997. Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes genes. Diabetes Rev. 5:177-269.
-
(1997)
Diabetes Rev.
, vol.5
, pp. 177-269
-
-
DeFronzo, R.A.1
-
2
-
-
0023109225
-
Documentation of hyperglucagonemia throughout the day in nonobese and obese patients with noninsulin-dependent diabetes mellitus
-
Reaven, G.M., Chen, Y.D., Golay, A., Swislocki, A.L., and Jaspan, J.B. 1987. Documentation of hyperglucagonemia throughout the day in nonobese and obese patients with noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 64:106-110.
-
(1987)
J. Clin. Endocrinol. Metab.
, vol.64
, pp. 106-110
-
-
Reaven, G.M.1
Chen, Y.D.2
Golay, A.3
Swislocki, A.L.4
Jaspan, J.B.5
-
3
-
-
0842288445
-
Reduction in glucagon receptor expression by an antisense oligonucleotide ameliorates diabetic syndrome in db/db mice
-
Liang, Y., et al. 2004. Reduction in glucagon receptor expression by an antisense oligonucleotide ameliorates diabetic syndrome in db/db mice. Diabetes. 53:410-417.
-
(2004)
Diabetes
, vol.53
, pp. 410-417
-
-
Liang, Y.1
-
4
-
-
0036296165
-
Glycemic control in mice with targeted disruption of the glucagon receptor gene
-
Parker, J.C., Andrews, K.M., Allen, M.R., Stock, J.L., and McNeish, J.D. 2002. Glycemic control in mice with targeted disruption of the glucagon receptor gene. Biochem. Biophys. Res. Comm. 290:839-843.
-
(2002)
Biochem. Biophys. Res. Comm.
, vol.290
, pp. 839-843
-
-
Parker, J.C.1
Andrews, K.M.2
Allen, M.R.3
Stock, J.L.4
McNeish, J.D.5
-
5
-
-
0037417984
-
Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice
-
Gelling, R.W., et al. 2003. Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice. Proc. Natl. Acad. Sci. U. S. A. 100:1438-1443.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 1438-1443
-
-
Gelling, R.W.1
-
6
-
-
85047693695
-
Hepatic and glucagon-like peptide-1-mediated reversal of diabetes by glucagon receptor antisense oligonucleotide inhibitors
-
doi:10.1172/JCI200420911
-
Sloop, K.W., et al. 2004. Hepatic and glucagon-like peptide-1-mediated reversal of diabetes by glucagon receptor antisense oligonucleotide inhibitors. J. Clin. Invest. 113:1571-1581. doi:10.1172/JCI200420911.
-
(2004)
J. Clin. Invest.
, vol.113
, pp. 1571-1581
-
-
Sloop, K.W.1
-
7
-
-
0027531638
-
Expression cloning and signaling properties of the rat glucagon receptor
-
Jelinek, L.J., et al. 1993. Expression cloning and signaling properties of the rat glucagon receptor. Science. 259:1614-1616.
-
(1993)
Science
, vol.259
, pp. 1614-1616
-
-
Jelinek, L.J.1
-
8
-
-
0034793851
-
Endocrine manifestations of stimulatory G protein α-subunit mutations and the role of genomic imprinting
-
Weinstein, L.S., Yu, S., Warner, D.R., and Liu, J. 2001. Endocrine manifestations of stimulatory G protein α-subunit mutations and the role of genomic imprinting. Endocr. Rev. 22:675-705.
-
(2001)
Endocr. Rev.
, vol.22
, pp. 675-705
-
-
Weinstein, L.S.1
Yu, S.2
Warner, D.R.3
Liu, J.4
-
9
-
-
0030972807
-
Transcriptional regulation by cyclic AMP
-
Montminy, M. 1997. Transcriptional regulation by cyclic AMP. Annu. Rev. Biochem. 66:807-822.
-
(1997)
Annu. Rev. Biochem.
, vol.66
, pp. 807-822
-
-
Montminy, M.1
-
10
-
-
0023041534
-
Activation of two signal transduction systems in hepatocytes by glucagon
-
Wakelam, M.J.O., Murphy, G.J., Hruby, V.J., and Houslay, M.D. 1986. Activation of two signal transduction systems in hepatocytes by glucagon. Nature. 328:68-71.
-
(1986)
Nature
, vol.328
, pp. 68-71
-
-
Wakelam, M.J.O.1
Murphy, G.J.2
Hruby, V.J.3
Houslay, M.D.4
-
12
-
-
0035827516
-
sα knockout mice
-
sα knockout mice. J. Biol. Chem. 276:19994-19998.
-
(2001)
J. Biol. Chem.
, vol.276
, pp. 19994-19998
-
-
Yu, S.1
-
13
-
-
0034018370
-
Paternal versus maternal transmission of a stimulatory G protein α subunit knockout produces opposite effects on energy metabolism
-
Yu, S., et al. 2000. Paternal versus maternal transmission of a stimulatory G protein α subunit knockout produces opposite effects on energy metabolism. J. Clin. Invest. 105:615-623.
-
(2000)
J. Clin. Invest.
, vol.105
, pp. 615-623
-
-
Yu, S.1
-
14
-
-
4344618148
-
Increased insulin sensitivity in paternal Gnas knockout mice is associated with increased lipid clearance
-
Chen, M., et al. 2004. Increased insulin sensitivity in paternal Gnas knockout mice is associated with increased lipid clearance. Endocrinology. 145:4094-4102.
-
(2004)
Endocrinology
, vol.145
, pp. 4094-4102
-
-
Chen, M.1
-
15
-
-
9444254176
-
Minireview: GNAS: Normal and abnormal functions
-
Weinstein, L.S., Liu, J., Sakamoto, A., Xie, T., and Chen, M. 2004. Minireview: GNAS: normal and abnormal functions. Endocrinology. 145:5459-5464.
-
(2004)
Endocrinology
, vol.145
, pp. 5459-5464
-
-
Weinstein, L.S.1
Liu, J.2
Sakamoto, A.3
Xie, T.4
Chen, M.5
-
16
-
-
21044439497
-
Alternative Gnas gene products have opposite effects on glucose and lipid metabolism
-
Chen, M., et al. 2005. Alternative Gnas gene products have opposite effects on glucose and lipid metabolism. Proc. Natl. Acad. Sci. U. S. A. 102:7386-7391.
-
(2005)
Proc. Natl. Acad. Sci. U. S. A.
, vol.102
, pp. 7386-7391
-
-
Chen, M.1
-
17
-
-
0033594893
-
Normal growth and development in the absence of hepatic insulin-like growth factor I
-
Yakar, S., et al. 1999. Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc. Natl. Acad. Sci. U. S. A. 96:7324-7329.
-
(1999)
Proc. Natl. Acad. Sci. U. S. A.
, vol.96
, pp. 7324-7329
-
-
Yakar, S.1
-
18
-
-
0038339191
-
cAMP promotes pancreatic β-cell survival via CREB-mediated induction of IRS2
-
Jhala, U.S., et al. 2003. cAMP promotes pancreatic β-cell survival via CREB-mediated induction of IRS2. Genes Dev. 17:1575-1580.
-
(2003)
Genes Dev.
, vol.17
, pp. 1575-1580
-
-
Jhala, U.S.1
-
19
-
-
0037326196
-
Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): Transcriptional coactivator and metabolic regulator
-
Puigserver, P., and Spiegelman, B.M. 2003. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator. Endocr. Rev. 24:78-90.
-
(2003)
Endocr. Rev.
, vol.24
, pp. 78-90
-
-
Puigserver, P.1
Spiegelman, B.M.2
-
20
-
-
0035855905
-
CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
-
Hetzig, S., et al. 2001. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature. 413:179-183.
-
(2001)
Nature
, vol.413
, pp. 179-183
-
-
Hetzig, S.1
-
21
-
-
0242349197
-
Regulation of hepatic fasting response by PPARγ coactivator-1α (PGC-1): Requirement for hepatocyte nuclear factor 4aα in gluconeogenesis
-
Rhee, J., et al. 2003. Regulation of hepatic fasting response by PPARγ coactivator-1α (PGC-1): requirement for hepatocyte nuclear factor 4aα in gluconeogenesis. Proc. Natl. Acad. Sci. U. S. A. 100:4012-4017.
-
(2003)
Proc. Natl. Acad. Sci. U. S. A.
, vol.100
, pp. 4012-4017
-
-
Rhee, J.1
-
22
-
-
0038187621
-
Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction
-
Puigserver, P., et al. 2003. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction. Nature. 423:550-555.
-
(2003)
Nature
, vol.423
, pp. 550-555
-
-
Puigserver, P.1
-
23
-
-
0344010662
-
CREB controls hepatic lipid metabolism through nuclear hormone receptor PPAR-γ
-
Herzig, S., et al. 2003. CREB controls hepatic lipid metabolism through nuclear hormone receptor PPAR-γ. Nature. 426:190-193.
-
(2003)
Nature
, vol.426
, pp. 190-193
-
-
Herzig, S.1
-
24
-
-
2442701392
-
PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3
-
Koo, S.H., et al. 2004. PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3. Nat. Med. 10:530-534.
-
(2004)
Nat. Med.
, vol.10
, pp. 530-534
-
-
Koo, S.H.1
-
25
-
-
0033607176
-
Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes
-
Foretz, M., Guichard, C., Ferre, P., and Foufelle, F. 1999. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc. Natl. Acad. Sci. U. S. A. 96:12737-12742.
-
(1999)
Proc. Natl. Acad. Sci. U. S. A.
, vol.96
, pp. 12737-12742
-
-
Foretz, M.1
Guichard, C.2
Ferre, P.3
Foufelle, F.4
-
26
-
-
0031963963
-
Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1
-
Kim, J.B., et al. 1998. Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J. Clin. Invest. 101:1-9.
-
(1998)
J. Clin. Invest.
, vol.101
, pp. 1-9
-
-
Kim, J.B.1
-
27
-
-
0035146344
-
Renal gluconeogenesis: Its importance in human glucose homeostasis
-
Gerich, J.E., Meyer, C., Woerle, H.J., and Stumvoll, M. 2001. Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care. 24:382-391.
-
(2001)
Diabetes Care
, vol.24
, pp. 382-391
-
-
Gerich, J.E.1
Meyer, C.2
Woerle, H.J.3
Stumvoll, M.4
-
28
-
-
0030856736
-
Metabolic impact of adenovirus-mediated overexpression of the glucose-6-phosphatase catalytic subunit in hepatocytes
-
Seoane, J., et al. 1997. Metabolic impact of adenovirus-mediated overexpression of the glucose-6-phosphatase catalytic subunit in hepatocytes. J. Biol. Chem. 272:26972-26977.
-
(1997)
J. Biol. Chem.
, vol.272
, pp. 26972-26977
-
-
Seoane, J.1
-
29
-
-
0032553323
-
Perturbation of fuel homeostasis caused by overexpression of the glucose-6-phosphatase catalytic subunit in liver of normal rats
-
Trinh, K.Y., O'Doherty, R.M., Anderson, P., Lange, A.J., and Newgard, C.B. 1998. Perturbation of fuel homeostasis caused by overexpression of the glucose-6-phosphatase catalytic subunit in liver of normal rats J. Biol Chem. 273:1615-1620.
-
(1998)
J. Biol Chem.
, vol.273
, pp. 1615-1620
-
-
Trinh, K.Y.1
O'Doherty, R.M.2
Anderson, P.3
Lange, A.J.4
Newgard, C.B.5
-
30
-
-
11144357764
-
Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors
-
doi:10.1172/JCI200420518
-
Preitner, F., et al. 2004. Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. J. Clin. Invest. 113:635-645. doi:10.1172/JCI200420518.
-
(2004)
J. Clin. Invest.
, vol.113
, pp. 635-645
-
-
Preitner, F.1
-
31
-
-
0024445798
-
Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133
-
Gonzalez, G.A., and Montminy, M.R. 1989. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell. 59:675-680.
-
(1989)
Cell
, vol.59
, pp. 675-680
-
-
Gonzalez, G.A.1
Montminy, M.R.2
-
32
-
-
0035855858
-
Control of hepatic gluconeogenesis through the transcripcional coactivator PGC-1
-
Yoon, J.C., et al. 2001. Control of hepatic gluconeogenesis through the transcripcional coactivator PGC-1. Nature. 413:131-138.
-
(2001)
Nature
, vol.413
, pp. 131-138
-
-
Yoon, J.C.1
-
33
-
-
0036787607
-
Regulation of insulin action and pancreatic β-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1
-
Nakae, J., et al. 2002. Regulation of insulin action and pancreatic β-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nat. Genet. 32:245-253.
-
(2002)
Nat. Genet.
, vol.32
, pp. 245-253
-
-
Nakae, J.1
-
34
-
-
0037189517
-
Phosphoenolpyruvate carboxykinase overexpression selectively attenuates insulin signaling and hepatic insulin sensitivity in transgenic mice
-
Sun, Y., et al. 2002. Phosphoenolpyruvate carboxykinase overexpression selectively attenuates insulin signaling and hepatic insulin sensitivity in transgenic mice. J. Biol. Chem. 277:23301-23307.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 23301-23307
-
-
Sun, Y.1
-
35
-
-
0028567884
-
Transgenic mice overexpressing phosphoenol-pyruvate carboxykinase develop non-insulin-dependent diabetes mellitus
-
Valera, A., Pujol, A., Pelegrin, M., and Bosch, F. 1994. Transgenic mice overexpressing phosphoenol-pyruvate carboxykinase develop non-insulin-dependent diabetes mellitus. Proc. Natl. Acad. Sci. U. S. A. 91:9151-9154.
-
(1994)
Proc. Natl. Acad. Sci. U. S. A.
, vol.91
, pp. 9151-9154
-
-
Valera, A.1
Pujol, A.2
Pelegrin, M.3
Bosch, F.4
-
36
-
-
0038353781
-
Mechanisms by which liver-specific PEPCK knockout mice preserve euglycemia during starvation
-
She, P., et al. 2003. Mechanisms by which liver-specific PEPCK knockout mice preserve euglycemia during starvation. Diabetes. 52:1649-1654.
-
(2003)
Diabetes
, vol.52
, pp. 1649-1654
-
-
She, P.1
-
37
-
-
0033582929
-
Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor
-
Brunet, A., et al. 1999. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 96:857-868.
-
(1999)
Cell
, vol.96
, pp. 857-868
-
-
Brunet, A.1
-
38
-
-
11144354399
-
SREBP-1 interacts with hepatic nuclear factor-4α and interferes with PGC-1 recruitment Co suppress hepatic gluconeogenic genes
-
Yamamoto, T., et al. 2004. SREBP-1 interacts with hepatic nuclear factor-4α and interferes with PGC-1 recruitment Co suppress hepatic gluconeogenic genes J. Biol. Chem. 279:12027-12035.
-
(2004)
J. Biol. Chem.
, vol.279
, pp. 12027-12035
-
-
Yamamoto, T.1
-
39
-
-
0031803715
-
Human kidney and liver gluconeogenesis: Evidence for organ substrate selectivity
-
Stumvoll, M., et al. 1998. Human kidney and liver gluconeogenesis: evidence for organ substrate selectivity. Am. J. Physiol. 274:E817-E826.
-
(1998)
Am. J. Physiol.
, vol.274
-
-
Stumvoll, M.1
-
40
-
-
0037064057
-
The coactivator PGC-1 is involved in the regulation of the liver carnitine palmitoyltransferase I gene expression by cAMP in combination with HNF4α and cAMP-response element-binding protein (CREB)
-
Louet, J.F., Hayhurst, G., Gonzalez, F.J., Girard, J., and Decaux, J.F. 2002. The coactivator PGC-1 is involved in the regulation of the liver carnitine palmitoyltransferase I gene expression by cAMP in combination with HNF4α and cAMP-response element-binding protein (CREB). J. Biol. Chem. 277:37991-38000.
-
(2002)
J. Biol. Chem.
, vol.277
, pp. 37991-38000
-
-
Louet, J.F.1
Hayhurst, G.2
Gonzalez, F.J.3
Girard, J.4
Decaux, J.F.5
-
41
-
-
0031845136
-
Nutritional and hormonal regulation of enzymes in fat synthesis: Studies of fatty acid synthase and mitochondrial glycerol-3-phosphate acyltransferase gene transcription
-
Sul, H.S., and Wang, D. 1998. Nutritional and hormonal regulation of enzymes in fat synthesis: studies of fatty acid synthase and mitochondrial glycerol-3-phosphate acyltransferase gene transcription. Annu. Rev. Nutr. 18:331-351.
-
(1998)
Annu. Rev. Nutr.
, vol.18
, pp. 331-351
-
-
Sul, H.S.1
Wang, D.2
-
42
-
-
0036066639
-
Glucagon replacement via micro-osmotic pump corrects hypoglycemia and α-cell hyperplasia in prohormone convertase 2 knockout mice
-
Webb, G.C., Akbar, M.S., Zhao, C., Swift, H.H., and Steiner, D.F. 2002. Glucagon replacement via micro-osmotic pump corrects hypoglycemia and α-cell hyperplasia in prohormone convertase 2 knockout mice. Diabetes. 51:398-405.
-
(2002)
Diabetes
, vol.51
, pp. 398-405
-
-
Webb, G.C.1
Akbar, M.S.2
Zhao, C.3
Swift, H.H.4
Steiner, D.F.5
-
43
-
-
0035018190
-
Direct removal in the mouse of a floxed neo gene from a three-lox P conditional knockout allele by two novel approaches
-
Xu, X., et al. 2001. Direct removal in the mouse of a floxed neo gene from a three-lox P conditional knockout allele by two novel approaches. Genesis. 30:1-6.
-
(2001)
Genesis
, vol.30
, pp. 1-6
-
-
Xu, X.1
-
44
-
-
0022913629
-
Simultaneous liquid-chromatographic determination of 3,4-dihydroxy- phenylglycol, catecholamines, and 3,4-dihydroxy-phenylalanine in plasma, and their responses to inhibition of monoamine oxidase
-
Eisenhofer, G., et al. 1986. Simultaneous liquid-chromatographic determination of 3,4-dihydroxy-phenylglycol, catecholamines, and 3,4-dihydroxy-phenylalanine in plasma, and their responses to inhibition of monoamine oxidase. Clin. Chem. 32:2030-2033.
-
(1986)
Clin. Chem.
, vol.32
, pp. 2030-2033
-
-
Eisenhofer, G.1
-
45
-
-
0141446024
-
Liver peroxisome proliferator-activated receptor α contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass
-
Gavrilova, O., et al. 2003. Liver peroxisome proliferator-activated receptor α contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J. Biol. Chem. 278:34268-34276.
-
(2003)
J. Biol. Chem.
, vol.278
, pp. 34268-34276
-
-
Gavrilova, O.1
|