메뉴 건너뛰기




Volumn 16, Issue 11, 2012, Pages 4417-4433

A hybrid model of self organizing maps and least square support vector machine for river flow forecasting

Author keywords

[No Author keywords available]

Indexed keywords

DATA SETS; FORECASTING TECHNIQUES; HIGH-DIMENSIONAL; HYBRID MODEL; INPUT PATTERNS; INPUT SPACE; LEAST SQUARE SUPPORT VECTOR MACHINES; LEAST SQUARES SUPPORT VECTOR MACHINES; LOW DIMENSIONAL; MALAYSIA; OUTPUT LAYER; PERFORMANCE INDICATORS; RIVER FLOW; RIVER FLOW FORECASTING; SOM ALGORITHMS; WATER RESOURCE PLANNING;

EID: 84870283667     PISSN: 10275606     EISSN: 16077938     Source Type: Journal    
DOI: 10.5194/hess-16-4417-2012     Document Type: Article
Times cited : (30)

References (101)
  • 1
    • 77955276087 scopus 로고    scopus 로고
    • Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds
    • Adamowski, J. and Sun, K.: Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds, J. Hydrol., 390, 85-91, 2010.
    • (2010) J. Hydrol. , vol.390 , pp. 8591
    • Adamowski, J.1    Sun, K.2
  • 2
    • 77953973407 scopus 로고    scopus 로고
    • Daily groundwater level fluctuation forecasting using soft computing technique
    • Affandi, A. K. and Watanabe, K.: Daily groundwater level fluctuation forecasting using soft computing technique, Nat. Sci., 5, 1-10, 2007.
    • (2007) Nat. Sci. , vol.5 , pp. 1-10
    • Affandi, A.K.1    Watanabe, K.2
  • 3
    • 77958160652 scopus 로고    scopus 로고
    • A Preliminary study on the suitability of data driven approach for continuous water leave modeling
    • Aqil, M., Kita, K., and Macalino, M.: A Preliminary study on the suitability of data driven approach for continuous water leave modeling, Int. J. Comp. Sci., 1, 246-252, 2006.
    • (2006) Int. J. Comp. Sci. , vol.1 , pp. 246-252
    • Aqil, M.1    Kita, K.2    MacAlino, M.3
  • 4
    • 31044438334 scopus 로고    scopus 로고
    • Multi-time scale stream flow predictions: The support vector machines approach
    • DOI 10.1016/j.jhydrol.2005.06.001, PII S0022169405002908
    • Asefa, T., Kemblowski, M., McKee, M., and Khalil, A.: Multi-time scale stream flow predictions: The support vector machines approach, J. Hydrol., 318, 7-16, 2006. (Pubitemid 43120784)
    • (2006) Journal of Hydrology , vol.318 , Issue.1-4 , pp. 7-16
    • Asefa, T.1    Kemblowski, M.2    McKee, M.3    Khalil, A.4
  • 5
    • 60249084777 scopus 로고    scopus 로고
    • Generalization performance of support vector machines and neural networks in runoff modeling
    • Behzad, M., Asghari, K., Eazi, M., and Palhang, M.: Generalization performance of support vector machines and neural networks in runoff modeling, Expert Syst. Appl., 36, 7624-7629, 2009.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 7624-7629
    • Behzad, M.1    Asghari, K.2    Eazi, M.3    Palhang, M.4
  • 6
    • 41649106264 scopus 로고    scopus 로고
    • A hybrid neural networks and numerical models approach for predicting groundwater abstraction impacts
    • Birkinshaw, S. J., Parkin, G., and Rao. Z.: A hybrid neural networks and numerical models approach for predicting groundwater abstraction impacts, J. Hydroinform., 10, 127-137, 2008.
    • (2008) J. Hydroinform. , vol.10 , pp. 127-137
    • Birkinshaw, S.J.1    Parkin, G.2    Rao, Z.3
  • 8
    • 67349198902 scopus 로고    scopus 로고
    • Comparing the performance of traditional cluster analysis, self-organizing maps and fuzzy C-means method for strategic grouping
    • Budayan, C., Dikmen, I., and Birgonul, M. T.: Comparing the performance of traditional cluster analysis, self-organizing maps and fuzzy C-means method for strategic grouping, Expert Syst. Appl., 36, 11772-11781, 2009.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 11772-11781
    • Budayan, C.1    Dikmen, I.2    Birgonul, M.T.3
  • 9
    • 10644295753 scopus 로고    scopus 로고
    • Input determination for neural network models in water resources applications. Part 1 - Background and methodology
    • DOI 10.1016/j.jhydrol.2004.06.021, PII S0022169404002987
    • Bowden, G. J., Dandy, G. C., and Maier, H. R.: Input determination for neural network models in water resources application. Part 1- background and methodology, J. Hydrology, 301, 75-92, 2005. (Pubitemid 39645410)
    • (2005) Journal of Hydrology , vol.301 , Issue.1-4 , pp. 75-92
    • Bowden, G.J.1    Dandy, G.C.2    Maier, H.R.3
  • 10
    • 0037381038 scopus 로고    scopus 로고
    • Support vector machines experts for time series forecasting
    • DOI 10.1016/S0925-2312(02)00577-5, PII S0925231202005775
    • Cao, L.: Support vector machines experts for time series forecasting, Neurocomputing, 51, 321-339, 2003. (Pubitemid 36367241)
    • (2003) Neurocomputing , vol.51 , pp. 321-339
    • Cao, L.1
  • 11
    • 33947502845 scopus 로고    scopus 로고
    • Enforced selforganizing map neural networks for river flood forecasting
    • Chang, F. J., Chang, L. C., and Wang, Y. S.: Enforced selforganizing map neural networks for river flood forecasting, Hydrol. Process., 21, 741-749, 2007.
    • (2007) Hydrol. Process. , vol.21 , pp. 741-749
    • Chang, F.J.1    Chang, L.C.2    Wang, Y.S.3
  • 12
    • 30344446393 scopus 로고    scopus 로고
    • Combining SOM and fuzzy rule base for flow time prediction in semiconductor manufacturing factory
    • DOI 10.1016/j.asoc.2004.12.004, PII S1568494605000116
    • Chang, P. C. and Liao, T. W.: Combining SOM and fuzzy rule base for flow time prediction in semiconductor manufacturing factory, Appl. Soft Comput., 6, 198-206, 2006. (Pubitemid 43069242)
    • (2006) Applied Soft Computing Journal , vol.6 , Issue.2 , pp. 198-206
    • Chang, P.C.1    Liao, T.W.2
  • 13
    • 67749106612 scopus 로고    scopus 로고
    • Evolving CBR and data segmentation by SOM for flow time prediction in semiconductor manufacturing factory
    • Chang, P. C., Fan, C. Y., and Wang, Y. W.: Evolving CBR and data segmentation by SOM for flow time prediction in semiconductor manufacturing factory, J. Intell. Manuf., 20, 421-429, 2008.
    • (2008) J. Intell. Manuf. , vol.20 , pp. 421-429
    • Chang, P.C.1    Fan, C.Y.2    Wang, Y.W.3
  • 14
    • 33748133361 scopus 로고    scopus 로고
    • A hybrid sarima and support vector machines in forecasting the production values of machinery industry in taiwan
    • Chen, K. Y. and Wang, C. H.: A hybrid SARIMA and support vector machines in forecasting the production values of machinery industry in Taiwan, Expert System Application, 32, 254-264, 2007.
    • (2007) Expert System Application , vol.32 , pp. 254-264
    • Chen, K.Y.1    Wang, C.H.2
  • 15
    • 0003166043 scopus 로고
    • The comparative ability of Self-organizing neural networks to define cluster structure, Omega
    • Chen, S. K., Mangimeli, P., and West, D.: The comparative ability of Self-organizing neural networks to define cluster structure, Omega, International Journal of Management Science, 23, 271- 279, 1995.
    • (1995) International Journal of Management Science , vol.23 , pp. 271-279
    • Chen, S.K.1    Mangimeli, P.2    West, D.3
  • 17
    • 34249775808 scopus 로고    scopus 로고
    • Baseflow separation techniques for modular artificial neural network modelling in flow forecasting
    • Corzo, G. A. and Solomantine, D. P.: Baseflow separation techniques for modular artificial neural network modelling in flow forecasting, Hydrolog. Sci. J., 52, 491-507, 2007.
    • (2007) Hydrolog. Sci. J. , vol.52 , pp. 491-507
    • Corzo, G.A.1    Solomantine, D.P.2
  • 18
    • 77951856333 scopus 로고    scopus 로고
    • Combining semi-distributed process-based and data-driven models in flow simulation: A case study of the Meuse river basin
    • doi:10.5194/hess-13-1619-2009
    • Corzo, G. A., Solomatine, D. P., Hidayat, de Wit, M., Werner, M., Uhlenbrook, S., and Price, R. K.: Combining semi-distributed process-based and data-driven models in flow simulation: a case study of the Meuse river basin, Hydrol. Earth Syst. Sci., 13, 1619-1634, doi:10.5194/hess-13-1619-2009, 2009.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 1619-1634
    • Corzo, G.A.1    Solomatine, D.P.2    Hidayat De Wit, M.3    Werner, M.4    Uhlenbrook, S.5    Price, R.K.6
  • 19
    • 0034739744 scopus 로고    scopus 로고
    • Trends in floods and low flows in the united states: Impact of spatial correlation
    • Douglas, E. M., Vogel, R. M., and Kroll, C. N.: Trends in floods and low flows in the United States: impact of spatial correlation, J. Hydrol., 240, 90-105, 2000.
    • (2000) J. Hydrol. , vol.240 , pp. 90-105
    • Douglas, E.M.1    Vogel, R.M.2    Kroll, C.N.3
  • 20
    • 0035398081 scopus 로고    scopus 로고
    • Model induction with support vector machines: Introduction and applications
    • DOI 10.1061/(ASCE)0887-3801(2001)15:3(208), Reportnr 22146
    • Dibike, Y. B., Velickov, S., Solomatine, D. P., and Abbott, M. B.: Model induction with support vector machines: introduction and applications, ASCE J. Comput. Civil Eng., 15, 208-216, 2001. (Pubitemid 32583199)
    • (2001) Journal of Computing in Civil Engineering , vol.15 , Issue.3 , pp. 208-216
    • Dibike, Y.B.1    Velickov, S.2    Solomatine, D.3    Abbott, M.B.4
  • 22
    • 0038502200 scopus 로고    scopus 로고
    • Artificial neural networks for streamflow prediction
    • Dolling, O. R. and Varas, E. A.: Artificial neural networks for streamflow prediction, J. Hydraul. Res., 40, 547-554, 2003.
    • (2003) J. Hydraul. Res. , vol.40 , pp. 547-554
    • Dolling, O.R.1    Varas, E.A.2
  • 23
    • 77958183722 scopus 로고    scopus 로고
    • Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 1: Concepts and methodology
    • doi:10.5194/hess-14-1931-2010
    • Elshorbagy, A., Corzo, G., Srinivasulu, S., and Solomatine, D. P.: Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 1: Concepts and methodology, Hydrol. Earth Syst. Sci., 14, 1931-1941, doi:10.5194/hess-14-1931-2010, 2010a.
    • (2010) Hydrol. Earth Syst. Sci. , vol.14 , pp. 1931-1941
    • Elshorbagy, A.1    Corzo, G.2    Srinivasulu, S.3    Solomatine, D.P.4
  • 24
    • 77958199170 scopus 로고    scopus 로고
    • Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 2: Application
    • doi:10.5194/hess-14-1943-2010
    • Elshorbagy, A., Corzo, G., Srinivasulu, S., and Solomatine, D. P.: Experimental investigation of the predictive capabilities of data driven modeling techniques in hydrology - Part 2: Application, Hydrol. Earth Syst. Sci., 14, 1943-1961, doi:10.5194/hess-14- 1943-2010, 2010b.
    • (2010) Hydrol. Earth Syst. Sci. , vol.14 , pp. 1943-1961
    • Elshorbagy, A.1    Corzo, G.2    Srinivasulu, S.3    Solomatine, D.P.4
  • 25
    • 32144462264 scopus 로고    scopus 로고
    • Short-term load forecasting based on an adaptive hybrid method
    • DOI 10.1109/TPWRS.2005.860944
    • Fan, S. and Chen, L.: Short-term load forecasting based on an adaptive hybrid method, IEEE Transactions on Power System, 21, 392-401, 2006. (Pubitemid 43204739)
    • (2006) IEEE Transactions on Power Systems , vol.21 , Issue.1 , pp. 392-401
    • Fan, S.1    Chen, L.2
  • 26
    • 84879720622 scopus 로고    scopus 로고
    • Next-day electricity-price forecasting using a hybrid network
    • Fan, S., Mao, C., and Chen, L.: Next-day electricity-price forecasting using a hybrid network. IET. Gener. Transm. Distrib. 1, 176- 182, 2007.
    • (2007) IET. Gener. Transm. Distrib. , vol.1 , pp. 176-182
    • Fan, S.1    Mao, C.2    Chen, L.3
  • 27
    • 71149110298 scopus 로고    scopus 로고
    • Streamflow drought time series forecasting: A case study in a small watershed in north west spain
    • Fernandez, C. and Vega, J. A.: Streamflow drought time series forecasting: a case study in a small watershed in north west spain, Stoch. Environ. Res. Risk Assess., 23, 1063-1070, 2009.
    • (2009) Stoch. Environ. Res. Risk Assess. , vol.23 , pp. 1063-1070
    • Fernandez, C.1    Vega, J.A.2
  • 28
    • 38849167375 scopus 로고    scopus 로고
    • Comparison of Artificial Intelligence Techniques for river flow forecasting
    • Firat, M.: Comparison of Artificial Intelligence Techniques for river flow forecasting, Hydrol. Earth Syst. Sci., 12, 123-139, doi:10.5194/hess-12- 123-2008, 2008. (Pubitemid 351190324)
    • (2008) Hydrology and Earth System Sciences , vol.12 , Issue.1 , pp. 123-139
    • Firat, M.1
  • 29
    • 69949189137 scopus 로고    scopus 로고
    • Hydrological time-series modeling using an adaptive neuro-fuzzy inference system
    • Firat, M. and Gungor, M.: Hydrological time-series modeling using an adaptive neuro-fuzzy inference system, Hydrol. Process., 18, 833-844, 2007.
    • (2007) Hydrol. Process. , vol.18 , pp. 833-844
    • Firat, M.1    Gungor, M.2
  • 30
    • 67349260019 scopus 로고    scopus 로고
    • Prediction of flashover voltage of insulators using least square support vector machines
    • Gencoglu, M. T. and Uyar, M.: Prediction of flashover voltage of insulators using least square support vector machines, Expert Systems with Applications, 36, 10789-10798, 2009.
    • (2009) Expert Systems with Applications , vol.36 , pp. 10789-10798
    • Gencoglu, M.T.1    Uyar, M.2
  • 31
    • 0027038056 scopus 로고
    • Physically based hydrologic modeling 2. Is the concept realistic?
    • DOI 10.1029/92WR01259
    • Grayson, R. B., Moore, I. D., andMcMahon, T. A.: Physically based hydrologic modelling. 2. Is the concept realistic, Water Resour. Res., 28, 2659-2666, 1992. (Pubitemid 23376343)
    • (1992) Water Resources Research , vol.28 , Issue.10 , pp. 2659-2666
    • Grayson, R.B.1    Moore, I.D.2    McMahon, T.A.3
  • 32
    • 27644470780 scopus 로고    scopus 로고
    • Assessing the performance of eight real-time updating models and procedures for the Brosna River
    • Advances in Flood Forecasting
    • Goswami, M., O'Connor, K. M., Bhattarai, K. P., and Shamseldin, A. Y.: Assessing the performance of eight real-time updating models and procedures for the Brosna River, Hydrol. Earth Syst. Sci., 9, 394-411, doi:10.5194/hess-9-394- 2005, 2005. (Pubitemid 41555696)
    • (2005) Hydrology and Earth System Sciences , vol.9 , Issue.4 , pp. 394-411
    • Goswami, M.1    O'Connor, K.M.2    Bhattarai, K.P.3    Shamseldin, A.Y.4
  • 33
    • 0035075094 scopus 로고    scopus 로고
    • Mean annual temperature and total annual precipitation trends at Canadian biosphere reserves
    • DOI 10.1023/A:1006490707949
    • Hamilton, J. P., Whitelaw, G. S., and Fenech, A.: Mean annual temperature and annual precipitation trends at Canadian biosphere reserves, Envir. Monit. Assess, 67, 239-275, 2001. (Pubitemid 32284989)
    • (2001) Environmental Monitoring and Assessment , vol.67 , Issue.1-2 , pp. 239-275
    • Hamilton, J.P.1    Whitelaw, G.S.2    Fenech, A.3
  • 34
    • 58349108297 scopus 로고    scopus 로고
    • An expert system based on least square support vector machines for diagnosis of valvular heart disease
    • Hanbay, D.: An expert system based on least square support vector machines for diagnosis of valvular heart disease, Expert Systems with Applictions, 36, 8368-8374, 2009.
    • (2009) Expert Systems with Applictions , vol.36 , pp. 8368-8374
    • Hanbay, D.1
  • 36
    • 56849104524 scopus 로고    scopus 로고
    • Towards model evaluation and identification using Self-Organizing Maps
    • doi:10.5194/hess-12-657-2008
    • Herbst, M. and Casper, M. C.: Towards model evaluation and identification using Self-Organizing Maps, Hydrol. Earth Syst. Sci., 12, 657-667, doi:10.5194/hess-12-657-2008, 2008.
    • (2008) Hydrol. Earth Syst. Sci. , vol.12 , pp. 657-667
    • Herbst, M.1    Casper, M.C.2
  • 37
    • 68149135416 scopus 로고    scopus 로고
    • Mapping model behaviour using Self-Organizing Maps
    • doi:10.5194/hess-13-395-2009
    • Herbst, M., Gupta, H. V., and Casper, M. C.: Mapping model behaviour using Self-Organizing Maps, Hydrol. Earth Syst. Sci., 13, 395-409, doi:10.5194/hess-13-395-2009, 2009.
    • (2009) Hydrol. Earth Syst. Sci. , vol.13 , pp. 395-409
    • Herbst, M.1    Gupta, H.V.2    Casper, M.C.3
  • 38
    • 0036998831 scopus 로고    scopus 로고
    • Selforganizing Linear Output Map (SOLO): An Artificial Neural Network Suitable for Hydrologic Modeling and Analysis
    • doi:10.1029/2001WR000795
    • Hsu, K., Gupta, H. V., Gao, X. Sorooshian, S., and Imam, B.: Selforganizing linear output map (SOLO): an artificial neural network suitable for hydrologic modeling and analysis, Water Resour. Res., 38, 1302, doi:10.1029/2001WR000795, 2002.
    • (2002) Water Resour. Res. , vol.38 , pp. 1302
    • Hsu, K.1    Gupta, H.V.2    Gao Sorooshian, X.S.3    Imam, B.4
  • 39
    • 60249084893 scopus 로고    scopus 로고
    • A twostage architecture for stock price forecasting by integrating selforganizing map and support vector regression
    • Hsu, S.-H., Hsieh, J. J. P.-A., Chih, T.-C., and Hsu, K.-C.: A twostage architecture for stock price forecasting by integrating selforganizing map and support vector regression, Expert Systems with Applications, 36, 7947-7951, 2009.
    • (2009) Expert Systems with Applications , vol.36 , pp. 7947-7951
    • Hsu, S.-H.1    Hsieh, J.J.P.-A.2    Chih, T.-C.3    Hsu, K.-C.4
  • 40
    • 56349169042 scopus 로고    scopus 로고
    • A hybrid SOFM-SVR with a filterbased feature selection for stock market forecasting
    • Huang, C. L. and Tsai, C. Y.: A hybrid SOFM-SVR with a filterbased feature selection for stock market forecasting, Expert Syst. Appl., 36, 1529-1539, 2009.
    • (2009) Expert Syst. Appl. , vol.36 , pp. 1529-1539
    • Huang, C.L.1    Tsai, C.Y.2
  • 41
    • 4644299731 scopus 로고    scopus 로고
    • Forecasting flows in Apalachicola River using neural networks
    • DOI 10.1002/hyp.1492
    • Huang, W., Bing Xu, B., and Hilton, A.: Forecasting flow in apalachicola river using neural networks, Hydrol. Process., 18, 2545-2564, 2004. (Pubitemid 39267227)
    • (2004) Hydrological Processes , vol.18 , Issue.13 , pp. 2545-2564
    • Huang, W.1    Xu, B.2    Chan-Hilton, A.3
  • 42
    • 77951872732 scopus 로고    scopus 로고
    • An artificial neural network model for rainfall forecasting in Bangkok
    • doi:10.5194/hess-13-1413-2009
    • Hung, N. Q., Babel, M. S., Weesakul, S., and Tripathi, N. K.: An artificial neural network model for rainfall forecasting in Bangkok, Thailand, Hydrol. Earth Syst. Sci., 13, 1413-1425, doi:10.5194/hess-13-1413-2009, 2009.
    • (2009) Thailand, Hydrol. Earth Syst. Sci. , vol.13 , pp. 1413-1425
    • Hung, N.Q.1    Babel, M.S.2    Weesakul, S.3    Tripathi, N.K.4
  • 43
    • 33846813334 scopus 로고    scopus 로고
    • Hybrid neural network models for hydrologic time series forecasting
    • DOI 10.1016/j.asoc.2006.03.002, PII S1568494606000317
    • Jain, A. and Kumar, A. M.: Hybrid neural network models for hydrologic time series forecasting, Appl. Soft Comput, 7, 585-592, 2007. (Pubitemid 46205467)
    • (2007) Applied Soft Computing Journal , vol.7 , Issue.2 , pp. 585-592
    • Jain, A.1    Kumar, A.M.2
  • 45
    • 53349162039 scopus 로고    scopus 로고
    • Forecasting of traffic orgin no and no2 concentrations by support vector machines and neural networks using principal component analysis
    • Juhos, I., Makra, L., and Toth, B.: Forecasting of traffic orgin NO and NO2 concentrations by Support Vector Machines and neural networks using principal component analysis, Simulation Modeling Practice and Theory, 16, 1488-1502, 2008.
    • (2008) Simulation Modeling Practice and Theory , vol.16 , pp. 1488-1502
    • Juhos, I.1    Makra, L.2    Toth, B.3
  • 47
    • 40849119664 scopus 로고    scopus 로고
    • Dynamic temperature modeling of an SOFC using least square support vector machines
    • Kang, Y. W., Li, J., Cao, G. Y., Tu, H. Y., Li, J., and Yang, J.: Dynamic temperature modeling of an SOFC using least square support vector machines, J. Power Sources, 179, 683-692, 2008.
    • (2008) J. Power Sources , vol.179 , pp. 683-692
    • Kang, Y.W.1    Li, J.2    Cao, G.Y.3    Tu, H.Y.4    Li, J.5    Yang, J.6
  • 48
    • 40749144865 scopus 로고    scopus 로고
    • Review of the self-organizing map (SOM) approach in water resources: Analysis, modelling and application
    • DOI 10.1016/j.envsoft.2007.10.001, PII S1364815207001879
    • Kalteh, A. M., Hjorth, P., and Berndtsson, R.: Review of the selforganizing map (SOM) approach in water resources: Analysis, modeliong and application. Environ. Model. Softw., 23, 835-845, 2008. (Pubitemid 351380692)
    • (2008) Environmental Modelling and Software , vol.23 , Issue.7 , pp. 835-845
    • Kalteh, A.M.1    Hjorth, P.2    Berndtsson, R.3
  • 49
    • 70349453596 scopus 로고    scopus 로고
    • An artificial neural network (pdq) model for time series forecasting
    • Khashei, M. and Bijari, M.: An artificial neural network (p,d,q) model for time series forecasting, Expert Syst. Appl., 37, 479- 489, 2010.
    • (2010) Expert Syst. Appl. , vol.37 , pp. 479-489
    • Khashei, M.1    Bijari, M.2
  • 51
    • 1642497522 scopus 로고    scopus 로고
    • River flow modeling using artificial neural networks
    • DOI 10.1061/(ASCE)1084-0699(2004)9:1(60)
    • Kisi, O.: River flow modeling using artificial neural networks, J. Hydrol. Eng., 9, 60-63, 2004. (Pubitemid 38122771)
    • (2004) Journal of Hydrologic Engineering , vol.9 , Issue.1 , pp. 60-63
    • Kisi, O.1
  • 52
    • 41949142664 scopus 로고    scopus 로고
    • River flow forecasting and estimation using different artificial neural network techniques
    • DOI 10.2166/nh.2008.026
    • Kisi, O.: River flow forecasting and estimation using different artificial neural network technique, Hydrol. Res., 39.1, 27-40, 2008. (Pubitemid 351512854)
    • (2008) Hydrology Research , vol.39 , Issue.1 , pp. 27-40
    • Kisi, O.1
  • 53
    • 79951579061 scopus 로고    scopus 로고
    • A wavelet-support vector machine conjunction model for monthly streamflow forecasting
    • Kisi, O. and Cimen, M.: A wavelet-support vector machine conjunction model for monthly streamflow forecasting, J. Hydrol., 399, 132-140, 2010.
    • (2010) J. Hydrol. , vol.399 , pp. 132-140
    • Kisi, O.1    Cimen, M.2
  • 55
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of 'goodness-of-fit' measures in hydrologic and hydroclimatic model validation
    • DOI 10.1029/1998WR900018
    • Legates, D. R. and McCabe Jr., G. J.: Evaluating the use of goodness-of-fit measures in hydrologic and hydroclimatic model validation, Water Resour. Res., 35, 233-241, 1999. (Pubitemid 29054163)
    • (1999) Water Resources Research , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe Jr., G.J.2
  • 56
    • 21344450695 scopus 로고    scopus 로고
    • Time series forecasting by combining the radial basis function network and the Self-Organizing Map
    • Lin, G. F. and Chen, L. H.: Time series forecasting by combining the radial basis function network and the Self-Organizing Map, Hydrol. Process., 19, 1925-1937, 2005.
    • (2005) Hydrol. Process. , vol.19 , pp. 1925-1937
    • Lin, G.F.1    Chen, L.H.2
  • 57
    • 33646564705 scopus 로고    scopus 로고
    • Identification of homogeneous regions for regional frequency analysis using the self-organizing map
    • Lin, G. F. and Chen, L. H.: Identification of homogeneous regions for regional frequency analysis using the Self-Organizing Map, J. Hydrol., 324, 1-9, 2006.
    • (2006) J. Hydrol. , vol.324 , pp. 1-9
    • Lin, G.F.1    Chen, L.H.2
  • 58
    • 34249662794 scopus 로고    scopus 로고
    • A SOM-based approach to estimating design hyetographs of ungauged sites
    • Lin, G. F. and Wu, M. C.: A SOM-based approach to estimating design hyetographs of ungauged sites, J. Hydrol., 339, 216-226, 2007.
    • (2007) J. Hydrol. , vol.339 , pp. 216-226
    • Lin, G.F.1    Wu, M.C.2
  • 59
    • 69349084510 scopus 로고    scopus 로고
    • A hybrid neural network model for typhoon-rainfall forecasting
    • Lin, G. F. and Wu, M. C.: A hybrid neural network model for typhoon-rainfall forecasting, J. Hydrol., 375, 216-226, 2009.
    • (2009) J. Hydrol. , vol.375 , pp. 216-226
    • Lin, G.F.1    Wu, M.C.2
  • 60
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long-term discharge prediction
    • Lin, J. Y., Cheng, C. T., and Chau, K. W.: Using support vector machines for long-term discharge prediction, Hydrol. Sci. J., 51, 599-612, 2006.
    • (2006) Hydrol. Sci. J. , vol.51 , pp. 599-612
    • Lin, J.Y.1    Cheng, C.T.2    Chau, K.W.3
  • 62
    • 0242306014 scopus 로고    scopus 로고
    • A real time hydrological forecasting system using a fuzzy clustering approach
    • DOI 10.1016/S0098-3004(03)00137-7
    • Luchetta, A. and Manetti, S.: A real time hydrological forecasting system using a fuzzy clustering approach, Comput. Geosci., 29, 1111-1117, 2003. (Pubitemid 37343432)
    • (2003) Computers and Geosciences , vol.29 , Issue.9 , pp. 1111-1117
    • Luchetta, A.1    Manetti, S.2
  • 63
    • 0034737033 scopus 로고    scopus 로고
    • A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting
    • DOI 10.1016/S0022-1694(99)00165-1, PII S0022169499001651
    • Luk, K. C., Ball, J. E., and Sharma A.: A study of optimal model lag and spatial inputs to artificial neural network for rainfall forecasting, J. Hydrol., 227, 56-65, 2000. (Pubitemid 30104918)
    • (2000) Journal of Hydrology , vol.227 , Issue.1-4 , pp. 56-65
    • Luk, K.C.1    Ball, J.E.2    Sharma, A.3
  • 64
    • 0033957764 scopus 로고    scopus 로고
    • Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications
    • DOI 10.1016/S1364-8152(99)00007-9, PII S1364815299000079
    • Maier, H. R. and Dandy, G. C.: Neural networks for the production and forecasting of water resource variables: a review and modeling issues and application, Environ. Model. Softw., 15, 101- 124, 2000. (Pubitemid 30018318)
    • (2000) Environmental Modelling and Software , vol.15 , Issue.1 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 65
    • 0030572617 scopus 로고    scopus 로고
    • A comparison of SOM neural network and hierarchical clustering methods
    • DOI 10.1016/0377-2217(96)00038-0, PII S0377221796000380
    • Mangiameli, P., Chen, S. K., and West, D.: A comparison of SOM neural network and hierarchical clustering methods, Eur. J. Oper. Res., 93, 402-417, 1996. (Pubitemid 126389292)
    • (1996) European Journal of Operational Research , vol.93 , Issue.2 , pp. 402-417
    • Mangiameli, P.1    Chen, S.K.2    West, D.3
  • 67
    • 33746347649 scopus 로고    scopus 로고
    • Self-organizing maps could improve the classification of Spanish mutual funds
    • DOI 10.1016/j.ejor.2004.12.018, PII S0377221705001852
    • Moreno, D., Marco, P., and Olmeda, I.: Self-Organizing Maps could improve the classification of Spanish mutual funds, Eur. J. Oper. Res., 147, 1039-1054, 2006. (Pubitemid 44109936)
    • (2006) European Journal of Operational Research , vol.174 , Issue.2 , pp. 1039-1054
    • Moreno, D.1    Marco, P.2    Olmeda, I.3
  • 68
    • 84867245302 scopus 로고    scopus 로고
    • Khabur river flow using artificial neural networks
    • Muhamad, J. R. and Hassan, J. N.: Khabur River flow using artificial neural networks, Al-Rafidain Engineering, 13, 33-42, 2005.
    • (2005) Al-Rafidain Engineering , vol.13 , pp. 33-42
    • Muhamad, J.R.1    Hassan, J.N.2
  • 70
    • 20344388265 scopus 로고    scopus 로고
    • A hybrid ARIMA and support vector machines model in stock price forecasting
    • Pai, P. F. and Lin, C. S.: A hybrid ARIMA and support vector machines model in stock price forecasting, Omega, 33, 497-505, 2005.
    • (2005) Omega , vol.33 , pp. 497-505
    • Pai, P.F.1    Lin, C.S.2
  • 71
    • 0442279715 scopus 로고    scopus 로고
    • SOFM-MLP: A hybrid neural network for atmospheric temperature prediction
    • Pal, N. R., Pal, S., Das, J., and Majumdar, K,: SOFM-MLP: A hybrid neural network for atmospheric temperature prediction, IEEE T. Geosci. Remote Sens., 41, 2783-2791, 2003.
    • (2003) IEEE T. Geosci. Remote Sens. , vol.41 , pp. 2783-2791
    • Pal, N.R.1    Pal, S.2    Das, J.3    Majumdar, K.4
  • 72
    • 34447527322 scopus 로고    scopus 로고
    • Wavelet and neuro-fuzzy conjunction model for precipitation forecasting
    • DOI 10.1016/j.jhydrol.2007.05.026, PII S0022169407003216
    • Partal, T. and Kisi, O.: Wavelet and neuro-fuzzy conjuction model for precipitation forecasting, J. Hydrol., 342, 199-212, 2007. (Pubitemid 47069364)
    • (2007) Journal of Hydrology , vol.342 , Issue.1-2 , pp. 199-212
    • Partal, T.1    Kisi, O.2
  • 73
    • 0031272644 scopus 로고    scopus 로고
    • Neural networks in financial engineering: A study in methodology
    • Refenes, A., Burgess, A. N., and Bents, Y.: Neural networks in financial engineering: A study in methodology, IEEE T. Neural Networ., 8, 1223-1267, 2003.
    • (2003) IEEE T. Neural Networ. , vol.8 , pp. 1223-1267
    • Refenes, A.1    Burgess, A.N.2    Bents, Y.3
  • 76
    • 0004393134 scopus 로고
    • Connectionist approach to time series prediction: An empirical test
    • Sharda, R. and Patil, R. B.: Connectionist approach to time series prediction: an empirical test, J. Intell. Manuf., 3, 317-323, 1992.
    • (1992) J. Intell. Manuf. , vol.3 , pp. 317-323
    • Sharda, R.1    Patil, R.B.2
  • 77
    • 18144390148 scopus 로고    scopus 로고
    • Flow categorization model for improving forecasting
    • Sivapragasam, C. and Liong, S. Y.: Flow categorozation model for improving forecasting, Nord. Hydrol., 36, 37-48, 2005. (Pubitemid 40620978)
    • (2005) Nordic Hydrology , vol.36 , Issue.1 , pp. 37-48
    • Sivapragasam, C.1    Liong, S.-Y.2
  • 78
    • 38549089135 scopus 로고    scopus 로고
    • Instance-based learning compared to other data-driven methods in hydrological forecasting
    • DOI 10.1002/hyp.6592
    • Solomatine, P. D., Maskey, M., and Shrestha, D. L.: Instance-based learning compared to other data-driven methods in hydrological forecasting, Hydrol. Process., 22, 275-287, 2008. (Pubitemid 351149249)
    • (2008) Hydrological Processes , vol.22 , Issue.2 , pp. 275-287
    • Solomatine, D.P.1    Maskey, M.2    Shrestha, D.L.3
  • 79
    • 0035698908 scopus 로고    scopus 로고
    • Stochastic generation of annual, monthly and daily climate data: A review
    • Srikanthan, R. and McMahon, T. A.: Stochastic generation of annual, monthly and daily climate data: A review, Hydrol. Earth Syst. Sci., 5, 653-670, doi:10.5194/hess-5-653-2001, 2001. (Pubitemid 34103459)
    • (2001) Hydrology and Earth System Sciences , vol.5 , Issue.4 , pp. 653-670
    • Srikanthan, R.1    McMahon, T.A.2
  • 80
    • 41649090758 scopus 로고    scopus 로고
    • Regional flood frequency analysis by combining self-organizing feature map and fuzzy clustering
    • DOI 10.1016/j.jhydrol.2007.09.046, PII S0022169407005537
    • Srinivas, V. V., Tripathi, S., Rao, A. R., and Govindaraju, R. S.: Regional flood frequency analysis by combining self-organizing feature map and fuzzy clustering, J. Hydrol., 348, 148-166, 2009. (Pubitemid 351483864)
    • (2008) Journal of Hydrology , vol.348 , Issue.1-2 , pp. 148-166
    • Srinivas, V.V.1    Tripathi, S.2    Rao, A.R.3    Govindaraju, R.S.4
  • 82
    • 0000393458 scopus 로고
    • Feedforward neural nets as models for time series forecasting
    • Tang, Z. and Fishwick, P. A.: Feedforward Neural Nets as Models for Time Series Forecasting, ORSA Journal on Computing, 5, 374-385, 1993.
    • (1993) ORSA Journal on Computing , vol.5 , pp. 374-385
    • Tang, Z.1    Fishwick, P.A.2
  • 83
    • 13544267299 scopus 로고    scopus 로고
    • Improved financial time series forecasting by combining support vector machine with self- organizing feature map
    • Tay, F. E. H. and Cao, L. J.: Improved financial time series forecasting by combining support vector machine with self- organizing feature map, Intell. Data Anal., 5, 339-354, 2001.
    • (2001) Intell. Data Anal. , vol.5 , pp. 339-354
    • Tay, F.E.H.1    Cao, L.J.2
  • 85
    • 0034187784 scopus 로고    scopus 로고
    • Clustering of the self-organizing map
    • Vesanto, J. and Alhoniemi, E.: Clustering of the self-organizing map, IEEE T. Neural Networ., 11, 586-600, 2000.
    • (2000) IEEE T. Neural Networ. , vol.11 , pp. 586-600
    • Vesanto, J.1    Alhoniemi, E.2
  • 89
    • 68349105875 scopus 로고    scopus 로고
    • A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series
    • Wang, W. C., Chau, K. W., Cheng, C. T., and Qiu, L.: A Comparison of Performance of Several Artificial Intelligence Methods for Forecasting Monthly Discharge Time Series, J. Hydrol., 374, 294-306, 2009.
    • (2009) J. Hydrol. , vol.374 , pp. 294-306
    • Wang, W.C.1    Chau, K.W.2    Cheng, C.T.3    Qiu, L.4
  • 90
    • 33646547633 scopus 로고    scopus 로고
    • Forecasting daily streamflow using hybrid ANN models
    • DOI 10.1016/j.jhydrol.2005.09.032, PII S0022169405004981
    • Wang,W., Pieter H. A. J. M. V. G., Vrijling, J. K., and Ma, J.: Forecasting daily streamflow using hybrid ANN models, J. Hydrol., 324, 383-399, 2006. (Pubitemid 43729372)
    • (2006) Journal of Hydrology , vol.324 , Issue.1-4 , pp. 383-399
    • Wang, W.1    Gelder, P.H.A.J.M.V.2    Vrijling, J.K.3    Ma, J.4
  • 91
    • 0001242140 scopus 로고
    • Time series forecasting using backpropagation neural networks
    • Wong, F. S.: Time series forecasting using backpropagation neural networks, Neurocomputing, 2, 147-159, 1991.
    • (1991) Neurocomputing , vol.2 , pp. 147-159
    • Wong, F.S.1
  • 92
    • 78049358493 scopus 로고    scopus 로고
    • A hybrid model coupled with singular spectrum analysis for daily rainfall prediction
    • Wu, C. L. and Chau, K. W.: A hybrid model coupled with singular spectrum analysis for daily rainfall prediction, J. Hydroinform., 12.4, 458-473, 2010.
    • (2010) J. Hydroinform. , vol.12 , Issue.4 , pp. 458-473
    • Wu, C.L.1    Chau, K.W.2
  • 93
    • 70349777454 scopus 로고    scopus 로고
    • Predicting monthly streamflow using data-driven models coupled with datapreprocessing techniques
    • doi:10.1029/2007wr006737
    • Wu, C. L., Chau, K. W., and Li, Y. S.: Predicting monthly streamflow using data-driven models coupled with datapreprocessing techniques, Water Resour. Res., 45, W08432, doi:10.1029/2007wr006737, 2009.
    • (2009) Water Resour. Res. , vol.45
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 94
    • 0242624714 scopus 로고    scopus 로고
    • Clustering of the self-organizing map using a clustering validity index based on inter-cluster and intra-cluster density
    • DOI 10.1016/S0031-3203(03)00237-1
    • Wu, S. and Chow, T. W. S.: Clustering of the self-organizing map using a clustering validity index based on inter-cluster and intracluster density, Pattern Recognition, 37, 175-188, 2004. (Pubitemid 37425405)
    • (2004) Pattern Recognition , vol.37 , Issue.2 , pp. 175-188
    • Wu, S.1    Chow, T.W.S.2
  • 95
    • 33746916489 scopus 로고    scopus 로고
    • Support vector regression for real-time flood stage forecasting
    • Yu, P. S., Chen, S. T., and Chang, I. F.: Support vector regression for real-time flood stage forecasting, J. Hydrol., 328, 704-716, 2006.
    • (2006) J. Hydrol. , vol.328 , pp. 704-716
    • Yu, P.S.1    Chen, S.T.2    Chang, I.F.3
  • 96
    • 4644308286 scopus 로고    scopus 로고
    • The Mann-Kendall test modified by effective sample size to detect trend in serially correlated hydrological series
    • DOI 10.1023/B:WARM.0000043140.61082.60
    • Yue, S. and Wang, C.: The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series, Water Resour. Manage., 18, 201-218, 2004. (Pubitemid 39306214)
    • (2004) Water Resources Management , vol.18 , Issue.3 , pp. 201-218
    • Yue, S.1    Wang, C.2
  • 98
    • 0034100712 scopus 로고    scopus 로고
    • Prediction of watershed runoff using Bayesian concepts and modular neural network
    • Zhang, B. and Govindaraju, G.: Prediction of watershed runoff using Bayesian concepts and modular neural network, Water Research Res., 36, 752-762, 2000.
    • (2000) Water Research Res. , vol.36 , pp. 752-762
    • Zhang, B.1    Govindaraju, G.2
  • 99
    • 0003123930 scopus 로고    scopus 로고
    • Forecasting with artificial neural networks: The state of the art
    • PII S0169207097000447
    • Zhang, G., Patuwo, B. E., and Hu, M. Y.: Forecasting with artificial neural networks: the state of the art, Int. J. Forecast., 14, 35-62, 1998. (Pubitemid 128340470)
    • (1998) International Journal of Forecasting , vol.14 , Issue.1 , pp. 35-62
    • Zhang, G.1    Eddy Patuwo, B.2    Y. Hu, M.3
  • 100
    • 0037243071 scopus 로고    scopus 로고
    • Time series forecasting using a hybrid ARIMA and neural network model
    • DOI 10.1016/S0925-2312(01)00702-0, PII S0925231201007020
    • Zhang, G. P.: Time series forecasting using a hybrid ARIMA and neural network model, Neurocomputing, 50, 159-175, 2003. (Pubitemid 36124139)
    • (2003) Neurocomputing , vol.50 , pp. 159-175
    • Zhang, G.P.1
  • 101
    • 34548167332 scopus 로고    scopus 로고
    • An investigation and comparison of artificial neural network and time series models for Chinese food grain price forecasting
    • DOI 10.1016/j.neucom.2007.01.009, PII S0925231207000136
    • Zou, H. F., Xia, G. P., Yang, F. T., andWang, H. Y.: An investigation and comparison of artificial neural network and time series models for chinese food grain price forecasting, Neurocomputing, 70, 2913-2923, 2007. (Pubitemid 47308610)
    • (2007) Neurocomputing , vol.70 , Issue.16-18 , pp. 2913-2923
    • Zou, H.F.1    Xia, G.P.2    Yang, F.T.3    Wang, H.Y.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.