-
1
-
-
0018263844
-
Why genes in pieces?
-
Gilbert W. Why genes in pieces? Nature 1978, 271:501.
-
(1978)
Nature
, vol.271
, pp. 501
-
-
Gilbert, W.1
-
2
-
-
0042671357
-
Pre-mRNA splicing: awash in a sea of proteins.
-
Jurica MS, Moore MJ. Pre-mRNA splicing: awash in a sea of proteins. Mol Cell 2003, 12: 5-14.
-
(2003)
Mol Cell
, vol.12
, pp. 5-14
-
-
Jurica, M.S.1
Moore, M.J.2
-
3
-
-
0344198459
-
The spliceosome: the most complex macromolecular machine in the cell?
-
Nilsen TW. The spliceosome: the most complex macromolecular machine in the cell? Bioessays 2003, 25:1147-1149.
-
(2003)
Bioessays
, vol.25
, pp. 1147-1149
-
-
Nilsen, T.W.1
-
4
-
-
34547642637
-
Introns-early.
-
Doolittle WF. Introns-early. Nature 1978, 272: 581-581.
-
(1978)
Nature
, vol.272
, pp. 581-581
-
-
Doolittle, W.F.1
-
6
-
-
0027771868
-
On the ancient nature of introns.
-
Gilbert W, Glynias M. On the ancient nature of introns. Gene 1993, 135:137-144.
-
(1993)
Gene
, vol.135
, pp. 137-144
-
-
Gilbert, W.1
Glynias, M.2
-
7
-
-
0031737389
-
The recent origins of spliceosomal introns revisited.
-
Logsdon JM, Jr. The recent origins of spliceosomal introns revisited. Curr Opin Genet Dev 1998, 8:637-648.
-
(1998)
Curr Opin Genet Dev
, vol.8
, pp. 637-648
-
-
Logsdon Jr., J.M.1
-
9
-
-
0028043139
-
Testing the exon theory of genes: the evidence from protein structure [see comments].
-
Stoltzfus A, Spencer DF, Zuker M, Logsdon JM, Jr, Doolittle WF. Testing the exon theory of genes: the evidence from protein structure [see comments]. Science 1994, 265:202-207.
-
(1994)
Science
, vol.265
, pp. 202-207
-
-
Stoltzfus, A.1
Spencer, D.F.2
Zuker, M.3
Logsdon Jr., J.M.4
Doolittle, W.F.5
-
10
-
-
0030885349
-
Intron "sliding" and the diversity of intron positions.
-
Stoltzfus A, Logsdon JM, Jr, Palmer JD, Doolittle WF. Intron "sliding" and the diversity of intron positions. Proc Natl Acad Sci U S A 1997, 94:10739-10744.
-
(1997)
Proc Natl Acad Sci U S A
, vol.94
, pp. 10739-10744
-
-
Stoltzfus, A.1
Logsdon Jr., J.M.2
Palmer, J.D.3
Doolittle, W.F.4
-
11
-
-
0042921194
-
Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution.
-
Rogozin IB, Wolf YI, Sorokin AV, Mirkin BG, Koonin EV. Remarkable interkingdom conservation of intron positions and massive, lineage-specific intron loss and gain in eukaryotic evolution. Curr Biol 2003, 13:1512-1517.
-
(2003)
Curr Biol
, vol.13
, pp. 1512-1517
-
-
Rogozin, I.B.1
Wolf, Y.I.2
Sorokin, A.V.3
Mirkin, B.G.4
Koonin, E.V.5
-
12
-
-
34047175831
-
The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate?
-
Koonin EV. The origin of introns and their role in eukaryogenesis: a compromise solution to the introns-early versus introns-late debate? Biol Direct 2006, 1:22.
-
(2006)
Biol Direct
, vol.1
, pp. 22
-
-
Koonin, E.V.1
-
14
-
-
72449160582
-
An overview of the introns-first theory.
-
Penny D, Hoeppner MP, Poole AM, Jeffares DC. An overview of the introns-first theory. J Mol Evol 2009, 69:527-540.
-
(2009)
J Mol Evol
, vol.69
, pp. 527-540
-
-
Penny, D.1
Hoeppner, M.P.2
Poole, A.M.3
Jeffares, D.C.4
-
15
-
-
0037133618
-
A spliceosomal intron in Giardia lamblia.
-
Nixon JE, Wang A, Morrison HG, McArthur AG, Sogin ML, Loftus BJ, Samuelson J. A spliceosomal intron in Giardia lamblia. Proc Natl Acad Sci U S A 2002, 99:3701-3705.
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, pp. 3701-3705
-
-
Nixon, J.E.1
Wang, A.2
Morrison, H.G.3
McArthur, A.G.4
Sogin, M.L.5
Loftus, B.J.6
Samuelson, J.7
-
16
-
-
0037136554
-
Eukaryotic evolution: early origin of canonical introns.
-
Simpson AG, MacQuarrie EK, Roger AJ. Eukaryotic evolution: early origin of canonical introns. Nature 2002, 419:270.
-
(2002)
Nature
, vol.419
, pp. 270
-
-
Simpson, A.G.1
MacQuarrie, E.K.2
Roger, A.J.3
-
17
-
-
77649290275
-
The genome of Naegleria gruberi illuminates early eukaryotic versatility.
-
Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, Kuo A, Paredez A, Chapman J, Pham J, et al. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 2010, 140:631-642.
-
(2010)
Cell
, vol.140
, pp. 631-642
-
-
Fritz-Laylin, L.K.1
Prochnik, S.E.2
Ginger, M.L.3
Dacks, J.B.4
Carpenter, M.L.5
Field, M.C.6
Kuo, A.7
Paredez, A.8
Chapman, J.9
Pham, J.10
-
18
-
-
38049150492
-
Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function.
-
Lane CE, van den Heuvel K, Kozera C, Curtis BA, Parsons BJ, Bowman S, Archibald JM. Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function. Proc Natl Acad Sci U S A 2007, 104:19908-19913.
-
(2007)
Proc Natl Acad Sci U S A
, vol.104
, pp. 19908-19913
-
-
Lane, C.E.1
Van Den Heuvel, K.2
Kozera, C.3
Curtis, B.A.4
Parsons, B.J.5
Bowman, S.6
Archibald, J.M.7
-
19
-
-
16344385067
-
Complex spliceosomal organization ancestral to extant eukaryotes.
-
Collins L, Penny D. Complex spliceosomal organization ancestral to extant eukaryotes. Mol Biol Evol 2005, 22:1053-1066.
-
(2005)
Mol Biol Evol
, vol.22
, pp. 1053-1066
-
-
Collins, L.1
Penny, D.2
-
20
-
-
0025876808
-
Who's on first? The U1 snRNP-5′ splice site interaction and splicing.
-
Rosbash M, Seraphin B. Who's on first? The U1 snRNP-5′ splice site interaction and splicing. Trends Biochem Sci 1991, 16:187-190.
-
(1991)
Trends Biochem Sci
, vol.16
, pp. 187-190
-
-
Rosbash, M.1
Seraphin, B.2
-
21
-
-
0037026523
-
The U1 snRNP protein U1C recognizes the 5′ splice site in the absence of base pairing.
-
Du H, Rosbash M. The U1 snRNP protein U1C recognizes the 5′ splice site in the absence of base pairing. Nature 2002, 419:86-90.
-
(2002)
Nature
, vol.419
, pp. 86-90
-
-
Du, H.1
Rosbash, M.2
-
22
-
-
1942469356
-
Comparative analysis detects dependencies among the 5′ splice-site positions.
-
Carmel I, Tal S, Vig I, Ast G. Comparative analysis detects dependencies among the 5′ splice-site positions. RNA 2004, 10:828-840.
-
(2004)
RNA
, vol.10
, pp. 828-840
-
-
Carmel, I.1
Tal, S.2
Vig, I.3
Ast, G.4
-
23
-
-
0028960809
-
A novel role for a U5 snRNP protein in 3′ splice site selection.
-
Umen JG, Guthrie C. A novel role for a U5 snRNP protein in 3′ splice site selection. Genes Dev 1995, 9:855-868.
-
(1995)
Genes Dev
, vol.9
, pp. 855-868
-
-
Umen, J.G.1
Guthrie, C.2
-
24
-
-
0030750730
-
Evidence that U5 snRNP recognizes the 3′ splice site for catalytic step II in mammals.
-
Chiara MD, Palandjian L, Feld Kramer R, Reed R. Evidence that U5 snRNP recognizes the 3′ splice site for catalytic step II in mammals. EMBO J 1997, 16:4746-4759.
-
(1997)
EMBO J
, vol.16
, pp. 4746-4759
-
-
Chiara, M.D.1
Palandjian, L.2
Feld Kramer, R.3
Reed, R.4
-
25
-
-
0024462103
-
Evidence that introns arose at proto-splice sites.
-
Dibb NJ, Newman AJ. Evidence that introns arose at proto-splice sites. EMBO J 1989, 8:2015-2021.
-
(1989)
EMBO J
, vol.8
, pp. 2015-2021
-
-
Dibb, N.J.1
Newman, A.J.2
-
26
-
-
0025812574
-
Proto-splice site model of intron origin.
-
Dibb NJ. Proto-splice site model of intron origin. J Theor Biol 1991, 151:405-416.
-
(1991)
J Theor Biol
, vol.151
, pp. 405-416
-
-
Dibb, N.J.1
-
27
-
-
50849088978
-
Evolutionary convergence on highly-conserved 3′ intron structures in intron-poor eukaryotes and insights into the ancestral eukaryotic genome.
-
Irimia M, Roy SW. Evolutionary convergence on highly-conserved 3′ intron structures in intron-poor eukaryotes and insights into the ancestral eukaryotic genome. PLoS Genet 2008, 4:e1000148.
-
(2008)
PLoS Genet
, vol.4
-
-
Irimia, M.1
Roy, S.W.2
-
28
-
-
0037440652
-
Molecular evolution of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns.
-
Bon E, Casaregola S, Blandin G, Llorente B, Neuveglise C, Munsterkotter M, Guldener U, Mewes HW, Van Helden J, Dujon B, et al. Molecular evolution of eukaryotic genomes: hemiascomycetous yeast spliceosomal introns. Nucleic Acids Res 2003, 31:1121-1135.
-
(2003)
Nucleic Acids Res
, vol.31
, pp. 1121-1135
-
-
Bon, E.1
Casaregola, S.2
Blandin, G.3
Llorente, B.4
Neuveglise, C.5
Munsterkotter, M.6
Guldener, U.7
Mewes, H.W.8
Van Helden, J.9
Dujon, B.10
-
29
-
-
0030787856
-
Analysis of donor splice sites in different eukaryotic organisms.
-
Rogozin IB, Milanesi L. Analysis of donor splice sites in different eukaryotic organisms. J Mol Evol 1997, 45:50-59.
-
(1997)
J Mol Evol
, vol.45
, pp. 50-59
-
-
Rogozin, I.B.1
Milanesi, L.2
-
30
-
-
0037197986
-
Intron evolution as a population-genetic process.
-
Lynch M. Intron evolution as a population-genetic process. Proc Natl Acad Sci U S A 2002, 99:6118-6123.
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, pp. 6118-6123
-
-
Lynch, M.1
-
31
-
-
0345306751
-
The origins of genome complexity.
-
Lynch M, Conery JS. The origins of genome complexity. Science 2003, 302:1401-1404.
-
(2003)
Science
, vol.302
, pp. 1401-1404
-
-
Lynch, M.1
Conery, J.S.2
-
32
-
-
34250707188
-
Coevolution of genomic intron number and splice sites.
-
Irimia M, Penny D, Roy SW. Coevolution of genomic intron number and splice sites. Trends Genet 2007, 23:321-325.
-
(2007)
Trends Genet
, vol.23
, pp. 321-325
-
-
Irimia, M.1
Penny, D.2
Roy, S.W.3
-
33
-
-
70350710157
-
Complex selection on 5′ splice sites in intron-rich organisms.
-
Irimia M, Roy SW, Neafsey DE, Abril JF, Garcia-Fernandez J, Koonin EV. Complex selection on 5′ splice sites in intron-rich organisms. Genome Res 2009, 19:2021-2027.
-
(2009)
Genome Res
, vol.19
, pp. 2021-2027
-
-
Irimia, M.1
Roy, S.W.2
Neafsey, D.E.3
Abril, J.F.4
Garcia-Fernandez, J.5
Koonin, E.V.6
-
34
-
-
84859729407
-
Origin and evolution of spliceosomal introns.
-
Rogozin IB, Carmel L, Csuros M, Koonin EV. Origin and evolution of spliceosomal introns. Biol Direct 2012, 7:11.
-
(2012)
Biol Direct
, vol.7
, pp. 11
-
-
Rogozin, I.B.1
Carmel, L.2
Csuros, M.3
Koonin, E.V.4
-
36
-
-
80053442983
-
A detailed history of intron-rich eukaryotic ancestors inferred from a global survey of 100 complete genomes.
-
Csuros M, Rogozin IB, Koonin EV. A detailed history of intron-rich eukaryotic ancestors inferred from a global survey of 100 complete genomes. PLoS Comput Biol 2011, 7:e1002150.
-
(2011)
PLoS Comput Biol
, vol.7
-
-
Csuros, M.1
Rogozin, I.B.2
Koonin, E.V.3
-
37
-
-
0034633626
-
Lineage-specific loss and divergence of functionally linked genes in eukaryotes.
-
Aravind L, Watanabe H, Lipman DJ, Koonin EV. Lineage-specific loss and divergence of functionally linked genes in eukaryotes. Proc Natl Acad Sci U S A 2000, 97:11319-11324.
-
(2000)
Proc Natl Acad Sci U S A
, vol.97
, pp. 11319-11324
-
-
Aravind, L.1
Watanabe, H.2
Lipman, D.J.3
Koonin, E.V.4
-
38
-
-
59249083056
-
Genomic survey of the non-cultivatable opportunistic human pathogen, Enterocytozoon bieneusi.
-
Akiyoshi DE, Morrison HG, Lei S, Feng X, Zhang Q, Corradi N, Mayanja H, Tumwine JK, Keeling PJ, Weiss LM, et al. Genomic survey of the non-cultivatable opportunistic human pathogen, Enterocytozoon bieneusi. PLoS Pathog 2009, 5:e1000261.
-
(2009)
PLoS Pathog
, vol.5
-
-
Akiyoshi, D.E.1
Morrison, H.G.2
Lei, S.3
Feng, X.4
Zhang, Q.5
Corradi, N.6
Mayanja, H.7
Tumwine, J.K.8
Keeling, P.J.9
Weiss, L.M.10
-
39
-
-
77955953162
-
Constrained intron structures in a microsporidian.
-
Lee RC, Gill EE, Roy SW, Fast NM. Constrained intron structures in a microsporidian. Mol Biol Evol 2010, 27:1979-1982.
-
(2010)
Mol Biol Evol
, vol.27
, pp. 1979-1982
-
-
Lee, R.C.1
Gill, E.E.2
Roy, S.W.3
Fast, N.M.4
-
40
-
-
24944446017
-
An ancient spliceosomal intron in the ribosomal protein L7a gene (Rpl7a) of Giardia lamblia.
-
Russell AG, Shutt TE, Watkins RF, Gray MW. An ancient spliceosomal intron in the ribosomal protein L7a gene (Rpl7a) of Giardia lamblia. BMC Evol Biol 2005, 5:45.
-
(2005)
BMC Evol Biol
, vol.5
, pp. 45
-
-
Russell, A.G.1
Shutt, T.E.2
Watkins, R.F.3
Gray, M.W.4
-
41
-
-
80054680031
-
Introns within ribosomal protein genes regulate the production and function of yeast ribosomes.
-
Parenteau J, Durand M, Morin G, Gagnon J, Lucier JF, Wellinger RJ, Chabot B, Elela SA. Introns within ribosomal protein genes regulate the production and function of yeast ribosomes. Cell 2011, 147: 320-331.
-
(2011)
Cell
, vol.147
, pp. 320-331
-
-
Parenteau, J.1
Durand, M.2
Morin, G.3
Gagnon, J.4
Lucier, J.F.5
Wellinger, R.J.6
Chabot, B.7
Elela, S.A.8
-
42
-
-
0029115626
-
Seven newly discovered intron positions in the triose-phosphate isomerase gene: evidence for the introns-late theory.
-
Logsdon JM, Jr, Tyshenko MG, Dixon C, J DJ, Walker VK, Palmer JD. Seven newly discovered intron positions in the triose-phosphate isomerase gene: evidence for the introns-late theory. Proc Natl Acad Sci U S A 1995, 92:8507-8511.
-
(1995)
Proc Natl Acad Sci U S A
, vol.92
, pp. 8507-8511
-
-
Logsdon Jr., J.M.1
Tyshenko, M.G.2
Dixon, C.3
J, D.J.4
Walker, V.K.5
Palmer, J.D.6
-
43
-
-
0030989167
-
Exon/intron structure of aldehyde dehydrogenase genes supports the "introns-late" theory.
-
Rzhetsky A, Ayala FJ, Hsu LC, Chang C, Yoshida A. Exon/intron structure of aldehyde dehydrogenase genes supports the "introns-late" theory. Proc Natl Acad Sci U S A 1997, 94:6820-6825.
-
(1997)
Proc Natl Acad Sci U S A
, vol.94
, pp. 6820-6825
-
-
Rzhetsky, A.1
Ayala, F.J.2
Hsu, L.C.3
Chang, C.4
Yoshida, A.5
-
44
-
-
0032574738
-
Toward a resolution of the introns early/late debate: only phase zero introns are correlated with the structure of ancient proteins.
-
de Souza SJ, Long M, Klein RJ, Roy S, Lin S, Gilbert W. Toward a resolution of the introns early/late debate: only phase zero introns are correlated with the structure of ancient proteins. Proc Natl Acad Sci U S A 1998, 95:5094-5099.
-
(1998)
Proc Natl Acad Sci U S A
, vol.95
, pp. 5094-5099
-
-
de Souza, S.J.1
Long, M.2
Klein, R.J.3
Roy, S.4
Lin, S.5
Gilbert, W.6
-
45
-
-
56849118754
-
Where do introns come from?
-
Catania F, Lynch M. Where do introns come from? PLoS Biol 2008, 6:e283.
-
(2008)
PLoS Biol
, vol.6
-
-
Catania, F.1
Lynch, M.2
-
46
-
-
0037058978
-
Large-scale comparison of intron positions among animal, plant, and fungal genes.
-
Fedorov A, Merican AF, Gilbert W. Large-scale comparison of intron positions among animal, plant, and fungal genes. Proc Natl Acad Sci U S A 2002, 99:16128-16133.
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, pp. 16128-16133
-
-
Fedorov, A.1
Merican, A.F.2
Gilbert, W.3
-
48
-
-
3042548834
-
The evolutionary gain of spliceosomal introns: sequence and phase preferences.
-
Qiu WG, Schisler N, Stoltzfus A. The evolutionary gain of spliceosomal introns: sequence and phase preferences. Mol Biol Evol 2004, 21:1252-1263.
-
(2004)
Mol Biol Evol
, vol.21
, pp. 1252-1263
-
-
Qiu, W.G.1
Schisler, N.2
Stoltzfus, A.3
-
49
-
-
15944384932
-
Conservation versus parallel gains in intron evolution.
-
Sverdlov AV, Rogozin IB, Babenko VN, Koonin EV. Conservation versus parallel gains in intron evolution. Nucleic Acids Res 2005, 33:1741-1748.
-
(2005)
Nucleic Acids Res
, vol.33
, pp. 1741-1748
-
-
Sverdlov, A.V.1
Rogozin, I.B.2
Babenko, V.N.3
Koonin, E.V.4
-
51
-
-
21044447550
-
Analysis of evolution of exon-intron structure of eukaryotic genes.
-
Rogozin IB, Sverdlov AV, Babenko VN, Koonin EV. Analysis of evolution of exon-intron structure of eukaryotic genes. Brief Bioinform 2005, 6:118-134.
-
(2005)
Brief Bioinform
, vol.6
, pp. 118-134
-
-
Rogozin, I.B.1
Sverdlov, A.V.2
Babenko, V.N.3
Koonin, E.V.4
-
53
-
-
33646151622
-
An expectation-maximization algorithm for analysis of evolution of exon-intron structure of eukaryotic genes.
-
Carmel L, Rogozin IB, Wolf YI, Koonin EV. An expectation-maximization algorithm for analysis of evolution of exon-intron structure of eukaryotic genes. Comp Genomics Lect Notes Comput Sci 2005, 3678:35-46.
-
(2005)
Comp Genomics Lect Notes Comput Sci
, vol.3678
, pp. 35-46
-
-
Carmel, L.1
Rogozin, I.B.2
Wolf, Y.I.3
Koonin, E.V.4
-
54
-
-
84872246297
-
New maximum likelihood estimators for eukaryotic intron evolution.
-
Nguyen HD, Yoshihama M, Kenmochi N. New maximum likelihood estimators for eukaryotic intron evolution. PLoS Comput Biol 2005, 1:e79.
-
(2005)
PLoS Comput Biol
, vol.1
-
-
Nguyen, H.D.1
Yoshihama, M.2
Kenmochi, N.3
-
55
-
-
34347389905
-
Three distinct modes of intron dynamics in the evolution of eukaryotes.
-
Carmel L, Wolf YI, Rogozin IB, Koonin EV. Three distinct modes of intron dynamics in the evolution of eukaryotes. Genome Res 2007, 17:1034-1044.
-
(2007)
Genome Res
, vol.17
, pp. 1034-1044
-
-
Carmel, L.1
Wolf, Y.I.2
Rogozin, I.B.3
Koonin, E.V.4
-
57
-
-
46249111264
-
Malin: maximum likelihood analysis of intron evolution in eukaryotes.
-
Csuros M. Malin: maximum likelihood analysis of intron evolution in eukaryotes. Bioinformatics 2008, 24:1538-1539.
-
(2008)
Bioinformatics
, vol.24
, pp. 1538-1539
-
-
Csuros, M.1
-
58
-
-
34447330054
-
A high percentage of introns in human genes were present early in animal evolution: evidence from the basal metazoan Nematostella vectensis.
-
Sullivan JC, Reitzel AM, Finnerty JR. A high percentage of introns in human genes were present early in animal evolution: evidence from the basal metazoan Nematostella vectensis. Genome Inform 2006, 17:219-229.
-
(2006)
Genome Inform
, vol.17
, pp. 219-229
-
-
Sullivan, J.C.1
Reitzel, A.M.2
Finnerty, J.R.3
-
59
-
-
28144460075
-
Vertebrate-type intron-rich genes in the marine annelid Platynereis dumerilii.
-
Raible F, Tessmar-Raible K, Osoegawa K, Wincker P, Jubin C, Balavoine G, Ferrier D, Benes V, de Jong P, Weissenbach J, et al. Vertebrate-type intron-rich genes in the marine annelid Platynereis dumerilii. Science 2005, 310:1325-1326.
-
(2005)
Science
, vol.310
, pp. 1325-1326
-
-
Raible, F.1
Tessmar-Raible, K.2
Osoegawa, K.3
Wincker, P.4
Jubin, C.5
Balavoine, G.6
Ferrier, D.7
Benes, V.8
de Jong, P.9
Weissenbach, J.10
-
60
-
-
46249118523
-
Extremely intron-rich genes in the alveolate ancestors inferred with a flexible maximum-likelihood approach.
-
Csuros M, Rogozin IB, Koonin EV. Extremely intron-rich genes in the alveolate ancestors inferred with a flexible maximum-likelihood approach. Mol Biol Evol 2008, 25:903-911.
-
(2008)
Mol Biol Evol
, vol.25
, pp. 903-911
-
-
Csuros, M.1
Rogozin, I.B.2
Koonin, E.V.3
-
61
-
-
0037126071
-
Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus.
-
Martin W, Rujan T, Richly E, Hansen A, Cornelsen S, Lins T, Leister D, Stoebe B, Hasegawa M, Penny D. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc Natl Acad Sci U S A 2002, 99:12246-12251.
-
(2002)
Proc Natl Acad Sci U S A
, vol.99
, pp. 12246-12251
-
-
Martin, W.1
Rujan, T.2
Richly, E.3
Hansen, A.4
Cornelsen, S.5
Lins, T.6
Leister, D.7
Stoebe, B.8
Hasegawa, M.9
Penny, D.10
-
62
-
-
38349114864
-
Evolutionary dynamics of introns in plastid-derived genes in plants: saturation nearly reached but slow intron gain continues.
-
Basu MK, Rogozin IB, Deusch O, Dagan T, Martin W, Koonin EV. Evolutionary dynamics of introns in plastid-derived genes in plants: saturation nearly reached but slow intron gain continues. Mol Biol Evol 2008, 25:111-119.
-
(2008)
Mol Biol Evol
, vol.25
, pp. 111-119
-
-
Basu, M.K.1
Rogozin, I.B.2
Deusch, O.3
Dagan, T.4
Martin, W.5
Koonin, E.V.6
-
63
-
-
77649287495
-
Evolution of spliceosomal introns following endosymbiotic gene transfer.
-
Ahmadinejad N, Dagan T, Gruenheit N, Martin W, Gabaldon T. Evolution of spliceosomal introns following endosymbiotic gene transfer. BMC Evol Biol 2010, 10:57.
-
(2010)
BMC Evol Biol
, vol.10
, pp. 57
-
-
Ahmadinejad, N.1
Dagan, T.2
Gruenheit, N.3
Martin, W.4
Gabaldon, T.5
-
64
-
-
84870055179
-
What Nematode genomes tell us about the importance of horizontal gene transfers in the evolutionary history of animals.
-
Danchin EG. What Nematode genomes tell us about the importance of horizontal gene transfers in the evolutionary history of animals. Mob Genet Elements 2011, 1:269-273.
-
(2011)
Mob Genet Elements
, vol.1
, pp. 269-273
-
-
Danchin, E.G.1
-
65
-
-
79960546467
-
Horizontal gene transfer in nematodes: a catalyst for plant parasitism?
-
Haegeman A, Jones JT, Danchin EG. Horizontal gene transfer in nematodes: a catalyst for plant parasitism? Mol Plant Microbe Interact 2011, 24:879-887.
-
(2011)
Mol Plant Microbe Interact
, vol.24
, pp. 879-887
-
-
Haegeman, A.1
Jones, J.T.2
Danchin, E.G.3
-
66
-
-
78651268231
-
Horizontal gene transfer of microbial cellulases into nematode genomes is associated with functional assimilation and gene turnover.
-
Mayer WE, Schuster LN, Bartelmes G, Dieterich C, Sommer RJ. Horizontal gene transfer of microbial cellulases into nematode genomes is associated with functional assimilation and gene turnover. BMC Evol Biol 2011, 11:13.
-
(2011)
BMC Evol Biol
, vol.11
, pp. 13
-
-
Mayer, W.E.1
Schuster, L.N.2
Bartelmes, G.3
Dieterich, C.4
Sommer, R.J.5
-
67
-
-
78049316906
-
Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes.
-
Danchin EG, Rosso MN, Vieira P, de Almeida-Engler J, Coutinho PM, Henrissat B, Abad P. Multiple lateral gene transfers and duplications have promoted plant parasitism ability in nematodes. Proc Natl Acad Sci U S A 2010, 107:17651-17656.
-
(2010)
Proc Natl Acad Sci U S A
, vol.107
, pp. 17651-17656
-
-
Danchin, E.G.1
Rosso, M.N.2
Vieira, P.3
de Almeida-Engler, J.4
Coutinho, P.M.5
Henrissat, B.6
Abad, P.7
-
68
-
-
0034721644
-
Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology.
-
Black DL. Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell 2000, 103:367-370.
-
(2000)
Cell
, vol.103
, pp. 367-370
-
-
Black, D.L.1
-
69
-
-
0345316714
-
Increase of functional diversity by alternative splicing.
-
Kriventseva EV, Koch I, Apweiler R, Vingron M, Bork P, Gelfand MS, Sunyaev S. Increase of functional diversity by alternative splicing. Trends Genet 2003, 19:124-128.
-
(2003)
Trends Genet
, vol.19
, pp. 124-128
-
-
Kriventseva, E.V.1
Koch, I.2
Apweiler, R.3
Vingron, M.4
Bork, P.5
Gelfand, M.S.6
Sunyaev, S.7
-
70
-
-
1242352406
-
Assessing the impact of alternative splicing on domain interactions in the human proteome.
-
Resch A, Xing Y, Modrek B, Gorlick M, Riley R, Lee C. Assessing the impact of alternative splicing on domain interactions in the human proteome. J Proteome Res 2004, 3:76-83.
-
(2004)
J Proteome Res
, vol.3
, pp. 76-83
-
-
Resch, A.1
Xing, Y.2
Modrek, B.3
Gorlick, M.4
Riley, R.5
Lee, C.6
-
71
-
-
77951120000
-
Alternative splicing and evolution: diversification, exon definition and function.
-
Keren H, Lev-Maor G, Ast G. Alternative splicing and evolution: diversification, exon definition and function. Nat Rev Genet 2010, 11:345-355.
-
(2010)
Nat Rev Genet
, vol.11
, pp. 345-355
-
-
Keren, H.1
Lev-Maor, G.2
Ast, G.3
-
72
-
-
0034716987
-
EST comparison indicates 38% of human mRNAs contain possible alternative splice forms.
-
Brett D, Hanke J, Lehmann G, Haase S, Delbruck S, Krueger S, Reich J, Bork P. EST comparison indicates 38% of human mRNAs contain possible alternative splice forms. FEBS Lett 2000, 474:83-86.
-
(2000)
FEBS Lett
, vol.474
, pp. 83-86
-
-
Brett, D.1
Hanke, J.2
Lehmann, G.3
Haase, S.4
Delbruck, S.5
Krueger, S.6
Reich, J.7
Bork, P.8
-
73
-
-
0034029236
-
ISIS, the intron information system, reveals the high frequency of alternative splicing in the human genome.
-
Croft L, Schandorff S, Clark F, Burrage K, Arctander P, Mattick JS. ISIS, the intron information system, reveals the high frequency of alternative splicing in the human genome. Nat Genet 2000, 24:340-341.
-
(2000)
Nat Genet
, vol.24
, pp. 340-341
-
-
Croft, L.1
Schandorff, S.2
Clark, F.3
Burrage, K.4
Arctander, P.5
Mattick, J.S.6
-
74
-
-
0035393343
-
Genome-wide detection of alternative splicing in expressed sequences of human genes.
-
Modrek B, Resch A, Grasso C, Lee C. Genome-wide detection of alternative splicing in expressed sequences of human genes. Nucleic Acids Res 2001, 29:2850-2859.
-
(2001)
Nucleic Acids Res
, vol.29
, pp. 2850-2859
-
-
Modrek, B.1
Resch, A.2
Grasso, C.3
Lee, C.4
-
75
-
-
56749098074
-
Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing.
-
Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 2008, 40:1413-1415.
-
(2008)
Nat Genet
, vol.40
, pp. 1413-1415
-
-
Pan, Q.1
Shai, O.2
Lee, L.J.3
Frey, B.J.4
Blencowe, B.J.5
-
76
-
-
74949084336
-
Genome-wide mapping of alternative splicing in Arabidopsis thaliana.
-
Filichkin SA, Priest HD, Givan SA, Shen R, Bryant DW, Fox SE, Wong WK, Mockler TC. Genome-wide mapping of alternative splicing in Arabidopsis thaliana. Genome Res, 20:45-58.
-
Genome Res
, vol.20
, pp. 45-58
-
-
Filichkin, S.A.1
Priest, H.D.2
Givan, S.A.3
Shen, R.4
Bryant, D.W.5
Fox, S.E.6
Wong, W.K.7
Mockler, T.C.8
-
77
-
-
77956277181
-
Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq.
-
Lu T, Lu G, Fan D, Zhu C, Li W, Zhao Q, Feng Q, Zhao Y, Guo Y, Huang X, et al. Function annotation of the rice transcriptome at single-nucleotide resolution by RNA-seq. Genome Res, 20:1238-1249.
-
Genome Res
, vol.20
, pp. 1238-1249
-
-
Lu, T.1
Lu, G.2
Fan, D.3
Zhu, C.4
Li, W.5
Zhao, Q.6
Feng, Q.7
Zhao, Y.8
Guo, Y.9
Huang, X.10
-
78
-
-
79955925635
-
Assessing the contribution of alternative splicing to proteome diversity in Arabidopsis thaliana using proteomics data.
-
Severing EI, van Dijk AD, van Ham RC. Assessing the contribution of alternative splicing to proteome diversity in Arabidopsis thaliana using proteomics data. BMC Plant Biol 2011, 11:82.
-
(2011)
BMC Plant Biol
, vol.11
, pp. 82
-
-
Severing, E.I.1
van Dijk, A.D.2
van Ham, R.C.3
-
79
-
-
34548281651
-
Comparative genomics and evolution of alternative splicing: the pessimists' science.
-
Artamonova, II, Gelfand MS. Comparative genomics and evolution of alternative splicing: the pessimists' science. Chem Rev 2007, 107:3407-3430.
-
(2007)
Chem Rev
, vol.107
, pp. 3407-3430
-
-
Artamonova, I.I.1
Gelfand, M.S.2
-
80
-
-
38049061206
-
Alternative splicing: current perspectives.
-
Kim E, Goren A, Ast G. Alternative splicing: current perspectives. Bioessays 2008, 30:38-47.
-
(2008)
Bioessays
, vol.30
, pp. 38-47
-
-
Kim, E.1
Goren, A.2
Ast, G.3
-
81
-
-
36349026377
-
Functional and evolutionary analysis of alternatively spliced genes is consistent with an early eukaryotic origin of alternative splicing.
-
Irimia M, Rukov JL, Penny D, Roy SW. Functional and evolutionary analysis of alternatively spliced genes is consistent with an early eukaryotic origin of alternative splicing. BMC Evol Biol 2007, 7:188.
-
(2007)
BMC Evol Biol
, vol.7
, pp. 188
-
-
Irimia, M.1
Rukov, J.L.2
Penny, D.3
Roy, S.W.4
-
82
-
-
5044222204
-
How did alternative splicing evolve?
-
Ast G. How did alternative splicing evolve? Nat Rev Genet 2004, 5:773-782.
-
(2004)
Nat Rev Genet
, vol.5
, pp. 773-782
-
-
Ast, G.1
-
83
-
-
0025836071
-
A reappraisal of non-consensus mRNA splice sites.
-
Jackson IJ. A reappraisal of non-consensus mRNA splice sites. Nucleic Acids Res 1991, 19:3795-3798.
-
(1991)
Nucleic Acids Res
, vol.19
, pp. 3795-3798
-
-
Jackson, I.J.1
-
84
-
-
0028366003
-
Conserved sequences in a class of rare eukaryotic nuclear introns with non-consensus splice sites.
-
Hall SL, Padgett RA. Conserved sequences in a class of rare eukaryotic nuclear introns with non-consensus splice sites. J Mol Biol 1994, 239:357-365.
-
(1994)
J Mol Biol
, vol.239
, pp. 357-365
-
-
Hall, S.L.1
Padgett, R.A.2
-
85
-
-
0031306509
-
Terminal intron dinucleotide sequences do not distinguish between U2- and U12-dependent introns.
-
Dietrich RC, Incorvaia R, Padgett RA. Terminal intron dinucleotide sequences do not distinguish between U2- and U12-dependent introns. Mol Cell 1997, 1:151-160.
-
(1997)
Mol Cell
, vol.1
, pp. 151-160
-
-
Dietrich, R.C.1
Incorvaia, R.2
Padgett, R.A.3
-
86
-
-
0032247416
-
Evolutionary fates and origins of U12-type introns.
-
Burge CB, Padgett RA, Sharp PA. Evolutionary fates and origins of U12-type introns. Mol Cell 1998, 2:773-785.
-
(1998)
Mol Cell
, vol.2
, pp. 773-785
-
-
Burge, C.B.1
Padgett, R.A.2
Sharp, P.A.3
-
87
-
-
33750336226
-
An early evolutionary origin for the minor spliceosome.
-
Russell AG, Charette JM, Spencer DF, Gray MW. An early evolutionary origin for the minor spliceosome. Nature 2006, 443:863-866.
-
(2006)
Nature
, vol.443
, pp. 863-866
-
-
Russell, A.G.1
Charette, J.M.2
Spencer, D.F.3
Gray, M.W.4
-
88
-
-
44349155377
-
Computational screen for spliceosomal RNA genes aids in defining the phylogenetic distribution of major and minor spliceosomal components.
-
Davila Lopez M, Rosenblad MA, Samuelsson T. Computational screen for spliceosomal RNA genes aids in defining the phylogenetic distribution of major and minor spliceosomal components. Nucleic Acids Res 2008, 36:3001-3010.
-
(2008)
Nucleic Acids Res
, vol.36
, pp. 3001-3010
-
-
Davila Lopez, M.1
Rosenblad, M.A.2
Samuelsson, T.3
-
89
-
-
77749310993
-
Evolutionary dynamics of U12-type spliceosomal introns.
-
Lin CF, Mount SM, Jarmolowski A, Makalowski W. Evolutionary dynamics of U12-type spliceosomal introns. BMC Evol Biol 2010, 10:47.
-
(2010)
BMC Evol Biol
, vol.10
, pp. 47
-
-
Lin, C.F.1
Mount, S.M.2
Jarmolowski, A.3
Makalowski, W.4
-
90
-
-
0037099491
-
The splicing of U12-type introns can be a rate-limiting step in gene expression.
-
Patel AA, McCarthy M, Steitz JA. The splicing of U12-type introns can be a rate-limiting step in gene expression. Embo J 2002, 21:3804-3815.
-
(2002)
Embo J
, vol.21
, pp. 3804-3815
-
-
Patel, A.A.1
McCarthy, M.2
Steitz, J.A.3
-
91
-
-
0345169036
-
Splicing double: insights from the second spliceosome.
-
Patel AA, Steitz JA. Splicing double: insights from the second spliceosome. Nat Rev Mol Cell Biol 2003, 4:960-970.
-
(2003)
Nat Rev Mol Cell Biol
, vol.4
, pp. 960-970
-
-
Patel, A.A.1
Steitz, J.A.2
-
92
-
-
45549107558
-
U12 intron positions are more strongly conserved between animals and plants than U2 intron positions.
-
Basu MK, Makalowski W, Rogozin IB, Koonin EV. U12 intron positions are more strongly conserved between animals and plants than U2 intron positions. Biol Direct 2008, 3:19.
-
(2008)
Biol Direct
, vol.3
, pp. 19
-
-
Basu, M.K.1
Makalowski, W.2
Rogozin, I.B.3
Koonin, E.V.4
-
93
-
-
54849437046
-
Primordial spliceosomal introns were probably U2-type.
-
Basu MK, Rogozin IB, Koonin EV. Primordial spliceosomal introns were probably U2-type. Trends Genet 2008, 24:525-528.
-
(2008)
Trends Genet
, vol.24
, pp. 525-528
-
-
Basu, M.K.1
Rogozin, I.B.2
Koonin, E.V.3
-
94
-
-
33847031355
-
A glimpse of a putative pre-intron phase of eukaryotic evolution.
-
Sverdlov AV, Csuros M, Rogozin IB, Koonin EV. A glimpse of a putative pre-intron phase of eukaryotic evolution. Trends Genet 2007, 23:105-108.
-
(2007)
Trends Genet
, vol.23
, pp. 105-108
-
-
Sverdlov, A.V.1
Csuros, M.2
Rogozin, I.B.3
Koonin, E.V.4
-
95
-
-
3142749596
-
Prevalence of intron gain over intron loss in the evolution of paralogous gene families.
-
Babenko VN, Rogozin IB, Mekhedov SL, Koonin EV. Prevalence of intron gain over intron loss in the evolution of paralogous gene families. Nucleic Acids Res 2004, 32:3724-3733.
-
(2004)
Nucleic Acids Res
, vol.32
, pp. 3724-3733
-
-
Babenko, V.N.1
Rogozin, I.B.2
Mekhedov, S.L.3
Koonin, E.V.4
-
96
-
-
23844497214
-
Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell.
-
Makarova KS, Wolf YI, Mekhedov SL, Mirkin BG, Koonin EV. Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell. Nucleic Acids Res 2005, 33:4626-4638.
-
(2005)
Nucleic Acids Res
, vol.33
, pp. 4626-4638
-
-
Makarova, K.S.1
Wolf, Y.I.2
Mekhedov, S.L.3
Mirkin, B.G.4
Koonin, E.V.5
-
98
-
-
0030985059
-
Intron distribution in ancient paralogs supports random insertion and not random loss [published erratum appears in J Mol Evol 1997 Aug;45(2):206].
-
Cho G, Doolittle RF. Intron distribution in ancient paralogs supports random insertion and not random loss [published erratum appears in J Mol Evol 1997 Aug;45(2):206]. J Mol Evol 1997, 44:573-584.
-
(1997)
J Mol Evol
, vol.44
, pp. 573-584
-
-
Cho, G.1
Doolittle, R.F.2
-
99
-
-
33644783626
-
Introns and the origin of nucleus-cytosol compartmentalization.
-
Martin W, Koonin EV. Introns and the origin of nucleus-cytosol compartmentalization. Nature 2006, 440:41-45.
-
(2006)
Nature
, vol.440
, pp. 41-45
-
-
Martin, W.1
Koonin, E.V.2
-
100
-
-
69249211050
-
Intron-dominated genomes of early ancestors of eukaryotes.
-
Koonin EV. Intron-dominated genomes of early ancestors of eukaryotes. J Hered 2009, 100:618-623.
-
(2009)
J Hered
, vol.100
, pp. 618-623
-
-
Koonin, E.V.1
-
102
-
-
75649116868
-
A structural analysis of the group II intron active site and implications for the spliceosome.
-
Keating KS, Toor N, Perlman PS, Pyle AM. A structural analysis of the group II intron active site and implications for the spliceosome. Rna 2010, 16: 1-9.
-
(2010)
Rna
, vol.16
, pp. 1-9
-
-
Keating, K.S.1
Toor, N.2
Perlman, P.S.3
Pyle, A.M.4
|