메뉴 건너뛰기




Volumn 374, Issue 3-4, 2009, Pages 294-306

A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series

Author keywords

ANFIS; ANN; ARMA; GP; Monthly discharge time series forecasting; SVM

Indexed keywords

ANFIS; ANN; ARMA; GP; MONTHLY DISCHARGE TIME SERIES FORECASTING; SVM;

EID: 68349105875     PISSN: 00221694     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jhydrol.2009.06.019     Document Type: Article
Times cited : (699)

References (66)
  • 2
    • 33751420754 scopus 로고    scopus 로고
    • Multi-year drought frequency analysis at multiple sites by operational hydrology - a comparison of methods
    • Arena C., Cannarozzo M., and Mazzola M.R. Multi-year drought frequency analysis at multiple sites by operational hydrology - a comparison of methods. Physics and Chemistry of the Earth. Parts A/B/C 31 18 (2006) 1146-1163
    • (2006) Physics and Chemistry of the Earth. Parts A/B/C , vol.31 , Issue.18 , pp. 1146-1163
    • Arena, C.1    Cannarozzo, M.2    Mazzola, M.R.3
  • 3
    • 0034174280 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology - I: preliminary concepts
    • ASCE Task Committee
    • ASCE Task Committee. Artificial neural networks in hydrology - I: preliminary concepts. Journal of Hydrologic Engineering, ASCE 5 2 (2000) 115-123
    • (2000) Journal of Hydrologic Engineering, ASCE , vol.5 , Issue.2 , pp. 115-123
  • 4
    • 0034174396 scopus 로고    scopus 로고
    • Artificial neural networks in hydrology - II: hydrological applications
    • ASCE Task Committee
    • ASCE Task Committee. Artificial neural networks in hydrology - II: hydrological applications. Journal of Hydrologic Engineering, ASCE 5 2 (2000) 124-137
    • (2000) Journal of Hydrologic Engineering, ASCE , vol.5 , Issue.2 , pp. 124-137
  • 5
    • 31044438334 scopus 로고    scopus 로고
    • Multi-time scale stream flow predictions: the support vector machines approach
    • Asefa T., Kemblowski M., McKee M., and Khalil A. Multi-time scale stream flow predictions: the support vector machines approach. Journal of Hydrology 318 1-4 (2006) 7-16
    • (2006) Journal of Hydrology , vol.318 , Issue.1-4 , pp. 7-16
    • Asefa, T.1    Kemblowski, M.2    McKee, M.3    Khalil, A.4
  • 6
    • 0345257361 scopus 로고    scopus 로고
    • Short-term water level prediction using neural networks and neuro-fuzzy approach
    • Bazartseren B., Hildebrandt G., and Holz K.P. Short-term water level prediction using neural networks and neuro-fuzzy approach. Neurocomputing 55 3-4 (2003) 439-450
    • (2003) Neurocomputing , vol.55 , Issue.3-4 , pp. 439-450
    • Bazartseren, B.1    Hildebrandt, G.2    Holz, K.P.3
  • 9
    • 0038240745 scopus 로고    scopus 로고
    • Artificial neural network approach to flood forecasting in the River Arno
    • Campolo M., Soldati A., and Andreussi P. Artificial neural network approach to flood forecasting in the River Arno. Hydrological Sciences Journal 48 3 (2003) 381-398
    • (2003) Hydrological Sciences Journal , vol.48 , Issue.3 , pp. 381-398
    • Campolo, M.1    Soldati, A.2    Andreussi, P.3
  • 10
    • 0000649310 scopus 로고
    • Application of linear random models to four annual streamflow series
    • Carlson R.F., MacCormick A.J.A., and Watts D.G. Application of linear random models to four annual streamflow series. Water Resources Research 6 4 (1970) 1070-1078
    • (1970) Water Resources Research , vol.6 , Issue.4 , pp. 1070-1078
    • Carlson, R.F.1    MacCormick, A.J.A.2    Watts, D.G.3
  • 11
    • 0035973156 scopus 로고    scopus 로고
    • Intelligent control for modelling of real-time reservoir operation
    • Chang L.C., and Chang F.J. Intelligent control for modelling of real-time reservoir operation. Hydrological Processes 15 9 (2001) 1621-1634
    • (2001) Hydrological Processes , vol.15 , Issue.9 , pp. 1621-1634
    • Chang, L.C.1    Chang, F.J.2
  • 12
    • 0036719845 scopus 로고    scopus 로고
    • Real-time recurrent learning neural network for stream-flow forecasting
    • Chang F.J., Chang L.C., and Huang H.L. Real-time recurrent learning neural network for stream-flow forecasting. Hydrological Processes 16 13 (2002) 2577-2588
    • (2002) Hydrological Processes , vol.16 , Issue.13 , pp. 2577-2588
    • Chang, F.J.1    Chang, L.C.2    Huang, H.L.3
  • 13
    • 33748929857 scopus 로고    scopus 로고
    • Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River
    • Chau K.W. Particle swarm optimization training algorithm for ANNs in stage prediction of Shing Mun River. Journal of Hydrology 329 3-4 (2006) 363-367
    • (2006) Journal of Hydrology , vol.329 , Issue.3-4 , pp. 363-367
    • Chau, K.W.1
  • 14
    • 84943231434 scopus 로고    scopus 로고
    • Real-time prediction of water stage with artificial neural network approach
    • Chau K.W., and Cheng C.T. Real-time prediction of water stage with artificial neural network approach. Lecture Notes in Artificial Intelligence 2557 (2002) 715
    • (2002) Lecture Notes in Artificial Intelligence , vol.2557 , pp. 715
    • Chau, K.W.1    Cheng, C.T.2
  • 15
    • 0036501413 scopus 로고    scopus 로고
    • Testing hydrologic time series for stationarity
    • Chen H.L., and Rao A.R. Testing hydrologic time series for stationarity. Journal of Hydrologic Engineering 7 2 (2002) 129-136
    • (2002) Journal of Hydrologic Engineering , vol.7 , Issue.2 , pp. 129-136
    • Chen, H.L.1    Rao, A.R.2
  • 16
    • 0038529529 scopus 로고    scopus 로고
    • Linearity analysis on stationary segments of hydrologic time series
    • Chen H.L., and Rao A.R. Linearity analysis on stationary segments of hydrologic time series. Journal of Hydrology 277 1-2 (2003) 89-99
    • (2003) Journal of Hydrology , vol.277 , Issue.1-2 , pp. 89-99
    • Chen, H.L.1    Rao, A.R.2
  • 17
    • 26844569500 scopus 로고    scopus 로고
    • Long-term prediction of discharges in Manwan Hydropower using adaptive-network-based fuzzy inference systems models
    • Advances in Natural Computation, Pt 3, Proceedings, Springer-Verlag, Berlin pp. 1152-1161
    • Cheng C.T., Lin J.Y., Sun Y.G., and Chau K.W. Long-term prediction of discharges in Manwan Hydropower using adaptive-network-based fuzzy inference systems models. Advances in Natural Computation, Pt 3, Proceedings. Lecture Notes in Computer Science (2005), Springer-Verlag, Berlin pp. 1152-1161
    • (2005) Lecture Notes in Computer Science
    • Cheng, C.T.1    Lin, J.Y.2    Sun, Y.G.3    Chau, K.W.4
  • 19
    • 20344385052 scopus 로고    scopus 로고
    • Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis
    • Dixon B. Applicability of neuro-fuzzy techniques in predicting ground-water vulnerability: a GIS-based sensitivity analysis. Journal of Hydrology 309 1-4 (2005) 17-38
    • (2005) Journal of Hydrology , vol.309 , Issue.1-4 , pp. 17-38
    • Dixon, B.1
  • 21
    • 46449123911 scopus 로고    scopus 로고
    • Hydrological time-series modelling using an adaptive neuro-fuzzy inference system
    • Firat M., and Gungor M. Hydrological time-series modelling using an adaptive neuro-fuzzy inference system. Hydrological Processes 22 13 (2008) 2122-2132
    • (2008) Hydrological Processes , vol.22 , Issue.13 , pp. 2122-2132
    • Firat, M.1    Gungor, M.2
  • 22
    • 14844322189 scopus 로고    scopus 로고
    • Prediction of total monthly rainfall in Jordan using feed forward back propagation method
    • Freiwan M., and Cigizoglu H.K. Prediction of total monthly rainfall in Jordan using feed forward back propagation method. Fresenius Environmental Bulletin 14 2 (2005) 142-151
    • (2005) Fresenius Environmental Bulletin , vol.14 , Issue.2 , pp. 142-151
    • Freiwan, M.1    Cigizoglu, H.K.2
  • 23
    • 68349106166 scopus 로고    scopus 로고
    • Genetic programming-based empirical model for daily reference evapotranspiration estimation
    • Guven A., Aytek A., Yuce M.I., and Aksoy H. Genetic programming-based empirical model for daily reference evapotranspiration estimation. Clean-Soil Air Water 36 10-11 (2008) 905-912
    • (2008) Clean-Soil Air Water , vol.36 , Issue.10-11 , pp. 905-912
    • Guven, A.1    Aytek, A.2    Yuce, M.I.3    Aksoy, H.4
  • 26
    • 0035472003 scopus 로고    scopus 로고
    • River flow time series prediction with a range-dependent neural network
    • Hu T.S., Lam K.C., and Ng S.T. River flow time series prediction with a range-dependent neural network. Hydrological Sciences Journal 46 5 (2001) 729-745
    • (2001) Hydrological Sciences Journal , vol.46 , Issue.5 , pp. 729-745
    • Hu, T.S.1    Lam, K.C.2    Ng, S.T.3
  • 27
    • 33846813334 scopus 로고    scopus 로고
    • Hybrid neural network models for hydrologic time series forecasting
    • Jain A., and Kumar A.M. Hybrid neural network models for hydrologic time series forecasting. Applied Soft Computing 7 2 (2007) 585-592
    • (2007) Applied Soft Computing , vol.7 , Issue.2 , pp. 585-592
    • Jain, A.1    Kumar, A.M.2
  • 31
    • 33746832391 scopus 로고    scopus 로고
    • Adaptive neural-based fuzzy inference system (ANFIS) approach for modelling hydrological time series
    • Keskin M.E., Taylan D., and Terzi O. Adaptive neural-based fuzzy inference system (ANFIS) approach for modelling hydrological time series. Hydrological Sciences Journal 51 4 (2006) 588-598
    • (2006) Hydrological Sciences Journal , vol.51 , Issue.4 , pp. 588-598
    • Keskin, M.E.1    Taylan, D.2    Terzi, O.3
  • 32
    • 33645864343 scopus 로고    scopus 로고
    • Application of support vector machine in lake water level prediction
    • Khan M.S., and Coulibaly P. Application of support vector machine in lake water level prediction. Journal of Hydrologic Engineering 11 3 (2006) 199-205
    • (2006) Journal of Hydrologic Engineering , vol.11 , Issue.3 , pp. 199-205
    • Khan, M.S.1    Coulibaly, P.2
  • 33
    • 33751412796 scopus 로고    scopus 로고
    • Comparison of forecasting performance of nonlinear models of hydrological time series
    • Komornik J., Komornikova M., Mesiar R., et al. Comparison of forecasting performance of nonlinear models of hydrological time series. Physics and Chemistry of the Earth. Parts A/B/C 31 18 (2006) 1127-1145
    • (2006) Physics and Chemistry of the Earth. Parts A/B/C , vol.31 , Issue.18 , pp. 1127-1145
    • Komornik, J.1    Komornikova, M.2    Mesiar, R.3
  • 35
    • 0032920124 scopus 로고    scopus 로고
    • Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation
    • Legates D.R., and McCabe G.J. Evaluating the use of "goodness-of-fit" measures in hydrologic and hydroclimatic model validation. Water Resources Research 35 1 (1999) 233-241
    • (1999) Water Resources Research , vol.35 , Issue.1 , pp. 233-241
    • Legates, D.R.1    McCabe, G.J.2
  • 36
    • 33746830757 scopus 로고    scopus 로고
    • Using support vector machines for long-term discharge prediction
    • Lin J.Y., Cheng C.T., and Chau K.W. Using support vector machines for long-term discharge prediction. Hydrological Sciences Journal 51 4 (2006) 599-612
    • (2006) Hydrological Sciences Journal , vol.51 , Issue.4 , pp. 599-612
    • Lin, J.Y.1    Cheng, C.T.2    Chau, K.W.3
  • 37
    • 0036077609 scopus 로고    scopus 로고
    • Genetic Programming: a new paradigm in rainfall-runoff modeling
    • Liong S.Y., et al. Genetic Programming: a new paradigm in rainfall-runoff modeling. Journal of the American Water Resources Association 38 3 (2002) 705-718
    • (2002) Journal of the American Water Resources Association , vol.38 , Issue.3 , pp. 705-718
    • Liong, S.Y.1
  • 39
    • 0035899180 scopus 로고    scopus 로고
    • Adaptive neuro-fuzzy inference system: an instant and architecture-free predictor for improved QSAR studies
    • Loukas Y.L. Adaptive neuro-fuzzy inference system: an instant and architecture-free predictor for improved QSAR studies. Journal of Medicinal Chemistry 44 17 (2001) 2772-2783
    • (2001) Journal of Medicinal Chemistry , vol.44 , Issue.17 , pp. 2772-2783
    • Loukas, Y.L.1
  • 40
    • 0027205884 scopus 로고
    • A scaled conjugate gradient algorithm for fast supervised learning
    • Moller M.F. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks 6 4 (1993) 525-533
    • (1993) Neural Networks , vol.6 , Issue.4 , pp. 525-533
    • Moller, M.F.1
  • 41
    • 34447500396 scopus 로고    scopus 로고
    • Model evaluation guidelines for systematic quantification of accuracy in watershed simulations
    • Moriasi D.N., et al. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE 50 3 (2007) 885-900
    • (2007) Transactions of the ASABE , vol.50 , Issue.3 , pp. 885-900
    • Moriasi, D.N.1
  • 42
    • 33845384467 scopus 로고    scopus 로고
    • Neural network and genetic programming for modelling coastal algal blooms
    • Muttil N., and Chau K.W. Neural network and genetic programming for modelling coastal algal blooms. International Journal of Environment and Pollution 28 3-4 (2006) 223-238
    • (2006) International Journal of Environment and Pollution , vol.28 , Issue.3-4 , pp. 223-238
    • Muttil, N.1    Chau, K.W.2
  • 43
    • 0014776873 scopus 로고
    • River flow forecasting through conceptual models part I - a discussion of principles
    • Nash J.E., and Sutcliffe J.V. River flow forecasting through conceptual models part I - a discussion of principles. Journal of Hydrology 10 3 (1970) 282-290
    • (1970) Journal of Hydrology , vol.10 , Issue.3 , pp. 282-290
    • Nash, J.E.1    Sutcliffe, J.V.2
  • 44
    • 1942490118 scopus 로고    scopus 로고
    • A neuro-fuzzy computing technique for modeling hydrological time series
    • Nayak P.C., Sudheer K.P., Rangan D.M., and Ramasastri K.S. A neuro-fuzzy computing technique for modeling hydrological time series. Journal of Hydrology 291 1-2 (2004) 52-66
    • (2004) Journal of Hydrology , vol.291 , Issue.1-2 , pp. 52-66
    • Nayak, P.C.1    Sudheer, K.P.2    Rangan, D.M.3    Ramasastri, K.S.4
  • 46
    • 1642578865 scopus 로고    scopus 로고
    • Neural networks for rainfall forecasting by atmospheric downscaling
    • Olsson J., Uvo C., Jinno B., et al. Neural networks for rainfall forecasting by atmospheric downscaling. Journal of Hydrologic Engineering 9 1 (2004) 1-12
    • (2004) Journal of Hydrologic Engineering , vol.9 , Issue.1 , pp. 1-12
    • Olsson, J.1    Uvo, C.2    Jinno, B.3
  • 47
    • 33644693593 scopus 로고    scopus 로고
    • System reliability forecasting by support vector machines with genetic algorithms
    • Pai P.-F. System reliability forecasting by support vector machines with genetic algorithms. Mathematical and Computer Modelling 43 3-4 (2006) 262-274
    • (2006) Mathematical and Computer Modelling , vol.43 , Issue.3-4 , pp. 262-274
    • Pai, P.-F.1
  • 48
    • 18544377981 scopus 로고    scopus 로고
    • Support vector machines with simulated annealing algorithms in electricity load forecasting
    • Pai P.-F., and Hong W.-C. Support vector machines with simulated annealing algorithms in electricity load forecasting. Energy Conversion and Management 46 17 (2005) 2669-2688
    • (2005) Energy Conversion and Management , vol.46 , Issue.17 , pp. 2669-2688
    • Pai, P.-F.1    Hong, W.-C.2
  • 49
    • 0001805672 scopus 로고
    • Analysis and modeling of hydrologic time series
    • Maidment D.R. (Ed), The McGraw Hill, New York
    • Salas J.D. Analysis and modeling of hydrologic time series. In: Maidment D.R. (Ed). Handbook of Hydrology (1993), The McGraw Hill, New York 19.5-19.9
    • (1993) Handbook of Hydrology
    • Salas, J.D.1
  • 50
    • 0035664588 scopus 로고    scopus 로고
    • Validation of tbe swat model on a large river basin with point and nonpoint sources
    • Santhi C., et al. Validation of tbe swat model on a large river basin with point and nonpoint sources. Journal of the American Water Resources Association 37 5 (2001) 1169-1188
    • (2001) Journal of the American Water Resources Association , vol.37 , Issue.5 , pp. 1169-1188
    • Santhi, C.1
  • 51
    • 37548999007 scopus 로고    scopus 로고
    • Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system
    • Shu C., and Ouarda T.B.M.J. Regional flood frequency analysis at ungauged sites using the adaptive neuro-fuzzy inference system. Journal of Hydrology 349 1-2 (2008) 31-43
    • (2008) Journal of Hydrology , vol.349 , Issue.1-2 , pp. 31-43
    • Shu, C.1    Ouarda, T.B.M.J.2
  • 52
    • 0034127203 scopus 로고    scopus 로고
    • Artificial neural networks and long-range precipitation prediction in California
    • Silverman D., and Dracup J.A. Artificial neural networks and long-range precipitation prediction in California. Journal of Applied Meteorology 39 1 (2000) 57-66
    • (2000) Journal of Applied Meteorology , vol.39 , Issue.1 , pp. 57-66
    • Silverman, D.1    Dracup, J.A.2
  • 53
    • 33846453985 scopus 로고    scopus 로고
    • Genetic programming model for forecast of short and noisy data
    • Sivapragasam C., Vincent P., and Vasudevan G. Genetic programming model for forecast of short and noisy data. Hydrological Processes 21 2 (2007) 266-272
    • (2007) Hydrological Processes , vol.21 , Issue.2 , pp. 266-272
    • Sivapragasam, C.1    Vincent, P.2    Vasudevan, G.3
  • 54
    • 0035698908 scopus 로고    scopus 로고
    • Stochastic generation of annual, monthly and daily climate data: a review
    • Srikanthan R., and McMahon T.A. Stochastic generation of annual, monthly and daily climate data: a review. Hydrology and Earth System Sciences 5 4 (2001) 653-670
    • (2001) Hydrology and Earth System Sciences , vol.5 , Issue.4 , pp. 653-670
    • Srikanthan, R.1    McMahon, T.A.2
  • 55
    • 1642333234 scopus 로고    scopus 로고
    • Explaining the internal behaviour of artificial neural network river flow models
    • Sudheer K.P., and Jain A. Explaining the internal behaviour of artificial neural network river flow models. Hydrological Processes 18 4 (2004) 833-844
    • (2004) Hydrological Processes , vol.18 , Issue.4 , pp. 833-844
    • Sudheer, K.P.1    Jain, A.2
  • 56
    • 0037197571 scopus 로고    scopus 로고
    • A data-driven algorithm for constructing artificial neural network rainfall-runoff models
    • Sudheer K.P., Gosain A.K., and Ramasastri K.S. A data-driven algorithm for constructing artificial neural network rainfall-runoff models. Hydrological Processes 16 6 (2002) 1325-1330
    • (2002) Hydrological Processes , vol.16 , Issue.6 , pp. 1325-1330
    • Sudheer, K.P.1    Gosain, A.K.2    Ramasastri, K.S.3
  • 57
    • 0034694775 scopus 로고    scopus 로고
    • Comparison of short-term rainfall prediction models for real-time flood forecasting
    • Toth E., Brath A., and Montanari A. Comparison of short-term rainfall prediction models for real-time flood forecasting. Journal of Hydrology 239 1-4 (2000) 132-147
    • (2000) Journal of Hydrology , vol.239 , Issue.1-4 , pp. 132-147
    • Toth, E.1    Brath, A.2    Montanari, A.3
  • 58
    • 1542648951 scopus 로고    scopus 로고
    • Hydrologic simulation on agricultural watersheds: choosing between two models
    • Van Liew M.W., Arnold J.G., and Garbrecht J.D. Hydrologic simulation on agricultural watersheds: choosing between two models. Transactions of the ASAE 46 6 (2003) 1539-1551
    • (2003) Transactions of the ASAE , vol.46 , Issue.6 , pp. 1539-1551
    • Van Liew, M.W.1    Arnold, J.G.2    Garbrecht, J.D.3
  • 61
    • 50049131375 scopus 로고    scopus 로고
    • Application of artificial neural networks to forecasting ice conditions of the Yellow River in the Inner Mongolia Reach
    • Wang T., Yang K.L., and Guo Y.X. Application of artificial neural networks to forecasting ice conditions of the Yellow River in the Inner Mongolia Reach. Journal of Hydrologic Engineering 13 9 (2008) 811-816
    • (2008) Journal of Hydrologic Engineering , vol.13 , Issue.9 , pp. 811-816
    • Wang, T.1    Yang, K.L.2    Guo, Y.X.3
  • 62
    • 0035105632 scopus 로고    scopus 로고
    • Modelling rainfall-runoff relationships using genetic programming
    • Whigam P.A., and Crapper P.F. Modelling rainfall-runoff relationships using genetic programming. Mathematical and Computer Modelling 33 (2001) 707-721
    • (2001) Mathematical and Computer Modelling , vol.33 , pp. 707-721
    • Whigam, P.A.1    Crapper, P.F.2
  • 63
    • 47949121319 scopus 로고    scopus 로고
    • River stage prediction based on a distributed support vector regression
    • Wu C.L., Chau K.W., and Li Y.S. River stage prediction based on a distributed support vector regression. Journal of Hydrology 358 1-2 (2008) 96-111
    • (2008) Journal of Hydrology , vol.358 , Issue.1-2 , pp. 96-111
    • Wu, C.L.1    Chau, K.W.2    Li, Y.S.3
  • 64
    • 84919454581 scopus 로고    scopus 로고
    • EC-SVM approach for real-time hydrologic forecasting
    • Yu X.Y., Liong S.Y., and Babovic V. EC-SVM approach for real-time hydrologic forecasting. Journal of Hydroinformatics 6 3 (2004) 209-223
    • (2004) Journal of Hydroinformatics , vol.6 , Issue.3 , pp. 209-223
    • Yu, X.Y.1    Liong, S.Y.2    Babovic, V.3
  • 65
    • 33746916489 scopus 로고    scopus 로고
    • Support vector regression for real-time flood stage forecasting
    • Yu P.S., Chen S.T., and Chang I.F. Support vector regression for real-time flood stage forecasting. Journal of Hydrology 328 3-4 (2006) 704-716
    • (2006) Journal of Hydrology , vol.328 , Issue.3-4 , pp. 704-716
    • Yu, P.S.1    Chen, S.T.2    Chang, I.F.3
  • 66
    • 37249083060 scopus 로고    scopus 로고
    • Using adaptive neuro-fuzzy inference system for hydrological time series prediction
    • Zounemat-Kermani M., and Teshnehlab M. Using adaptive neuro-fuzzy inference system for hydrological time series prediction. Applied Soft Computing 8 2 (2008) 928-936
    • (2008) Applied Soft Computing , vol.8 , Issue.2 , pp. 928-936
    • Zounemat-Kermani, M.1    Teshnehlab, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.