메뉴 건너뛰기




Volumn 115, Issue 11, 2005, Pages 3217-3227

Increased glucose tolerance and reduced adiposity in the abscence of fasting hypoglycemia in mice with liver-specific Gsα deficiency

Author keywords

[No Author keywords available]

Indexed keywords

ADRENALIN; ALANINE AMINOTRANSFERASE; ALBUMIN; ALKALINE PHOSPHATASE; ASPARTATE AMINOTRANSFERASE; CHOLESTEROL; CORTICOSTERONE; CREATININE; CYCLIC AMP; FATTY ACID; GENOMIC DNA; GLUCAGON LIKE PEPTIDE 1; GLUCOSE; GLYCOGEN; INSULIN; NORADRENALIN; PEROXISOME PROLIFERATOR ACTIVATED RECEPTOR GAMMA; STIMULATORY GUANINE NUCLEOTIDE BINDING PROTEIN; TRIACYLGLYCEROL; URIC ACID;

EID: 27644581888     PISSN: 00219738     EISSN: 15588238     Source Type: Journal    
DOI: 10.1172/JCI24196     Document Type: Article
Times cited : (125)

References (45)
  • 1
    • 0030724591 scopus 로고    scopus 로고
    • Pathogenesis of type 2 diabetes: Metabolic and molecular implications for identifying diabetes genes
    • DeFronzo, R.A. 1997. Pathogenesis of type 2 diabetes: metabolic and molecular implications for identifying diabetes genes. Diabetes Rev. 5:177-269.
    • (1997) Diabetes Rev. , vol.5 , pp. 177-269
    • DeFronzo, R.A.1
  • 2
    • 0023109225 scopus 로고
    • Documentation of hyperglucagonemia throughout the day in nonobese and obese patients with noninsulin-dependent diabetes mellitus
    • Reaven, G.M., Chen, Y.D., Golay, A., Swislocki, A.L., and Jaspan, J.B. 1987. Documentation of hyperglucagonemia throughout the day in nonobese and obese patients with noninsulin-dependent diabetes mellitus. J. Clin. Endocrinol. Metab. 64:106-110.
    • (1987) J. Clin. Endocrinol. Metab. , vol.64 , pp. 106-110
    • Reaven, G.M.1    Chen, Y.D.2    Golay, A.3    Swislocki, A.L.4    Jaspan, J.B.5
  • 3
    • 0842288445 scopus 로고    scopus 로고
    • Reduction in glucagon receptor expression by an antisense oligonucleotide ameliorates diabetic syndrome in db/db mice
    • Liang, Y., et al. 2004. Reduction in glucagon receptor expression by an antisense oligonucleotide ameliorates diabetic syndrome in db/db mice. Diabetes. 53:410-417.
    • (2004) Diabetes , vol.53 , pp. 410-417
    • Liang, Y.1
  • 5
    • 0037417984 scopus 로고    scopus 로고
    • Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice
    • Gelling, R.W., et al. 2003. Lower blood glucose, hyperglucagonemia, and pancreatic alpha cell hyperplasia in glucagon receptor knockout mice. Proc. Natl. Acad. Sci. U. S. A. 100:1438-1443.
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 1438-1443
    • Gelling, R.W.1
  • 6
    • 85047693695 scopus 로고    scopus 로고
    • Hepatic and glucagon-like peptide-1-mediated reversal of diabetes by glucagon receptor antisense oligonucleotide inhibitors
    • doi:10.1172/JCI200420911
    • Sloop, K.W., et al. 2004. Hepatic and glucagon-like peptide-1-mediated reversal of diabetes by glucagon receptor antisense oligonucleotide inhibitors. J. Clin. Invest. 113:1571-1581. doi:10.1172/JCI200420911.
    • (2004) J. Clin. Invest. , vol.113 , pp. 1571-1581
    • Sloop, K.W.1
  • 7
    • 0027531638 scopus 로고
    • Expression cloning and signaling properties of the rat glucagon receptor
    • Jelinek, L.J., et al. 1993. Expression cloning and signaling properties of the rat glucagon receptor. Science. 259:1614-1616.
    • (1993) Science , vol.259 , pp. 1614-1616
    • Jelinek, L.J.1
  • 8
    • 0034793851 scopus 로고    scopus 로고
    • Endocrine manifestations of stimulatory G protein α-subunit mutations and the role of genomic imprinting
    • Weinstein, L.S., Yu, S., Warner, D.R., and Liu, J. 2001. Endocrine manifestations of stimulatory G protein α-subunit mutations and the role of genomic imprinting. Endocr. Rev. 22:675-705.
    • (2001) Endocr. Rev. , vol.22 , pp. 675-705
    • Weinstein, L.S.1    Yu, S.2    Warner, D.R.3    Liu, J.4
  • 9
    • 0030972807 scopus 로고    scopus 로고
    • Transcriptional regulation by cyclic AMP
    • Montminy, M. 1997. Transcriptional regulation by cyclic AMP. Annu. Rev. Biochem. 66:807-822.
    • (1997) Annu. Rev. Biochem. , vol.66 , pp. 807-822
    • Montminy, M.1
  • 10
    • 0023041534 scopus 로고
    • Activation of two signal transduction systems in hepatocytes by glucagon
    • Wakelam, M.J.O., Murphy, G.J., Hruby, V.J., and Houslay, M.D. 1986. Activation of two signal transduction systems in hepatocytes by glucagon. Nature. 328:68-71.
    • (1986) Nature , vol.328 , pp. 68-71
    • Wakelam, M.J.O.1    Murphy, G.J.2    Hruby, V.J.3    Houslay, M.D.4
  • 12
    • 0035827516 scopus 로고    scopus 로고
    • sα knockout mice
    • sα knockout mice. J. Biol. Chem. 276:19994-19998.
    • (2001) J. Biol. Chem. , vol.276 , pp. 19994-19998
    • Yu, S.1
  • 13
    • 0034018370 scopus 로고    scopus 로고
    • Paternal versus maternal transmission of a stimulatory G protein α subunit knockout produces opposite effects on energy metabolism
    • Yu, S., et al. 2000. Paternal versus maternal transmission of a stimulatory G protein α subunit knockout produces opposite effects on energy metabolism. J. Clin. Invest. 105:615-623.
    • (2000) J. Clin. Invest. , vol.105 , pp. 615-623
    • Yu, S.1
  • 14
    • 4344618148 scopus 로고    scopus 로고
    • Increased insulin sensitivity in paternal Gnas knockout mice is associated with increased lipid clearance
    • Chen, M., et al. 2004. Increased insulin sensitivity in paternal Gnas knockout mice is associated with increased lipid clearance. Endocrinology. 145:4094-4102.
    • (2004) Endocrinology , vol.145 , pp. 4094-4102
    • Chen, M.1
  • 16
    • 21044439497 scopus 로고    scopus 로고
    • Alternative Gnas gene products have opposite effects on glucose and lipid metabolism
    • Chen, M., et al. 2005. Alternative Gnas gene products have opposite effects on glucose and lipid metabolism. Proc. Natl. Acad. Sci. U. S. A. 102:7386-7391.
    • (2005) Proc. Natl. Acad. Sci. U. S. A. , vol.102 , pp. 7386-7391
    • Chen, M.1
  • 17
    • 0033594893 scopus 로고    scopus 로고
    • Normal growth and development in the absence of hepatic insulin-like growth factor I
    • Yakar, S., et al. 1999. Normal growth and development in the absence of hepatic insulin-like growth factor I. Proc. Natl. Acad. Sci. U. S. A. 96:7324-7329.
    • (1999) Proc. Natl. Acad. Sci. U. S. A. , vol.96 , pp. 7324-7329
    • Yakar, S.1
  • 18
    • 0038339191 scopus 로고    scopus 로고
    • cAMP promotes pancreatic β-cell survival via CREB-mediated induction of IRS2
    • Jhala, U.S., et al. 2003. cAMP promotes pancreatic β-cell survival via CREB-mediated induction of IRS2. Genes Dev. 17:1575-1580.
    • (2003) Genes Dev. , vol.17 , pp. 1575-1580
    • Jhala, U.S.1
  • 19
    • 0037326196 scopus 로고    scopus 로고
    • Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): Transcriptional coactivator and metabolic regulator
    • Puigserver, P., and Spiegelman, B.M. 2003. Peroxisome proliferator-activated receptor-γ coactivator 1α (PGC-1α): transcriptional coactivator and metabolic regulator. Endocr. Rev. 24:78-90.
    • (2003) Endocr. Rev. , vol.24 , pp. 78-90
    • Puigserver, P.1    Spiegelman, B.M.2
  • 20
    • 0035855905 scopus 로고    scopus 로고
    • CREB regulates hepatic gluconeogenesis through the coactivator PGC-1
    • Hetzig, S., et al. 2001. CREB regulates hepatic gluconeogenesis through the coactivator PGC-1. Nature. 413:179-183.
    • (2001) Nature , vol.413 , pp. 179-183
    • Hetzig, S.1
  • 21
    • 0242349197 scopus 로고    scopus 로고
    • Regulation of hepatic fasting response by PPARγ coactivator-1α (PGC-1): Requirement for hepatocyte nuclear factor 4aα in gluconeogenesis
    • Rhee, J., et al. 2003. Regulation of hepatic fasting response by PPARγ coactivator-1α (PGC-1): requirement for hepatocyte nuclear factor 4aα in gluconeogenesis. Proc. Natl. Acad. Sci. U. S. A. 100:4012-4017.
    • (2003) Proc. Natl. Acad. Sci. U. S. A. , vol.100 , pp. 4012-4017
    • Rhee, J.1
  • 22
    • 0038187621 scopus 로고    scopus 로고
    • Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction
    • Puigserver, P., et al. 2003. Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1α interaction. Nature. 423:550-555.
    • (2003) Nature , vol.423 , pp. 550-555
    • Puigserver, P.1
  • 23
    • 0344010662 scopus 로고    scopus 로고
    • CREB controls hepatic lipid metabolism through nuclear hormone receptor PPAR-γ
    • Herzig, S., et al. 2003. CREB controls hepatic lipid metabolism through nuclear hormone receptor PPAR-γ. Nature. 426:190-193.
    • (2003) Nature , vol.426 , pp. 190-193
    • Herzig, S.1
  • 24
    • 2442701392 scopus 로고    scopus 로고
    • PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3
    • Koo, S.H., et al. 2004. PGC-1 promotes insulin resistance in liver through PPAR-α-dependent induction of TRB-3. Nat. Med. 10:530-534.
    • (2004) Nat. Med. , vol.10 , pp. 530-534
    • Koo, S.H.1
  • 25
    • 0033607176 scopus 로고    scopus 로고
    • Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes
    • Foretz, M., Guichard, C., Ferre, P., and Foufelle, F. 1999. Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic expression of glucokinase and lipogenesis-related genes. Proc. Natl. Acad. Sci. U. S. A. 96:12737-12742.
    • (1999) Proc. Natl. Acad. Sci. U. S. A. , vol.96 , pp. 12737-12742
    • Foretz, M.1    Guichard, C.2    Ferre, P.3    Foufelle, F.4
  • 26
    • 0031963963 scopus 로고    scopus 로고
    • Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1
    • Kim, J.B., et al. 1998. Nutritional and insulin regulation of fatty acid synthetase and leptin gene expression through ADD1/SREBP1. J. Clin. Invest. 101:1-9.
    • (1998) J. Clin. Invest. , vol.101 , pp. 1-9
    • Kim, J.B.1
  • 27
    • 0035146344 scopus 로고    scopus 로고
    • Renal gluconeogenesis: Its importance in human glucose homeostasis
    • Gerich, J.E., Meyer, C., Woerle, H.J., and Stumvoll, M. 2001. Renal gluconeogenesis: its importance in human glucose homeostasis. Diabetes Care. 24:382-391.
    • (2001) Diabetes Care , vol.24 , pp. 382-391
    • Gerich, J.E.1    Meyer, C.2    Woerle, H.J.3    Stumvoll, M.4
  • 28
    • 0030856736 scopus 로고    scopus 로고
    • Metabolic impact of adenovirus-mediated overexpression of the glucose-6-phosphatase catalytic subunit in hepatocytes
    • Seoane, J., et al. 1997. Metabolic impact of adenovirus-mediated overexpression of the glucose-6-phosphatase catalytic subunit in hepatocytes. J. Biol. Chem. 272:26972-26977.
    • (1997) J. Biol. Chem. , vol.272 , pp. 26972-26977
    • Seoane, J.1
  • 29
    • 0032553323 scopus 로고    scopus 로고
    • Perturbation of fuel homeostasis caused by overexpression of the glucose-6-phosphatase catalytic subunit in liver of normal rats
    • Trinh, K.Y., O'Doherty, R.M., Anderson, P., Lange, A.J., and Newgard, C.B. 1998. Perturbation of fuel homeostasis caused by overexpression of the glucose-6-phosphatase catalytic subunit in liver of normal rats J. Biol Chem. 273:1615-1620.
    • (1998) J. Biol Chem. , vol.273 , pp. 1615-1620
    • Trinh, K.Y.1    O'Doherty, R.M.2    Anderson, P.3    Lange, A.J.4    Newgard, C.B.5
  • 30
    • 11144357764 scopus 로고    scopus 로고
    • Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors
    • doi:10.1172/JCI200420518
    • Preitner, F., et al. 2004. Gluco-incretins control insulin secretion at multiple levels as revealed in mice lacking GLP-1 and GIP receptors. J. Clin. Invest. 113:635-645. doi:10.1172/JCI200420518.
    • (2004) J. Clin. Invest. , vol.113 , pp. 635-645
    • Preitner, F.1
  • 31
    • 0024445798 scopus 로고
    • Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133
    • Gonzalez, G.A., and Montminy, M.R. 1989. Cyclic AMP stimulates somatostatin gene transcription by phosphorylation of CREB at serine 133. Cell. 59:675-680.
    • (1989) Cell , vol.59 , pp. 675-680
    • Gonzalez, G.A.1    Montminy, M.R.2
  • 32
    • 0035855858 scopus 로고    scopus 로고
    • Control of hepatic gluconeogenesis through the transcripcional coactivator PGC-1
    • Yoon, J.C., et al. 2001. Control of hepatic gluconeogenesis through the transcripcional coactivator PGC-1. Nature. 413:131-138.
    • (2001) Nature , vol.413 , pp. 131-138
    • Yoon, J.C.1
  • 33
    • 0036787607 scopus 로고    scopus 로고
    • Regulation of insulin action and pancreatic β-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1
    • Nakae, J., et al. 2002. Regulation of insulin action and pancreatic β-cell function by mutated alleles of the gene encoding forkhead transcription factor Foxo1. Nat. Genet. 32:245-253.
    • (2002) Nat. Genet. , vol.32 , pp. 245-253
    • Nakae, J.1
  • 34
    • 0037189517 scopus 로고    scopus 로고
    • Phosphoenolpyruvate carboxykinase overexpression selectively attenuates insulin signaling and hepatic insulin sensitivity in transgenic mice
    • Sun, Y., et al. 2002. Phosphoenolpyruvate carboxykinase overexpression selectively attenuates insulin signaling and hepatic insulin sensitivity in transgenic mice. J. Biol. Chem. 277:23301-23307.
    • (2002) J. Biol. Chem. , vol.277 , pp. 23301-23307
    • Sun, Y.1
  • 35
    • 0028567884 scopus 로고
    • Transgenic mice overexpressing phosphoenol-pyruvate carboxykinase develop non-insulin-dependent diabetes mellitus
    • Valera, A., Pujol, A., Pelegrin, M., and Bosch, F. 1994. Transgenic mice overexpressing phosphoenol-pyruvate carboxykinase develop non-insulin-dependent diabetes mellitus. Proc. Natl. Acad. Sci. U. S. A. 91:9151-9154.
    • (1994) Proc. Natl. Acad. Sci. U. S. A. , vol.91 , pp. 9151-9154
    • Valera, A.1    Pujol, A.2    Pelegrin, M.3    Bosch, F.4
  • 36
    • 0038353781 scopus 로고    scopus 로고
    • Mechanisms by which liver-specific PEPCK knockout mice preserve euglycemia during starvation
    • She, P., et al. 2003. Mechanisms by which liver-specific PEPCK knockout mice preserve euglycemia during starvation. Diabetes. 52:1649-1654.
    • (2003) Diabetes , vol.52 , pp. 1649-1654
    • She, P.1
  • 37
    • 0033582929 scopus 로고    scopus 로고
    • Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor
    • Brunet, A., et al. 1999. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell. 96:857-868.
    • (1999) Cell , vol.96 , pp. 857-868
    • Brunet, A.1
  • 38
    • 11144354399 scopus 로고    scopus 로고
    • SREBP-1 interacts with hepatic nuclear factor-4α and interferes with PGC-1 recruitment Co suppress hepatic gluconeogenic genes
    • Yamamoto, T., et al. 2004. SREBP-1 interacts with hepatic nuclear factor-4α and interferes with PGC-1 recruitment Co suppress hepatic gluconeogenic genes J. Biol. Chem. 279:12027-12035.
    • (2004) J. Biol. Chem. , vol.279 , pp. 12027-12035
    • Yamamoto, T.1
  • 39
    • 0031803715 scopus 로고    scopus 로고
    • Human kidney and liver gluconeogenesis: Evidence for organ substrate selectivity
    • Stumvoll, M., et al. 1998. Human kidney and liver gluconeogenesis: evidence for organ substrate selectivity. Am. J. Physiol. 274:E817-E826.
    • (1998) Am. J. Physiol. , vol.274
    • Stumvoll, M.1
  • 40
    • 0037064057 scopus 로고    scopus 로고
    • The coactivator PGC-1 is involved in the regulation of the liver carnitine palmitoyltransferase I gene expression by cAMP in combination with HNF4α and cAMP-response element-binding protein (CREB)
    • Louet, J.F., Hayhurst, G., Gonzalez, F.J., Girard, J., and Decaux, J.F. 2002. The coactivator PGC-1 is involved in the regulation of the liver carnitine palmitoyltransferase I gene expression by cAMP in combination with HNF4α and cAMP-response element-binding protein (CREB). J. Biol. Chem. 277:37991-38000.
    • (2002) J. Biol. Chem. , vol.277 , pp. 37991-38000
    • Louet, J.F.1    Hayhurst, G.2    Gonzalez, F.J.3    Girard, J.4    Decaux, J.F.5
  • 41
    • 0031845136 scopus 로고    scopus 로고
    • Nutritional and hormonal regulation of enzymes in fat synthesis: Studies of fatty acid synthase and mitochondrial glycerol-3-phosphate acyltransferase gene transcription
    • Sul, H.S., and Wang, D. 1998. Nutritional and hormonal regulation of enzymes in fat synthesis: studies of fatty acid synthase and mitochondrial glycerol-3-phosphate acyltransferase gene transcription. Annu. Rev. Nutr. 18:331-351.
    • (1998) Annu. Rev. Nutr. , vol.18 , pp. 331-351
    • Sul, H.S.1    Wang, D.2
  • 42
    • 0036066639 scopus 로고    scopus 로고
    • Glucagon replacement via micro-osmotic pump corrects hypoglycemia and α-cell hyperplasia in prohormone convertase 2 knockout mice
    • Webb, G.C., Akbar, M.S., Zhao, C., Swift, H.H., and Steiner, D.F. 2002. Glucagon replacement via micro-osmotic pump corrects hypoglycemia and α-cell hyperplasia in prohormone convertase 2 knockout mice. Diabetes. 51:398-405.
    • (2002) Diabetes , vol.51 , pp. 398-405
    • Webb, G.C.1    Akbar, M.S.2    Zhao, C.3    Swift, H.H.4    Steiner, D.F.5
  • 43
    • 0035018190 scopus 로고    scopus 로고
    • Direct removal in the mouse of a floxed neo gene from a three-lox P conditional knockout allele by two novel approaches
    • Xu, X., et al. 2001. Direct removal in the mouse of a floxed neo gene from a three-lox P conditional knockout allele by two novel approaches. Genesis. 30:1-6.
    • (2001) Genesis , vol.30 , pp. 1-6
    • Xu, X.1
  • 44
    • 0022913629 scopus 로고
    • Simultaneous liquid-chromatographic determination of 3,4-dihydroxy- phenylglycol, catecholamines, and 3,4-dihydroxy-phenylalanine in plasma, and their responses to inhibition of monoamine oxidase
    • Eisenhofer, G., et al. 1986. Simultaneous liquid-chromatographic determination of 3,4-dihydroxy-phenylglycol, catecholamines, and 3,4-dihydroxy-phenylalanine in plasma, and their responses to inhibition of monoamine oxidase. Clin. Chem. 32:2030-2033.
    • (1986) Clin. Chem. , vol.32 , pp. 2030-2033
    • Eisenhofer, G.1
  • 45
    • 0141446024 scopus 로고    scopus 로고
    • Liver peroxisome proliferator-activated receptor α contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass
    • Gavrilova, O., et al. 2003. Liver peroxisome proliferator-activated receptor α contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J. Biol. Chem. 278:34268-34276.
    • (2003) J. Biol. Chem. , vol.278 , pp. 34268-34276
    • Gavrilova, O.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.