메뉴 건너뛰기




Volumn 19, Issue 10, 2005, Pages 1925-1937

Time series forecasting by combining the radial basis function network and the self-organizing map

Author keywords

Neural networks; Radial basis function network; Self organizing map; Time series forecasting

Indexed keywords

COMPUTER SIMULATION; DATA REDUCTION; FORECASTING; MATHEMATICAL MODELS; REGRESSION ANALYSIS; SELF ORGANIZING MAPS; TIME SERIES ANALYSIS;

EID: 21344450695     PISSN: 08856087     EISSN: None     Source Type: Journal    
DOI: 10.1002/hyp.5637     Document Type: Article
Times cited : (58)

References (41)
  • 1
    • 0034733513 scopus 로고    scopus 로고
    • Modeling of groundwater heads based on second-order difference time series models
    • Ahn H. 2000. Modeling of groundwater heads based on second-order difference time series models. Journal of Hydrology 234: 82-94.
    • (2000) Journal of Hydrology , vol.234 , pp. 82-94
    • Ahn, H.1
  • 2
    • 0002006114 scopus 로고
    • Error measures for generalizing about forecasting methods: Empirical comparisons
    • Armstrong JS, Collopy F. 1992. Error measures for generalizing about forecasting methods: empirical comparisons. International Journal of Forecasting 8: 69-80.
    • (1992) International Journal of Forecasting , vol.8 , pp. 69-80
    • Armstrong, J.S.1    Collopy, F.2
  • 6
    • 0000621802 scopus 로고
    • Multivariable functional interpolation and adaptive networks
    • Broomhead DS, Lowe D. 1988. Multivariable functional interpolation and adaptive networks. Complex Systems 2: 321-355.
    • (1988) Complex Systems , vol.2 , pp. 321-355
    • Broomhead, D.S.1    Lowe, D.2
  • 7
    • 0003166043 scopus 로고
    • The comparative ability of self-organizing neural networks to define cluster structure
    • Chen SK, Mangiameli P, West D. 1995. The comparative ability of self-organizing neural networks to define cluster structure. Omega, International Journal of Management Science 23(3): 271-279.
    • (1995) Omega, International Journal of Management Science , vol.23 , Issue.3 , pp. 271-279
    • Chen, S.K.1    Mangiameli, P.2    West, D.3
  • 8
    • 34248625602 scopus 로고
    • On the limitations of comparing mean square forecast errors
    • Clements MP, Hendry DF. 1993. On the limitations of comparing mean square forecast errors. Journal of Forecasting 12: 615-637.
    • (1993) Journal of Forecasting , vol.12 , pp. 615-637
    • Clements, M.P.1    Hendry, D.F.2
  • 9
    • 0024861871 scopus 로고
    • Approximation by superpositions of a sigmoidal function
    • Cybenko G. 1989. Approximation by superpositions of a sigmoidal function. Mathematical Control Signals Systems 2: 303-314.
    • (1989) Mathematical Control Signals Systems , vol.2 , pp. 303-314
    • Cybenko, G.1
  • 11
    • 0002847043 scopus 로고
    • The evaluation of extrapolative forecasting methods
    • Fildes R. 1992. The evaluation of extrapolative forecasting methods. International Journal of Forecasting 8: 81-98.
    • (1992) International Journal of Forecasting , vol.8 , pp. 81-98
    • Fildes, R.1
  • 12
    • 0001647659 scopus 로고
    • The trade-offs in choosing a time series method
    • Gardner ES. 1983. The trade-offs in choosing a time series method. Journal of Forecasting 2: 263-267.
    • (1983) Journal of Forecasting , vol.2 , pp. 263-267
    • Gardner, E.S.1
  • 13
    • 84984416383 scopus 로고
    • Strategies for modeling nonlinear time-series relationships
    • Granger CWJ. 1993. Strategies for modeling nonlinear time-series relationships. The Economic Record 69(206): 233-238.
    • (1993) The Economic Record , vol.69 , Issue.206 , pp. 233-238
    • Granger, C.W.J.1
  • 15
    • 0025751820 scopus 로고
    • Approximation capability of multilayer feedforward networks
    • Hornik K. 1991. Approximation capability of multilayer feedforward networks. Neural Networks 4: 251-257.
    • (1991) Neural Networks , vol.4 , pp. 251-257
    • Hornik, K.1
  • 16
    • 0024880831 scopus 로고
    • Multilayer feedforward networks are universal approximators
    • Hornik K, Stinchcombe M, White H. 1989. Multilayer feedforward networks are universal approximators. Neural Networks 2: 359-366.
    • (1989) Neural Networks , vol.2 , pp. 359-366
    • Hornik, K.1    Stinchcombe, M.2    White, H.3
  • 17
    • 0031260124 scopus 로고    scopus 로고
    • Estimating fluctuation quantities from time series of water-table depths using models with a stochastic component
    • Knotters M, Van Walsum PEV. 1997. Estimating fluctuation quantities from time series of water-table depths using models with a stochastic component. Journal of Hydrology 197: 25-46.
    • (1997) Journal of Hydrology , vol.197 , pp. 25-46
    • Knotters, M.1    Van Walsum, P.E.V.2
  • 18
    • 0020068152 scopus 로고
    • Self-organized formation of topologically correct feature maps
    • Kohonen T. 1982. Self-organized formation of topologically correct feature maps. Biological Cybernetics 43: 59-69.
    • (1982) Biological Cybernetics , vol.43 , pp. 59-69
    • Kohonen, T.1
  • 21
    • 0030111205 scopus 로고    scopus 로고
    • A comparison of artificial neural network and time series models for forecasting commodity prices
    • Kohzadi N, Boyd MS, Kermanshahi B, Kaastra I. 1996. A comparison of artificial neural network and time series models for forecasting commodity prices. Neurocomputing 10: 169-181.
    • (1996) Neurocomputing , vol.10 , pp. 169-181
    • Kohzadi, N.1    Boyd, M.S.2    Kermanshahi, B.3    Kaastra, I.4
  • 22
    • 84983857211 scopus 로고
    • Forecasting exchange rates using feedforward and recurrent neural networks
    • Kuan CM, Liu T. 1995. Forecasting exchange rates using feedforward and recurrent neural networks. Journal of Applied Econometrics 10: 347-364.
    • (1995) Journal of Applied Econometrics , vol.10 , pp. 347-364
    • Kuan, C.M.1    Liu, T.2
  • 23
    • 1842433866 scopus 로고    scopus 로고
    • A spatial interpolation method based on radial basis function networks incorporating a semivariogram model
    • Lin GF, Chen LH. 2004a. A spatial interpolation method based on radial basis function networks incorporating a semivariogra model. Journal of Hydrology 288(3-4): 288-298.
    • (2004) Journal of Hydrology , vol.288 , Issue.3-4 , pp. 288-298
    • Lin, G.F.1    Chen, L.H.2
  • 24
    • 1642387025 scopus 로고    scopus 로고
    • A non-linear rainfall-runoff model using radial basis function network
    • Lin GF, Chen LH. 2004b. A non-linear rainfall-runoff model using radial basis function network. Journal of Hydrology 289: 1-8.
    • (2004) Journal of Hydrology , vol.289 , pp. 1-8
    • Lin, G.F.1    Chen, L.H.2
  • 25
    • 0026929647 scopus 로고
    • An aggregation - Disaggregation approach for hydrologic time series modelling
    • Lin GF, Lee FC. 1992. An aggregation - disaggregation approach for hydrologic time series modelling. Journal of Hydrology 138 (3-4): 543-557.
    • (1992) Journal of Hydrology , vol.138 , Issue.3-4 , pp. 543-557
    • Lin, G.F.1    Lee, F.C.2
  • 26
    • 0028407020 scopus 로고
    • Assessment of aggregated hydrologic time series modeling
    • Lin GF, Lee FC. 1994. Assessment of aggregated hydrologic time series modeling. Journal of Hydrology 156(1-4): 447-458.
    • (1994) Journal of Hydrology , vol.156 , Issue.1-4 , pp. 447-458
    • Lin, G.F.1    Lee, F.C.2
  • 28
    • 0029748915 scopus 로고    scopus 로고
    • Neural network model of rainfall-runoff using radial basis functions
    • Mason JC, Price RK, Temme A. 1996. Neural network model of rainfall-runoff using radial basis functions. Journal of Hydraulic Research 34(4): 537-548.
    • (1996) Journal of Hydraulic Research , vol.34 , Issue.4 , pp. 537-548
    • Mason, J.C.1    Price, R.K.2    Temme, A.3
  • 30
    • 0000672424 scopus 로고
    • Fast learning in networks of locally-tuned processing units
    • Moody J, Darken C. 1989. Fast learning in networks of locally-tuned processing units. Neural Computation 4: 740-747,
    • (1989) Neural Computation , vol.4 , pp. 740-747
    • Moody, J.1    Darken, C.2
  • 33
    • 0001355838 scopus 로고
    • Radial basis functions for multivariable interpolation: A review
    • Mason JC, Cox MG (eds.) Carendon Press: Oxford
    • Powell MID. 1987. Radial basis functions for multivariable interpolation: a review. In Algorithms for Approximation, Mason JC, Cox MG (eds.) Carendon Press: Oxford; 143-167.
    • (1987) Algorithms for Approximation , pp. 143-167
    • Powell, M.J.D.1
  • 34
    • 0030135749 scopus 로고    scopus 로고
    • Nonlinear time series analysis by neural networks: A case study
    • Saxen H. 1996. Nonlinear time series analysis by neural networks: a case study. International Journal of Neural Systems 7(2): 195-201.
    • (1996) International Journal of Neural Systems , vol.7 , Issue.2 , pp. 195-201
    • Saxen, H.1
  • 35
    • 0036647110 scopus 로고    scopus 로고
    • Intra-seasonal rainfall characteristics and their importance to the seasonal prediction problem
    • Tennant WT, Hewitson BC. 2002. Intra-seasonal rainfall characteristics and their importance to the seasonal prediction problem. International Journal of Climatology 22: 1033-1048.
    • (2002) International Journal of Climatology , vol.22 , pp. 1033-1048
    • Tennant, W.T.1    Hewitson, B.C.2
  • 37
    • 0030615817 scopus 로고    scopus 로고
    • An extension of Box-Jenkins transfer/noise models for spatial interpolation of groundwater head series
    • Van Geer FC, Zuur AF. 1997. An extension of Box-Jenkins transfer/noise models for spatial interpolation of groundwater head series. Journal of Hydrology 192: 65-80.
    • (1997) Journal of Hydrology , vol.192 , pp. 65-80
    • Van Geer, F.C.1    Zuur, A.F.2
  • 38
    • 0030148992 scopus 로고    scopus 로고
    • Comparison of several approaches for the segmentation of texture images
    • Wang Z, Guerriero A, DeSario M. 1996. Comparison of several approaches for the segmentation of texture images. Pattern Recognition Letters 17: 509-521.
    • (1996) Pattern Recognition Letters , vol.17 , pp. 509-521
    • Wang, Z.1    Guerriero, A.2    DeSario, M.3
  • 41
    • 0030176293 scopus 로고    scopus 로고
    • Radar target recognition using a radial basis function neural network
    • Zhao Q, Bao Z. 1996. Radar target recognition using a radial basis function neural network. Neural Networks 9: 709-720.
    • (1996) Neural Networks , vol.9 , pp. 709-720
    • Zhao, Q.1    Bao, Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.