-
1
-
-
0039253819
-
LOF. identifying density-based local outliers
-
Chen W., Naughton J.F., and Bernstein P.A. (Eds). Dalles, TX, ACM, New York
-
Breunig M.M., Kriegel H.-P., Ng R.T., and Sander J. LOF. identifying density-based local outliers. In: Chen W., Naughton J.F., and Bernstein P.A. (Eds). Proceedings of ACM SIGMOD International Conference on Management of Data. Dalles, TX (2000), ACM, New York 93-104
-
(2000)
Proceedings of ACM SIGMOD International Conference on Management of Data
, pp. 93-104
-
-
Breunig, M.M.1
Kriegel, H.-P.2
Ng, R.T.3
Sander, J.4
-
3
-
-
85170282443
-
A density-based algorithm for discovering clusters in large spatial databases with noise
-
Simoudis E., Han J., and Fayyad U.M. (Eds). Port Land, OR, AAAI, Menlo Park, CA
-
Ester M., Kriegel H.-P., Sander J., and Xu X. A density-based algorithm for discovering clusters in large spatial databases with noise. In: Simoudis E., Han J., and Fayyad U.M. (Eds). Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. Port Land, OR (1996), AAAI, Menlo Park, CA 226-231
-
(1996)
Proceedings of the Second International Conference on Knowledge Discovery and Data Mining
, pp. 226-231
-
-
Ester, M.1
Kriegel, H.-P.2
Sander, J.3
Xu, X.4
-
4
-
-
0347172110
-
OPTICS. ordering points to identify the clustering structure
-
Delis A., Faloutsos C., and Ghandeharizadeh S. (Eds). Philadelphia, PA, ACM, New York
-
Ankerst M., Breunig M.M., Kriegel H.-P., and Sander J. OPTICS. ordering points to identify the clustering structure. In: Delis A., Faloutsos C., and Ghandeharizadeh S. (Eds). Proceedings of ACM SIGMOD International Conference on Management of Data. Philadelphia, PA (1999), ACM, New York 49-60
-
(1999)
Proceedings of ACM SIGMOD International Conference on Management of Data
, pp. 49-60
-
-
Ankerst, M.1
Breunig, M.M.2
Kriegel, H.-P.3
Sander, J.4
-
5
-
-
0003052357
-
WaveCluster. a multi-resolution clustering approach for very large spatial databases
-
Gupta A., Shmueli O., and Widom J. (Eds). New York, NY, Morgan Kaufmann, Los Altos, CA
-
Sheikholeslami G., Chatterjee S., and Zhang A. WaveCluster. a multi-resolution clustering approach for very large spatial databases. In: Gupta A., Shmueli O., and Widom J. (Eds). Proceedings of 24th International Conference on Very Large Data Bases. New York, NY (1988), Morgan Kaufmann, Los Altos, CA 428-439
-
(1988)
Proceedings of 24th International Conference on Very Large Data Bases
, pp. 428-439
-
-
Sheikholeslami, G.1
Chatterjee, S.2
Zhang, A.3
-
6
-
-
0037929392
-
Feature space theory in data mining: transformations between extensions and intensions in knowledge representation
-
Li H., Xu L., Wang J., and Mo Z. Feature space theory in data mining: transformations between extensions and intensions in knowledge representation. Expert Syst. 20 2 (2003) 60-71
-
(2003)
Expert Syst.
, vol.20
, Issue.2
, pp. 60-71
-
-
Li, H.1
Xu, L.2
Wang, J.3
Mo, Z.4
-
7
-
-
0035422286
-
Feature space theory-a mathematical foundation for data mining
-
Li H., and Xu L. Feature space theory-a mathematical foundation for data mining. Knowledge-Based Syst. 14 (2001) 253-257
-
(2001)
Knowledge-Based Syst.
, vol.14
, pp. 253-257
-
-
Li, H.1
Xu, L.2
-
8
-
-
85140527321
-
An efficient approach to clustering in large multimedia databases with noise
-
Agrawal R., Stolorz P.E., and Piatetsky-Shapiro G. (Eds). New York, NY, AAAI, Menlo Park, CA
-
Hinneburg A., and Keim D.A. An efficient approach to clustering in large multimedia databases with noise. In: Agrawal R., Stolorz P.E., and Piatetsky-Shapiro G. (Eds). Proceedings of Fourth International Conference on Knowledge Discovery and Data Mining. New York, NY (1998), AAAI, Menlo Park, CA 58-65
-
(1998)
Proceedings of Fourth International Conference on Knowledge Discovery and Data Mining
, pp. 58-65
-
-
Hinneburg, A.1
Keim, D.A.2
-
9
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
Haas L.M., and Tiwary A. (Eds). Seattle, WA, ACM, New York
-
Agrawal R., Gehrke J., Gunopulos D., and Raghavan P. Automatic subspace clustering of high dimensional data for data mining applications. In: Haas L.M., and Tiwary A. (Eds). Proceedings of ACM SIGMOD International Conference on Management of Data. Seattle, WA (1998), ACM, New York 94-105
-
(1998)
Proceedings of ACM SIGMOD International Conference on Management of Data
, pp. 94-105
-
-
Agrawal, R.1
Gehrke, J.2
Gunopulos, D.3
Raghavan, P.4
-
10
-
-
35248883970
-
-
S. Ma, T.J. Wang, S.W. Tang, A New Fast Clustering Algorithm Based on Reference and Density, Lectures Notes in Computer Science, vol. 2762, Springer, Berlin, 2003, pp. 214-225.
-
-
-
-
11
-
-
0346216908
-
A new shifting grid clusting algorithm
-
Ma W.M., Eden C., and Tommy W.S. A new shifting grid clusting algorithm. Pattern Recognition 37 3 (2004) 503-514
-
(2004)
Pattern Recognition
, vol.37
, Issue.3
, pp. 503-514
-
-
Ma, W.M.1
Eden, C.2
Tommy, W.S.3
-
12
-
-
0001802606
-
The X-tree. an index structure for high-dimensional data
-
Vijayaraman T.M., Buchmann A.P., Mohan C., and Sarda N.L. (Eds). Bombay, India, Morgan Kaufmann, Los Altos, CA
-
Berchtold S., Keim D.A., and Kriegel H.-P. The X-tree. an index structure for high-dimensional data. In: Vijayaraman T.M., Buchmann A.P., Mohan C., and Sarda N.L. (Eds). Proceedings of 22nd Conference on Very Large Data Bases. Bombay, India (1996), Morgan Kaufmann, Los Altos, CA 28-39
-
(1996)
Proceedings of 22nd Conference on Very Large Data Bases
, pp. 28-39
-
-
Berchtold, S.1
Keim, D.A.2
Kriegel, H.-P.3
-
13
-
-
0000681228
-
A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces
-
Gupta A., Shmueli O., and Widom J. (Eds). New York, NY, Morgan Kaufmann, Los Altos, CA
-
Weber R., Schek H.-J., and Blott S. A quantitative analysis and performance study for similarity-search methods in high-dimensional spaces. In: Gupta A., Shmueli O., and Widom J. (Eds). Proceedings of 24th International Conference on Very Large Data Bases. New York, NY (1998), Morgan Kaufmann, Los Altos, CA 194-205
-
(1998)
Proceedings of 24th International Conference on Very Large Data Bases
, pp. 194-205
-
-
Weber, R.1
Schek, H.-J.2
Blott, S.3
|