메뉴 건너뛰기




Volumn 22, Issue 2, 2008, Pages 275-287

Instance-based learning compared to other data-driven methods in hydrological forecasting

Author keywords

Artificial neural networks; Data driven models; Floods; Hydrological modelling; Instance based learning; k nearest neighbour method; Locally weighted regression

Indexed keywords

COMPUTER SIMULATION; DATA PROCESSING; FLOODS; FORECASTING; LEARNING SYSTEMS; NEURAL NETWORKS; REGRESSION ANALYSIS;

EID: 38549089135     PISSN: 08856087     EISSN: 10991085     Source Type: Journal    
DOI: 10.1002/hyp.6592     Document Type: Article
Times cited : (55)

References (43)
  • 1
    • 0034254196 scopus 로고    scopus 로고
    • Comparing neural network and autoregressive moving average techniques for the provision of continous river flow forecasts in two contrasting catchments
    • Abrahart RJ, See L. 2000. Comparing neural network and autoregressive moving average techniques for the provision of continous river flow forecasts in two contrasting catchments. Hydrological Processes 14: 2157-2172.
    • (2000) Hydrological Processes , vol.14 , pp. 2157-2172
    • Abrahart, R.J.1    See, L.2
  • 5
    • 0023524394 scopus 로고
    • Nonlinear flood routing with multilinear models
    • Becker A, Kundzewicz ZW. 1987. Nonlinear flood routing with multilinear models. Water Resources Research 23: 1043-1048.
    • (1987) Water Resources Research , vol.23 , pp. 1043-1048
    • Becker, A.1    Kundzewicz, Z.W.2
  • 6
    • 33746834358 scopus 로고    scopus 로고
    • Identification of support vector machines for runoff modelling
    • Bray M, Han D. 2004. Identification of support vector machines for runoff modelling. Journal of Hydroinformatics 6: 265-280.
    • (2004) Journal of Hydroinformatics , vol.6 , pp. 265-280
    • Bray, M.1    Han, D.2
  • 7
    • 0038240755 scopus 로고    scopus 로고
    • Estimation, forecasting and extrapolation of river flows by artificial neural networks
    • Cigizoglu HK. 2003. Estimation, forecasting and extrapolation of river flows by artificial neural networks. Hydrological Sciences Journal 48(3): 349-361.
    • (2003) Hydrological Sciences Journal , vol.48 , Issue.3 , pp. 349-361
    • Cigizoglu, H.K.1
  • 10
    • 0034749335 scopus 로고    scopus 로고
    • Hydrological modeling using artificial neural networks
    • Dawson CW, Wilby RL. 2001. Hydrological modeling using artificial neural networks. Progress in Physical Geography 25(1): 80-108.
    • (2001) Progress in Physical Geography , vol.25 , Issue.1 , pp. 80-108
    • Dawson, C.W.1    Wilby, R.L.2
  • 14
    • 0029657538 scopus 로고    scopus 로고
    • Use of genetic algorithm combined with a local search method for the automatic calibration of conceptual rainfall-runoff models
    • Franchini M. 1996. Use of genetic algorithm combined with a local search method for the automatic calibration of conceptual rainfall-runoff models. Hydrological Science Journal 41(1l): 21-39.
    • (1996) Hydrological Science Journal , vol.41 , Issue.1 L , pp. 21-39
    • Franchini, M.1
  • 15
    • 0025383534 scopus 로고
    • A comparison of parametric and non-parametric methods for runoff forecasting
    • Galeati G. 1990. A comparison of parametric and non-parametric methods for runoff forecasting. Hydrological Sciences Journal 35(1): 79-94.
    • (1990) Hydrological Sciences Journal , vol.35 , Issue.1 , pp. 79-94
    • Galeati, G.1
  • 16
    • 0002684932 scopus 로고
    • Kernel estimation of regression functions
    • Smoothing Techniques for Curve Estimation, Gasser T, Rosenblatt M, eds Springer-Verlag: Heidelberg;
    • Gasser T, Muller HG. 1979. Kernel estimation of regression functions. In Smoothing Techniques for Curve Estimation, Lecture Notes in Mathematics, Gasser T, Rosenblatt M, (eds) Springer-Verlag: Heidelberg; 23-67.
    • (1979) Lecture Notes in Mathematics , pp. 23-67
    • Gasser, T.1    Muller, H.G.2
  • 19
    • 0029413797 scopus 로고
    • Artificial neural network modelling of the rainfall-runoff process
    • Hsu K, Gupta HV, Sorooshian S. 1995. Artificial neural network modelling of the rainfall-runoff process. Water Resources Research 31(10): 2517-2530.
    • (1995) Water Resources Research , vol.31 , Issue.10 , pp. 2517-2530
    • Hsu, K.1    Gupta, H.V.2    Sorooshian, S.3
  • 20
    • 0023524387 scopus 로고
    • Nearest neighbour methods for non-parametric rainfall-runoff forecasting
    • Karlsson M, Yakowitz S. 1987. Nearest neighbour methods for non-parametric rainfall-runoff forecasting. Water Resources Research 23(7): 1300-1308.
    • (1987) Water Resources Research , vol.23 , Issue.7 , pp. 1300-1308
    • Karlsson, M.1    Yakowitz, S.2
  • 22
    • 0033957764 scopus 로고    scopus 로고
    • Neural network for the prediction and forecasting of water resources variables: A review of modeling issues and application
    • Maier HR, Dandy GC. 2000. Neural network for the prediction and forecasting of water resources variables: a review of modeling issues and application. Environmental Modeling & Software 15: 101-124.
    • (2000) Environmental Modeling & Software , vol.15 , pp. 101-124
    • Maier, H.R.1    Dandy, G.C.2
  • 24
    • 0030159380 scopus 로고    scopus 로고
    • Artificial neural networks as rainfall-runoff models
    • Minns AW, Hall MJ. 1996. Artificial neural networks as rainfall-runoff models. Hydrolgical Science Journal 41: 399-417.
    • (1996) Hydrolgical Science Journal , vol.41 , pp. 399-417
    • Minns, A.W.1    Hall, M.J.2
  • 26
    • 0001495905 scopus 로고
    • Learning with continuous classes
    • World Scientific: London;
    • Quinlan JR. 1992. Learning with continuous classes. In The 5th Australian Joint Conference on AI, World Scientific: London; 343-348.
    • (1992) The 5th Australian Joint Conference on AI , pp. 343-348
    • Quinlan, J.R.1
  • 28
    • 0002192358 scopus 로고    scopus 로고
    • Terminology, modelling protocol and classification of hydrological model codes
    • Abbott MB, Refsgaard JC eds, Kluwer Academic Publishers: Dordrecht;
    • Refsgaard JC. 1996. Terminology, modelling protocol and classification of hydrological model codes. In Distributed Hydrological Modelling, Abbott MB, Refsgaard JC (eds). Kluwer Academic Publishers: Dordrecht; 321.
    • (1996) Distributed Hydrological Modelling , pp. 321
    • Refsgaard, J.C.1
  • 30
    • 0030131272 scopus 로고    scopus 로고
    • A nearest neighbour linear perturbation model for river flow forecasting
    • Shamseldin AY, O'Connor KM. 1996. A nearest neighbour linear perturbation model for river flow forecasting. Journal of Hydrology 179: 353-375.
    • (1996) Journal of Hydrology , vol.179 , pp. 353-375
    • Shamseldin, A.Y.1    O'Connor, K.M.2
  • 32
    • 33645987256 scopus 로고    scopus 로고
    • Machine learning approaches for estimation of prediction interval for the model output
    • Shrestha DL, Solomatine DP. 2006. Machine learning approaches for estimation of prediction interval for the model output. Neural Networks 19(2): 225-235.
    • (2006) Neural Networks , vol.19 , Issue.2 , pp. 225-235
    • Shrestha, D.L.1    Solomatine, D.P.2
  • 33
    • 33645982638 scopus 로고    scopus 로고
    • Data-driven modeling and computational intelligence methods in hydrology
    • Anderson M ed, Wiley: New York
    • Solomatine DP. 2005. Data-driven modeling and computational intelligence methods in hydrology. In Encyclopedia of Hydrological Sciences, Anderson M (ed.). Wiley: New York.
    • (2005) Encyclopedia of Hydrological Sciences
    • Solomatine, D.P.1
  • 34
    • 0037565156 scopus 로고    scopus 로고
    • Model trees as an alternative to neural networks in rainfall-runoff modelling
    • Solomatine DP, Dulal KN. 2003. Model trees as an alternative to neural networks in rainfall-runoff modelling. Hydrological Sciences Journal 48(3): 399-411.
    • (2003) Hydrological Sciences Journal , vol.48 , Issue.3 , pp. 399-411
    • Solomatine, D.P.1    Dulal, K.N.2
  • 35
    • 38549160710 scopus 로고    scopus 로고
    • Innovative approaches to flood forecasting using data driven and hybrid modelling
    • World Scientific Publishing Company: Singapore
    • Solomatine DP, Price RK. 2004. Innovative approaches to flood forecasting using data driven and hybrid modelling. In 6th International Conference on Hydroinformatics. World Scientific Publishing Company: Singapore.
    • (2004) 6th International Conference on Hydroinformatics
    • Solomatine, D.P.1    Price, R.K.2
  • 36
    • 33645974258 scopus 로고    scopus 로고
    • Modular learning models in forecasting natural phenomena
    • Solomatine DP, Siek MB. 2006. Modular learning models in forecasting natural phenomena. Neural Networks 19(2): 215-224.
    • (2006) Neural Networks , vol.19 , Issue.2 , pp. 215-224
    • Solomatine, D.P.1    Siek, M.B.2
  • 37
    • 10244261532 scopus 로고    scopus 로고
    • M5 model trees and neural networks: Application flood forecasting in the upper reach the Huai River in China
    • Solomatine DP, Xue Y. 2004. M5 model trees and neural networks: application flood forecasting in the upper reach the Huai River in China. Journal of Hydrologic Engineering 9(6).
    • (2004) Journal of Hydrologic Engineering , vol.9 , Issue.6
    • Solomatine, D.P.1    Xue, Y.2
  • 38
    • 0003223756 scopus 로고
    • Tank model
    • ed, Water Resources Publication: Highlands Ranch, CO;
    • Sugawara M. 1995. Tank model. In Computer Models of Watershed Hydrology, Singh VP (ed.). Water Resources Publication: Highlands Ranch, CO; 165-214.
    • (1995) Computer Models of Watershed Hydrology , pp. 165-214
    • Sugawara, M.1
  • 39
    • 0030483015 scopus 로고    scopus 로고
    • The arno rainfall-runoff model
    • Todini E. 1996. The arno rainfall-runoff model. Journal of Hydrology, 175: 339-382.
    • (1996) Journal of Hydrology , vol.175 , pp. 339-382
    • Todini, E.1
  • 40
    • 0034694775 scopus 로고    scopus 로고
    • Comparison of short-term rainfall prediction models for real-time flood forecasting
    • Toth E, Brath A, Montanari A. 2000. Comparison of short-term rainfall prediction models for real-time flood forecasting. Journal of Hydrology 239: 132-147.
    • (2000) Journal of Hydrology , vol.239 , pp. 132-147
    • Toth, E.1    Brath, A.2    Montanari, A.3
  • 43
    • 0026692226 scopus 로고
    • Stacked generalisation
    • Wolpert D. 1992. Stacked generalisation. Neural Networks 5: 241-259.
    • (1992) Neural Networks , vol.5 , pp. 241-259
    • Wolpert, D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.