-
1
-
-
0034254196
-
Comparing neural network and autoregressive moving average techniques for the provision of continous river flow forecasts in two contrasting catchments
-
Abrahart RJ, See L. 2000. Comparing neural network and autoregressive moving average techniques for the provision of continous river flow forecasts in two contrasting catchments. Hydrological Processes 14: 2157-2172.
-
(2000)
Hydrological Processes
, vol.14
, pp. 2157-2172
-
-
Abrahart, R.J.1
See, L.2
-
5
-
-
0023524394
-
Nonlinear flood routing with multilinear models
-
Becker A, Kundzewicz ZW. 1987. Nonlinear flood routing with multilinear models. Water Resources Research 23: 1043-1048.
-
(1987)
Water Resources Research
, vol.23
, pp. 1043-1048
-
-
Becker, A.1
Kundzewicz, Z.W.2
-
6
-
-
33746834358
-
Identification of support vector machines for runoff modelling
-
Bray M, Han D. 2004. Identification of support vector machines for runoff modelling. Journal of Hydroinformatics 6: 265-280.
-
(2004)
Journal of Hydroinformatics
, vol.6
, pp. 265-280
-
-
Bray, M.1
Han, D.2
-
7
-
-
0038240755
-
Estimation, forecasting and extrapolation of river flows by artificial neural networks
-
Cigizoglu HK. 2003. Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydrological Sciences Journal 48(3): 349-361.
-
(2003)
Hydrological Sciences Journal
, vol.48
, Issue.3
, pp. 349-361
-
-
Cigizoglu, H.K.1
-
10
-
-
0034749335
-
Hydrological modeling using artificial neural networks
-
Dawson CW, Wilby RL. 2001. Hydrological modeling using artificial neural networks. Progress in Physical Geography 25(1): 80-108.
-
(2001)
Progress in Physical Geography
, vol.25
, Issue.1
, pp. 80-108
-
-
Dawson, C.W.1
Wilby, R.L.2
-
12
-
-
0035116580
-
River flow forecasting using artificial neural networks
-
Dibike Y, Solomatine DP. 2001. River flow forecasting using artificial neural networks. Journal of Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere 26(1): 1-8.
-
(2001)
Journal of Physics and Chemistry of the Earth, Part B: Hydrology, Oceans and Atmosphere
, vol.26
, Issue.1
, pp. 1-8
-
-
Dibike, Y.1
Solomatine, D.P.2
-
14
-
-
0029657538
-
Use of genetic algorithm combined with a local search method for the automatic calibration of conceptual rainfall-runoff models
-
Franchini M. 1996. Use of genetic algorithm combined with a local search method for the automatic calibration of conceptual rainfall-runoff models. Hydrological Science Journal 41(1l): 21-39.
-
(1996)
Hydrological Science Journal
, vol.41
, Issue.1 L
, pp. 21-39
-
-
Franchini, M.1
-
15
-
-
0025383534
-
A comparison of parametric and non-parametric methods for runoff forecasting
-
Galeati G. 1990. A comparison of parametric and non-parametric methods for runoff forecasting. Hydrological Sciences Journal 35(1): 79-94.
-
(1990)
Hydrological Sciences Journal
, vol.35
, Issue.1
, pp. 79-94
-
-
Galeati, G.1
-
16
-
-
0002684932
-
Kernel estimation of regression functions
-
Smoothing Techniques for Curve Estimation, Gasser T, Rosenblatt M, eds Springer-Verlag: Heidelberg;
-
Gasser T, Muller HG. 1979. Kernel estimation of regression functions. In Smoothing Techniques for Curve Estimation, Lecture Notes in Mathematics, Gasser T, Rosenblatt M, (eds) Springer-Verlag: Heidelberg; 23-67.
-
(1979)
Lecture Notes in Mathematics
, pp. 23-67
-
-
Gasser, T.1
Muller, H.G.2
-
19
-
-
0029413797
-
Artificial neural network modelling of the rainfall-runoff process
-
Hsu K, Gupta HV, Sorooshian S. 1995. Artificial neural network modelling of the rainfall-runoff process. Water Resources Research 31(10): 2517-2530.
-
(1995)
Water Resources Research
, vol.31
, Issue.10
, pp. 2517-2530
-
-
Hsu, K.1
Gupta, H.V.2
Sorooshian, S.3
-
20
-
-
0023524387
-
Nearest neighbour methods for non-parametric rainfall-runoff forecasting
-
Karlsson M, Yakowitz S. 1987. Nearest neighbour methods for non-parametric rainfall-runoff forecasting. Water Resources Research 23(7): 1300-1308.
-
(1987)
Water Resources Research
, vol.23
, Issue.7
, pp. 1300-1308
-
-
Karlsson, M.1
Yakowitz, S.2
-
22
-
-
0033957764
-
Neural network for the prediction and forecasting of water resources variables: A review of modeling issues and application
-
Maier HR, Dandy GC. 2000. Neural network for the prediction and forecasting of water resources variables: a review of modeling issues and application. Environmental Modeling & Software 15: 101-124.
-
(2000)
Environmental Modeling & Software
, vol.15
, pp. 101-124
-
-
Maier, H.R.1
Dandy, G.C.2
-
23
-
-
38549090702
-
Calibration of rainfall-runoff models
-
Brussels: Commission European Communities
-
Marsigli M, Todini F, Diomede T, Liu Z, Vignoli R. 2002. Calibration of rainfall-runoff models. MUSIC-Multiple-Sensor Precipitation Measurements, Integration, Calibration and Flood Forecasting. Brussels: Commission European Communities.
-
(2002)
MUSIC-Multiple-Sensor Precipitation Measurements, Integration, Calibration and Flood Forecasting
-
-
Marsigli, M.1
Todini, F.2
Diomede, T.3
Liu, Z.4
Vignoli, R.5
-
24
-
-
0030159380
-
Artificial neural networks as rainfall-runoff models
-
Minns AW, Hall MJ. 1996. Artificial neural networks as rainfall-runoff models. Hydrolgical Science Journal 41: 399-417.
-
(1996)
Hydrolgical Science Journal
, vol.41
, pp. 399-417
-
-
Minns, A.W.1
Hall, M.J.2
-
26
-
-
0001495905
-
Learning with continuous classes
-
World Scientific: London;
-
Quinlan JR. 1992. Learning with continuous classes. In The 5th Australian Joint Conference on AI, World Scientific: London; 343-348.
-
(1992)
The 5th Australian Joint Conference on AI
, pp. 343-348
-
-
Quinlan, J.R.1
-
28
-
-
0002192358
-
Terminology, modelling protocol and classification of hydrological model codes
-
Abbott MB, Refsgaard JC eds, Kluwer Academic Publishers: Dordrecht;
-
Refsgaard JC. 1996. Terminology, modelling protocol and classification of hydrological model codes. In Distributed Hydrological Modelling, Abbott MB, Refsgaard JC (eds). Kluwer Academic Publishers: Dordrecht; 321.
-
(1996)
Distributed Hydrological Modelling
, pp. 321
-
-
Refsgaard, J.C.1
-
30
-
-
0030131272
-
A nearest neighbour linear perturbation model for river flow forecasting
-
Shamseldin AY, O'Connor KM. 1996. A nearest neighbour linear perturbation model for river flow forecasting. Journal of Hydrology 179: 353-375.
-
(1996)
Journal of Hydrology
, vol.179
, pp. 353-375
-
-
Shamseldin, A.Y.1
O'Connor, K.M.2
-
32
-
-
33645987256
-
Machine learning approaches for estimation of prediction interval for the model output
-
Shrestha DL, Solomatine DP. 2006. Machine learning approaches for estimation of prediction interval for the model output. Neural Networks 19(2): 225-235.
-
(2006)
Neural Networks
, vol.19
, Issue.2
, pp. 225-235
-
-
Shrestha, D.L.1
Solomatine, D.P.2
-
33
-
-
33645982638
-
Data-driven modeling and computational intelligence methods in hydrology
-
Anderson M ed, Wiley: New York
-
Solomatine DP. 2005. Data-driven modeling and computational intelligence methods in hydrology. In Encyclopedia of Hydrological Sciences, Anderson M (ed.). Wiley: New York.
-
(2005)
Encyclopedia of Hydrological Sciences
-
-
Solomatine, D.P.1
-
34
-
-
0037565156
-
Model trees as an alternative to neural networks in rainfall-runoff modelling
-
Solomatine DP, Dulal KN. 2003. Model trees as an alternative to neural networks in rainfall-runoff modelling. Hydrological Sciences Journal 48(3): 399-411.
-
(2003)
Hydrological Sciences Journal
, vol.48
, Issue.3
, pp. 399-411
-
-
Solomatine, D.P.1
Dulal, K.N.2
-
35
-
-
38549160710
-
Innovative approaches to flood forecasting using data driven and hybrid modelling
-
World Scientific Publishing Company: Singapore
-
Solomatine DP, Price RK. 2004. Innovative approaches to flood forecasting using data driven and hybrid modelling. In 6th International Conference on Hydroinformatics. World Scientific Publishing Company: Singapore.
-
(2004)
6th International Conference on Hydroinformatics
-
-
Solomatine, D.P.1
Price, R.K.2
-
36
-
-
33645974258
-
Modular learning models in forecasting natural phenomena
-
Solomatine DP, Siek MB. 2006. Modular learning models in forecasting natural phenomena. Neural Networks 19(2): 215-224.
-
(2006)
Neural Networks
, vol.19
, Issue.2
, pp. 215-224
-
-
Solomatine, D.P.1
Siek, M.B.2
-
37
-
-
10244261532
-
M5 model trees and neural networks: Application flood forecasting in the upper reach the Huai River in China
-
Solomatine DP, Xue Y. 2004. M5 model trees and neural networks: application flood forecasting in the upper reach the Huai River in China. Journal of Hydrologic Engineering 9(6).
-
(2004)
Journal of Hydrologic Engineering
, vol.9
, Issue.6
-
-
Solomatine, D.P.1
Xue, Y.2
-
38
-
-
0003223756
-
Tank model
-
ed, Water Resources Publication: Highlands Ranch, CO;
-
Sugawara M. 1995. Tank model. In Computer Models of Watershed Hydrology, Singh VP (ed.). Water Resources Publication: Highlands Ranch, CO; 165-214.
-
(1995)
Computer Models of Watershed Hydrology
, pp. 165-214
-
-
Sugawara, M.1
-
39
-
-
0030483015
-
The arno rainfall-runoff model
-
Todini E. 1996. The arno rainfall-runoff model. Journal of Hydrology, 175: 339-382.
-
(1996)
Journal of Hydrology
, vol.175
, pp. 339-382
-
-
Todini, E.1
-
40
-
-
0034694775
-
Comparison of short-term rainfall prediction models for real-time flood forecasting
-
Toth E, Brath A, Montanari A. 2000. Comparison of short-term rainfall prediction models for real-time flood forecasting. Journal of Hydrology 239: 132-147.
-
(2000)
Journal of Hydrology
, vol.239
, pp. 132-147
-
-
Toth, E.1
Brath, A.2
Montanari, A.3
-
43
-
-
0026692226
-
Stacked generalisation
-
Wolpert D. 1992. Stacked generalisation. Neural Networks 5: 241-259.
-
(1992)
Neural Networks
, vol.5
, pp. 241-259
-
-
Wolpert, D.1
|